

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 4, 957-971

ISSN: 1927-5307

GALOIS CONNECTIONS AND RIGHT CLOSURE OPERATORS

YONG CHAN KIM
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea

Abstract

In this paper, we investigate the relations between right (left) closure operators and residuated (Galois) connections on generalized residuated lattices.

Keywords: generalized residuated lattices; isotone (antitone) maps; residuated (Galois) connections; right (left) closure (interior) operators

2000 AMS Subject Classification: 03E72; 03G10; 06A15; 06F07

1. Introduction

Bělohlávek [1-3] developed the notion of fuzzy contexts using Galois connections with $R \in L^{X \times Y}$ on a complete residuated lattice. Georgescu and Popescue [4.5] introduced non-commutative fuzzy Galois connection in a generalized residuated lattice which is induced by two implications. Kim [7] investigated the properties of right and left closure on a generalized residuated lattice.

In this paper, we investigate the relations between right (left) closure operators and residuated (Galois) connections on generalized residuated lattices. We give their examples.

Definition 1.1. [4,5] A structure $(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow, \perp, \top)$ is called a generalized residuated lattice if it satisfies the following conditions:
(GR1) $(L, \vee, \wedge, \top, \perp)$ is a bounded where T is the universal upper bound and \perp denotes the universal lower bound;
(GR2) (L, \odot, \top) is a monoid;
(GR3) it satisfies a residuation, i.e.

$$
a \odot b \leq c \text { iff } a \leq b \rightarrow c \text { iff } b \leq a \Rightarrow c
$$

We call that a generalized residuated lattice has the law of double negation if $a=$ $\left(a^{*}\right)^{0}=\left(a^{0}\right)^{*}$ where $a^{0}=a \rightarrow \perp$ and $a^{*}=a \Rightarrow \perp$.

Remark 1.2.[4-8] (1) A generalized residuated lattice is a residuated lattice $(\rightarrow=\Rightarrow)$ iff \odot is commutative.
(2) A left-continuous t-norm $([0,1], \leq, \odot)$ defined by $a \rightarrow b=\bigvee\{c \mid a \odot c \leq b\}$ is a residuated lattice
(3) Let $(L, \leq, \odot, \perp, \top)$ be a quantale. For each $x, y \in L$, we define

$$
x \rightarrow y=\bigvee\{z \in L \mid z \odot x \leq y\}, x \Rightarrow y=\bigvee\{z \in L \mid x \odot z \leq y\}
$$

Then it satisfies Galois correspondence, that is,
$(x \odot y) \leq z$ iff $x \leq(y \rightarrow z)$ iff $y \leq(x \Rightarrow z)$.
Hence $(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow, \perp, \top)$ is a generalized residuated lattice.
(4) A pseudo MV-algebra is a generalized residuated lattice with the law of double negation.

In this paper, we assume $(L, \wedge, \vee, \odot, \rightarrow, \Rightarrow, \perp, \top)$ is a generalized residuated lattice with the law of double negation and if the family supremum or infumum exists, we denote \bigvee and \bigwedge.

Lemma 1.3.[4-8] For each $x, y, z, x_{i}, y_{i} \in L$, we have the following properties.
(1) If $y \leq z,(x \odot y) \leq(x \odot z), x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$ for $\rightarrow \in\{\rightarrow, \Rightarrow\}$.
(2) $x \odot y \leq x \wedge y \leq x \vee y$.
(3) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$ and $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$ for $\rightarrow \in\{\rightarrow, \Rightarrow\}$.
(4) $x \rightarrow\left(\bigvee_{i \in \Gamma} y_{i}\right) \geq \bigvee_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$, for $\rightarrow \in\{\rightarrow, \Rightarrow\}$.
(5) $\left(\bigwedge_{i \in \Gamma} x_{i}\right) \rightarrow y \geq \bigvee_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$, for $\rightarrow \in\{\rightarrow, \Rightarrow\}$.
(6) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)$ and $(x \odot y) \Rightarrow z=y \Rightarrow(x \Rightarrow z)$.
(7) $x \rightarrow(y \Rightarrow z)=y \Rightarrow(x \rightarrow z)$ and $x \Rightarrow(y \rightarrow z)=y \rightarrow(x \Rightarrow z)$.
(8) $x \odot(x \Rightarrow y) \leq y$ and $(x \rightarrow y) \odot x \leq y$.
(9) $(x \Rightarrow y) \odot(y \Rightarrow z) \leq x \Rightarrow z$ and $(y \rightarrow z) \odot(x \rightarrow y) \leq x \rightarrow z$.
$(10)(x \Rightarrow z) \leq(y \odot x) \Rightarrow(y \odot z)$ and $(x \rightarrow z) \leq(x \odot y) \rightarrow(z \odot y)$.
(11) $(x \Rightarrow y) \leq(y \Rightarrow z) \rightarrow(x \Rightarrow z)$ and $(y \Rightarrow z) \leq(x \Rightarrow y) \Rightarrow(x \Rightarrow z)$.
(12) $x_{i} \rightarrow y_{i} \leq\left(\bigwedge_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)$ for $\rightarrow \in\{\rightarrow, \Rightarrow\}$.
(13) $x_{i} \rightarrow y_{i} \leq\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigvee_{i \in \Gamma} y_{i}\right)$ for $\rightarrow \in\{\rightarrow, \Rightarrow\}$.
(14) $x \rightarrow y=\top$ iff $x \leq y$.
(15) $x \rightarrow y=y^{0} \Rightarrow x^{0}$ and $x \Rightarrow y=y^{*} \rightarrow x^{*}$.
(16) $\bigwedge_{i \in \Gamma} x_{i}^{*}=\left(\bigvee_{i \in \Gamma} x_{i}\right)^{*}$ and $\bigvee_{i \in \Gamma} x_{i}^{*}=\left(\bigwedge_{i \in \Gamma} x_{i}\right)^{*}$.
(17) $\bigwedge_{i \in \Gamma} x_{i}^{0}=\left(\bigvee_{i \in \Gamma} x_{i}\right)^{0}$ and $\bigvee_{i \in \Gamma} x_{i}^{0}=\left(\bigwedge_{i \in \Gamma} x_{i}\right)^{0}$.

Definition 1.4.[7] Let X be a set. A function $e_{X}: X \times X \rightarrow L$ is called a right preorder if it satisfies:
(E1) $e_{X}(x, x)=\top$ for all $x \in X$,
(R) $e_{X}(x, y) \odot e_{X}(y, z) \leq e_{X}(x, z)$, for all $x, y, z \in X$.

A function e_{X} is called a left preorder if it satisfies (E1) and
$(\mathrm{L}) e_{X}(y, z) \odot e_{X}(x, y) \leq e_{X}(x, z)$, for all $x, y, z \in X$.
The pair $\left(X, e_{X}\right)$ is a right preorder (resp. left-preorder) set.
Remark 1.5.(1) We define two functions $e_{L}^{\Uparrow}, e_{L}^{\uparrow}: L \times L \rightarrow L$ as $e_{L}^{\Uparrow}(x, y)=x \Rightarrow y$ and $e_{L}^{\uparrow}(x, y)=x \rightarrow y$. Then e_{L}^{\Uparrow} is a right preorder and e_{L}^{\uparrow} is a left preorder from Lemma 1.3 (9).
(2) We define two functions $e_{L^{X}}^{\Uparrow}, e_{L^{X}}^{\uparrow}: L^{X} \times L^{X} \rightarrow L$ as

$$
e_{L^{X}}^{\Uparrow}(A, B)=\bigwedge_{x \in X}(A(x) \Rightarrow B(x)), e_{L^{X}}^{\uparrow}(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow B(x))
$$

Then $e_{L^{X}}^{\Uparrow}$ is a right preorder and $e_{L^{X}}^{\uparrow}$ is a left preorder from Lemma 1.3 (9).

Definition 1.6.[7,10] Let X and Y be two sets. Let $F, H: L^{X} \rightarrow L^{Y}$ and $G, K: L^{Y} \rightarrow L^{X}$ be operators.
(1) The pair (F, G) is called a residuated connection between X and Y if for $A \in L^{X}$ and $B \in L^{Y}, F(A) \leq B$ iff $A \leq G(B)$.
(2) The pair (H, K) is called a Galois connection between X and Y if for $A \in L^{X}$ and $B \in L^{Y}, B \leq H(A)$ iff $A \leq K(B)$.

Definition 1.7.[7] (1) A map $G: L^{X} \rightarrow L^{Y}$ is a right isotone map if for all $A, B \in L^{X}$, $e_{L^{X}}^{\Uparrow}(A, B) \leq e_{L^{Y}}^{\Uparrow}(G(A), G(B))$.
(2) A map $G: L^{X} \rightarrow L^{Y}$ is a left isotone map if for all $A, B \in L^{X}, e_{L^{X}}^{\uparrow}(A, B) \leq$ $e_{L^{Y}}^{\uparrow}(G(A), G(B))$.
(3) A map $G: L^{X} \rightarrow L^{Y}$ is a right antitone map if for all $A, B \in L^{X}, e_{L^{X}}^{\uparrow}(A, B) \leq$ $e_{L^{Y}}^{\Uparrow}(G(B), G(A))$.
(4) A map $G: L^{X} \rightarrow L^{Y}$ is a left antitone map if for all $A, B \in L^{X}, e_{L^{X}}^{\Uparrow}(A, B) \leq$ $e_{L^{Y}}^{\uparrow}(G(B), G(A))$.

Definition 1.8.[7] A map $C: L^{X} \rightarrow L^{X}$ is called a right (resp. left) closure operator if it satisfies the following conditions:
(C1) $A \leq C(A)$, for all $A \in L^{X}$.
(C2) $C(C(A))=C(A)$, for all $A \in L^{X}$.
(C3) C is a right (resp. left) isotone map.
A map $I: L^{X} \rightarrow L^{X}$ is called a right (resp. left) interior operator if it satisfies the following conditions:
(I1) $I(A) \leq A$, for all $A \in L^{X}$.
(I2) $I(I(A))=I(A)$, for all $A \in L^{X}$.
(I3) I is a right (resp. left) isotone map.
Theorem 1.9.[7]Let $G: L^{X} \rightarrow L^{Y}$ and $H: L^{Y} \rightarrow L^{X}$ be two maps.
(1) A pair (G, H) is a residuated connection with two right isotone maps G and H iff for all $A \in L^{X}$ and $B \in L^{Y}, e_{L^{Y}}^{\Uparrow}(G(A), B)=e_{L^{X}}^{\Uparrow}(A, H(B))$.
(2) A pair (G, H) is a residuated connection with two left isotone maps G and H iff for all $A \in L^{X}$ and $B \in L^{Y}, e_{L^{Y}}^{\uparrow}(G(A), B)=e_{L^{X}}^{\uparrow}(A, H(B))$.
(3) A pair (G, H) is a Galois connection with right antitone map G and left antitone map H iff for all $A \in L^{X}$ and $B \in L^{Y}, e_{L^{X}}^{\uparrow}(A, H(B))=e_{L^{Y}}^{\Uparrow}(B, G(A))$.
(4) A pair (G, H) is a Galois connection with left antitone map G and right antitone map H iff for all $A \in L^{X}$ and $B \in L^{Y}, e_{L^{X}}^{\Uparrow}(A, H(B))=e_{L^{Y}}^{\uparrow}(B, G(A))$.

Theorem 1.10.[7] Let $G: L^{X} \rightarrow L^{Y}$ and $H: L^{Y} \rightarrow L^{X}$ be right isotone maps with a residuated connection (G, H). Then the following statements hold:
(1) $H \circ G$ is a right closure operator.
(2) $G \circ H$ is a right interior operator.

Corollary 1.11.[7]Let $G: L^{X} \rightarrow L^{Y}$ and $H: L^{Y} \rightarrow L^{X}$ be left isotone maps with a residuated connection (G, H). Then the following statements hold:
(1) $H \circ G$ is a left closure operator.
(2) $G \circ H$ is a left interior operator.

Theorem 1.12.[7] Let $G: L^{X} \rightarrow L^{Y}$ be a right antitone map and $H: L^{Y} \rightarrow L^{X}$ be a left antitone map with a Galois connection (G, H). Then
(1) $H \circ G$ is a left closure operator.
(2) $G \circ H$ is a right closure operator.

Corollary 1.13.[7]Let $G: L^{X} \rightarrow L^{Y}$ be a left antitone map and $H: L^{Y} \rightarrow L^{X}$ be a right antitone map with a Galois connection (G, H). Then
(1) $H \circ G$ is a right closure operator.
(2) $G \circ H$ is a left closure operator.

2. Galois connections and right closure operators

Theorem 2.1.Let $\left(X, e_{X}\right)$ be a left preordered set. Let $\left(e_{X}\right)^{\Uparrow},\left(e_{X}\right)^{\odot},: L^{X} \rightarrow L^{X}$ be maps as follows:

$$
\left(e_{X}\right)^{\Uparrow}(A)(x)=\bigwedge_{y \in X}\left(e_{X}(x, y) \Rightarrow A(y)\right), \quad\left(e_{X}\right)^{\odot}(A)(x)=\bigvee_{y \in X}\left(e_{X}(y, x) \odot A(y)\right)
$$

Then the following statements hold.
(1) $\left(e_{X}\right)^{\Uparrow}$ is a right interior operator.
(2) $\left(e_{X}\right)^{\odot}$ is a right closure operator.
(3) $e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\odot}(A), B\right)=e_{L^{X}}^{\Uparrow}\left(A,\left(e_{X}\right)^{\Uparrow}(B)\right)$.
(4) $\left(e_{X}\right)^{\Uparrow} \circ\left(e_{X}\right)^{\odot}=\left(e_{X}\right)^{\odot}$.
(5) $\left(e_{X}\right)^{\odot} \circ\left(e_{X}\right)^{\Uparrow}=\left(e_{X}\right)^{\Uparrow}$.

Proof. (1) (I1) $\left(e_{X}\right)^{\Uparrow}(A)(x) \leq\left(e_{X}(x, x) \Rightarrow A(x)\right)=A(x)$.
(I2) Since e_{X} is a left preorder, $\bigvee_{y \in X}\left(\left(e_{X}(y, z) \odot e_{X}(x, y)\right)=e_{X}(x, z)\right.$. Thus

$$
\begin{aligned}
& \left(e_{X}\right)^{\Uparrow}\left(\left(e_{X}\right)^{\Uparrow}(B)\right)(x) \\
& =\bigwedge_{y \in X}\left(e_{X}(x, y) \Rightarrow\left(e_{X}\right)^{\Uparrow}(B)(y)\right) \\
& =\bigwedge_{y \in X}\left(e_{X}(x, y) \Rightarrow \bigwedge_{z \in X}\left(e_{X}(y, z) \Rightarrow B(z)\right)\right) \\
& =\bigwedge_{y \in X} \bigwedge_{z \in X}\left(\left(e_{X}(y, z) \odot e_{X}(x, y)\right) \Rightarrow B(z)\right)(\text { by Lemma 1.3(6)) } \\
& =\bigwedge_{z \in X}\left(\left(\bigvee_{y \in X}\left(\left(e_{X}(y, z) \odot e_{X}(x, y)\right)\right) \Rightarrow B(z)\right)\right. \\
& =\bigwedge_{z \in X}\left(e_{X}(x, z) \Rightarrow B(z)\right) \\
& =\left(e_{X}\right)^{\Uparrow}(B)(x)
\end{aligned}
$$

(I3) Since $\left(e_{X}(x, y) \Rightarrow A(y)\right) \odot(A(y) \Rightarrow B(y)) \leq e_{X}(x, y) \Rightarrow B(y)$, then

$$
e_{L^{X}}^{\Uparrow}(A, B) \leq e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\Uparrow}(A),\left(e_{X}\right)^{\Uparrow}(B)\right)
$$

Thus $\left(e_{X}\right)^{\Uparrow}$ is a right interior operator.
(2) $(\mathrm{C} 1) ~ A \leq\left(e_{X}\right)^{\odot}(A)$.
(C2) Since e_{X} is a left preorder, $\bigvee_{y \in X}\left(\left(e_{X}(y, z) \odot e_{X}(x, y)\right)=e_{X}(x, z)\right.$.

$$
\begin{aligned}
\left(e_{X}\right)^{\odot}\left(\left(e_{X}\right)^{\odot}(A)\right)(y) & =\bigvee_{z \in X}\left(e_{X}(z, y) \odot\left(e_{X}\right)^{\odot}(A)(z)\right) \\
& =\bigvee_{z \in X}\left(\left(e_{X}(z, y) \odot \bigvee_{x \in X}\left(e_{X}(x, z) \odot A(x)\right)\right)\right. \\
& =\bigvee_{z \in X}\left(\bigvee_{x \in X}\left(\left(e_{X}(z, y) \odot e_{X}(x, z)\right) \odot A(x)\right)\right) \\
& =\bigvee_{x \in X}\left(\bigvee_{z \in X}\left(\left(e_{X}(z, y) \odot e_{X}(x, z)\right) \odot A(x)\right)\right) \\
& =\bigvee_{x \in X}\left(\left(e_{X}(x, y) \odot A(x)\right)\right. \\
& =\left(e_{X}\right)^{\odot}(A)(y) .
\end{aligned}
$$

(C3) Since $e_{X}(x, y) \odot A(x) \odot(A(x) \Rightarrow B(x)) \leq e_{X}(x, y) \odot B(y)$, then

$$
\begin{gathered}
(A(x) \Rightarrow B(x)) \leq\left(e_{X}(x, y) \odot A(x)\right) \Rightarrow\left(e_{X}(x, y) \odot B(y)\right), \\
e_{L^{X}}^{\Uparrow}(A, B) \leq e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\odot}(A),\left(e_{X}\right)^{\odot}(B)\right) .
\end{gathered}
$$

Thus $\left(e_{X}\right)^{\odot}$ is a right closure operator.

$$
\begin{aligned}
e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\odot}(A), B\right) & =\bigwedge_{y \in X}\left(\left(e_{X}\right)^{\odot}(A)(y) \Rightarrow B(y)\right) \\
& =\bigwedge_{y \in X}\left(\bigvee_{x \in X}\left(e_{X}(x, y) \odot A(x)\right) \Rightarrow B(y)\right) \\
& =\bigwedge_{y \in X} \bigwedge_{x \in X}\left(\left(e_{X}(x, y) \odot A(x)\right) \Rightarrow B(y)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in X}\left(A(x) \Rightarrow\left(e_{X}(x, y) \Rightarrow B(y)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \Rightarrow \bigwedge_{y \in Y}\left(e_{X}(x, y) \Rightarrow B(y)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \Rightarrow\left(e_{X}\right)^{\Uparrow}(B)(x)\right) \\
& =e_{L^{X}}^{\Uparrow}\left(A,\left(e_{X}\right)^{\Uparrow}(B)\right)
\end{aligned}
$$

(4) By (1), since $\left(e_{X}\right)^{\odot} \geq\left(e_{X}\right)^{\Uparrow} \circ\left(e_{X}\right)^{\odot}$, we only show $\left(e_{X}\right)^{\odot} \leq\left(e_{X}\right)^{\Uparrow} \circ\left(e_{X}\right)^{\odot}$ from:

$$
\begin{aligned}
\top & =e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\odot}(A),\left(e_{X}\right)^{\odot}(A)\right)=e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\odot}\left(\left(e_{X}\right)^{\odot}(A)\right),\left(e_{X}\right)^{\odot}(A)\right) \\
& =e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\odot}(A),\left(e_{X}\right)^{\Uparrow}\left(\left(e_{X}\right)^{\odot}(A)\right)\right) \quad(\operatorname{by}(3)) .
\end{aligned}
$$

(5) By (2), since $\left(e_{X}\right)^{\odot} \circ\left(e_{X}\right)^{\Uparrow} \geq\left(e_{X}\right)^{\Uparrow}$, we only show $\left(e_{X}\right)^{\odot} \circ\left(e_{X}\right)^{\Uparrow} \leq\left(e_{X}\right)^{\Uparrow}$ from:

$$
\begin{aligned}
\top & =e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\Uparrow}(B),\left(e_{X}\right)^{\Uparrow}(B)\right)=e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\Uparrow}(B),\left(e_{X}\right)^{\Uparrow}\left(\left(e_{X}\right)^{\Uparrow}(B)\right)\right) \\
& =e_{L^{X}}^{\Uparrow}\left(\left(e_{X}\right)^{\odot}\left(\left(e_{X}\right)^{\Uparrow}(B)\right),\left(e_{X}\right)^{\Uparrow}(B)\right) \quad(\operatorname{by}(3)) .
\end{aligned}
$$

Theorem 2.2.Let $\left(X, e_{X}\right)$ be a right preordered set. Let $\left(e_{X}\right)^{\uparrow}, \odot\left(e_{X}\right),: L^{X} \rightarrow L^{X}$ be maps as follows:

$$
\left(e_{X}\right)^{\uparrow}(A)(x)=\bigwedge_{y \in X}\left(e_{X}(x, y) \rightarrow A(y)\right), \quad{ }^{\circ}\left(e_{X}\right)(A)(x)=\bigvee_{y \in X}\left(A(y) \odot e_{X}(y, x)\right)
$$

Then the following statements hold.
(1) $\left(e_{X}\right)^{\uparrow}$ is a left interior operator.
(2) ${ }^{\odot}\left(e_{X}\right)$ is a left closure operator.
(3) $e_{L^{X}}^{\uparrow}\left(\odot\left(e_{X}\right)(A), B\right)=e_{L^{X}}^{\uparrow}\left(A,\left(e_{X}\right)^{\uparrow}(B)\right)$.
(4) $\left(e_{X}\right)^{\uparrow} \circ \odot\left(e_{X}\right)=\odot\left(e_{X}\right)$.
(5) ${ }^{\circ}\left(e_{X}\right) \circ\left(e_{X}\right)^{\uparrow}=\left(e_{X}\right)^{\uparrow}$.

Proof. (1) (I1) $\left(e_{X}\right)^{\uparrow}(A) \leq A$. (I2) Since e_{X} is a right preorder, $\bigvee_{y \in X}\left(\left(e_{X}(x, y) \odot\right.\right.$ $\left.e_{X}(y, z)\right)=e_{X}(x, z)$. Thus

$$
\begin{aligned}
& \left(e_{X}\right)^{\uparrow}\left(\left(e_{X}\right)^{\uparrow}(B)\right)(x) \\
& =\bigwedge_{y \in X}\left(e_{X}(x, y) \rightarrow\left(e_{X}\right)^{\uparrow}(B)(y)\right) \\
& =\bigwedge_{y \in X}\left(e_{X}(x, y) \rightarrow \bigwedge_{z \in X}\left(e_{X}(y, z) \rightarrow B(z)\right)\right) \\
& =\bigwedge_{y \in X} \bigwedge_{z \in X}\left(\left(e_{X}(x, y) \odot e_{X}(y, z)\right) \rightarrow B(z)\right)(\text { by Lemma 1.3(6)) } \\
& =\bigwedge_{z \in X}\left(\left(\bigvee_{y \in X}\left(\left(e_{X}(x, y) \odot e_{X}(y, z)\right)\right) \rightarrow B(z)\right)\right. \\
& =\bigwedge_{z \in X}\left(e_{X}(x, z) \rightarrow B(z)\right) \\
& =\left(e_{X}\right)^{\uparrow}(B)(x)
\end{aligned}
$$

(I3) Since $(A(y) \rightarrow B(y)) \odot\left(e_{X}(x, y) \rightarrow A(y)\right) \leq e_{X}(x, y) \rightarrow B(y)$, then

$$
e_{L^{X}}^{\uparrow}(A, B) \leq e_{L^{X}}^{\uparrow}\left(\left(e_{X}\right)^{\uparrow}(A),\left(e_{X}\right)^{\uparrow}(B)\right)
$$

Thus $\left(e_{X}\right)^{\uparrow}$ is a left interior operator.
(2) $(\mathrm{C} 1) ~ A \leq\left(e_{X}\right)^{\odot}(A)$.
(C2) Since e_{X} is a right preorder, $\bigvee_{y \in X}\left(\left(e_{X}(x, y) \odot e_{X}(y, z)\right)=e_{X}(x, z)\right.$. Thus

$$
\begin{aligned}
\left.\odot\left(e_{X}\right) \odot\left(e_{X}\right)(A)\right)(y) & =\bigvee_{z \in X}\left({ }^{\circ}\left(e_{X}\right)(A)(z) \odot e_{X}(z, y)\right) \\
& =\bigvee_{z \in X}\left(\bigvee_{x \in X}\left(A(x) \odot e_{X}(x, z)\right) \odot\left(e_{X}(z, y)\right)\right. \\
& =\bigvee_{x \in X}\left(A(x) \odot \bigvee_{z \in X}\left(\left(e_{X}(x, z) \odot e_{X}(z, y)\right)\right)\right. \\
& =\bigvee_{x \in X}\left(A(x) \odot e_{X}(x, y)\right) \\
& ={ }^{\odot}\left(e_{X}\right)(A)(y)
\end{aligned}
$$

(C3) Since $(A(y) \rightarrow B(y)) \odot A(y) \odot e_{X}(x, y) \leq B(y) \odot e_{X}(x, y)$,

$$
e_{L^{X}}^{\uparrow}(A, B) \leq e_{L^{X}}^{\uparrow}\left({ }^{\odot}\left(e_{X}\right)(A), \odot\left(e_{X}\right)(B)\right) .
$$

Thus $\odot\left(e_{X}\right)$ is a left closure operator.

$$
\begin{aligned}
e_{L^{X}}^{\uparrow}\left(\odot^{\circ}\left(e_{X}\right)(A), B\right) & =\bigwedge_{y \in X}\left(\odot^{\circ}\left(e_{X}\right)(A)(y) \rightarrow B(y)\right) \\
& =\bigwedge_{y \in X}\left(\bigvee_{x \in X}\left(A(x) \odot e_{X}(x, y)\right) \rightarrow B(y)\right) \\
& =\bigwedge_{y \in X} \bigwedge_{x \in X}\left(\left(A(x) \odot e_{X}(x, y)\right) \rightarrow B(y)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in X}\left(A(x) \rightarrow\left(e_{X}(x, y) \rightarrow B(y)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow \bigwedge_{y \in Y}\left(e_{X}(x, y) \rightarrow B(y)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow\left(e_{X}\right)^{\uparrow}(B)(x)\right) \\
& =e_{L^{X}}^{\uparrow}\left(A,\left(e_{X}\right)^{\uparrow}(B)\right) .
\end{aligned}
$$

(4) By (1), since ${ }^{\odot}\left(e_{X}\right) \geq\left(e_{X}\right)^{\uparrow} \circ^{\odot}\left(e_{X}\right)$, we only show ${ }^{\odot}\left(e_{X}\right) \leq\left(e_{X}\right)^{\uparrow} \circ \odot\left(e_{X}\right)$ from:

$$
\begin{aligned}
\top & =e_{L^{X}}^{\uparrow}\left(\odot\left(e_{X}\right)(A), \odot\left(e_{X}\right)(A)\right)=e_{L^{X}}^{\uparrow}\left(\odot\left(e_{X}\right)\left(\odot\left(e_{X}\right)(A)\right), \odot\left(e_{X}\right)(A)\right) \\
& =e_{L^{X}}^{\uparrow}\left(\odot\left(e_{X}\right)(A),\left(e_{X}\right)^{\uparrow}\left(\odot\left(e_{X}\right)(A)\right)\right)
\end{aligned}
$$

(5) By (2), since ${ }^{\odot}\left(e_{X}\right) \circ\left(e_{X}\right)^{\uparrow} \geq\left(e_{X}\right)^{\uparrow}$, we only show $\odot\left(e_{X}\right) \circ\left(e_{X}\right)^{\uparrow} \leq\left(e_{X}\right)^{\uparrow}$ from:

$$
\begin{aligned}
\top & =e_{L^{X}}^{\uparrow}\left(\left(e_{X}\right)^{\uparrow}(B),\left(e_{X}\right)^{\uparrow}(B)\right)=e_{L^{X}}^{\uparrow}\left(\left(e_{X}\right)^{\uparrow}(B),\left(e_{X}\right)^{\uparrow}\left(\left(e_{X}\right)^{\uparrow}(B)\right)\right) \\
& =e_{L^{X}}^{\uparrow}\left(\odot\left(e_{X}\right)\left(\left(e_{X}\right)^{\uparrow}(B)\right),\left(e_{X}\right)^{\uparrow}(B)\right)
\end{aligned}
$$

Theorem 2.3. For each $A \in L^{X}$ and $B \in L^{Y}$ and $R \in L^{X \times Y}$, we define: $R^{\rightarrow}, R^{\Rightarrow}: L^{X} \rightarrow$ L^{Y} is defined as:

$$
R^{\rightarrow}(A)(y)=\bigwedge_{x \in X}(A(x) \rightarrow R(x, y)), \quad R^{\Rightarrow}(A)(y)=\bigwedge_{x \in X}(A(x) \Rightarrow R(x, y))
$$

and $R^{\leftarrow}, R^{\leftarrow}: L^{Y} \rightarrow L^{X}$ is defined as:

$$
R^{\leftarrow}(B)(x)=\bigwedge_{y \in Y}(B(y) \rightarrow R(x, y)), \quad R^{\leftarrow}(B)(x)=\bigwedge_{y \in Y}(B(y) \Rightarrow R(x, y))
$$

(1) $R \Rightarrow$ is a left antitone map and R^{\rightarrow} is a right antitone map.
(2) R^{\leftarrow} is a left antitone map and R^{\leftarrow} is a right antitone map.
(3) Let R^{\Rightarrow} be a left antitone map and R^{\leftarrow} a right antitone map with a Galois connection $\left(R^{\Rightarrow}, R^{\leftarrow}\right)$.
(4) $R^{\Rightarrow} \circ R^{\leftarrow}: L^{Y} \rightarrow L^{Y}$ is a left closure operator and $R^{\leftarrow} \circ R^{\Rightarrow}: L^{X} \rightarrow L^{X}$ is a right closure operator.
(5) $e_{L^{Y}}^{\Uparrow}\left(B, R^{\rightarrow}(A)\right)=e_{L^{X}}^{\uparrow}\left(A, R^{\Leftarrow}(B)\right)$.
(6) $R^{\rightarrow} \circ R^{\Leftarrow}: L^{Y} \rightarrow L^{Y}$ is a right closure operator and $R^{\Leftarrow} \circ R^{\rightarrow}: L^{X} \rightarrow L^{X}$ is a left closure operator.

Proof. (1) Since $(A(x) \Rightarrow B(x)) \odot(B(x) \Rightarrow R(x, y)) \leq(A(x) \Rightarrow R(x, y))$,

$$
e_{L^{X}}^{\Uparrow}(A, B) \leq e_{L^{Y}}^{\uparrow}\left(R^{\Rightarrow}(B), R^{\Rightarrow}(A)\right)
$$

(2) Since $(B(y) \rightarrow R(x, y)) \odot(A(y) \rightarrow B(y)) \leq(A(y) \rightarrow R(x, y))$,

$$
e_{L^{Y}}^{\uparrow}(A, B) \leq e_{L^{X}}^{\Uparrow}\left(R^{\leftarrow}(B), R^{\leftarrow}(A)\right)
$$

(3) From Theorem 1.9(4), we only show that $e_{L^{X}}^{\Uparrow}\left(A, R^{\leftarrow}(B)\right)=e_{L^{Y}}^{\uparrow}\left(B, R^{\Rightarrow}(A)\right)$ from:

$$
\begin{aligned}
& e_{L^{X}}^{\Uparrow}\left(A, R^{\leftarrow}(B)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \Rightarrow R^{\leftarrow}(B)(x)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \Rightarrow \bigwedge_{y \in X}(B(y) \rightarrow R(x, y))\right. \\
& =\bigwedge_{x \in X} \bigwedge_{y \in X}(A(x) \Rightarrow(B(y) \rightarrow R(x, y)) \\
& =\bigwedge_{y \in X}\left(B(y) \rightarrow \bigwedge_{x \in X}(A(x) \Rightarrow R(x, y))\right. \text { (by Lemma 1.3(7)) } \\
& =\bigwedge_{y \in X}\left(B(y) \rightarrow R^{\Rightarrow}(A)(y)\right)=e_{L^{Y}}^{\uparrow}\left(B, R^{\Rightarrow}(A)\right) .
\end{aligned}
$$

(5) From Theorem 1.9(3), $e_{L^{Y}}^{\Uparrow}\left(B, R^{\rightarrow}(A)\right)=e_{L^{X}}^{\uparrow}\left(A, R^{\leftarrow}(B)\right)$ from

$$
\begin{aligned}
e_{L^{X}}^{\uparrow}\left(A, R^{\Leftarrow}(B)\right) & =\bigwedge_{x \in X}\left(A(x) \rightarrow R^{\Leftarrow}(B)(x)\right) \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow \bigwedge_{y \in X}(B(y) \Rightarrow R(x, y))\right. \\
& =\bigwedge_{x \in X} \bigwedge_{y \in X}(A(x) \rightarrow(B(y) \Rightarrow R(x, y)) \\
& =\bigwedge_{y \in X}\left(B(y) \Rightarrow \bigwedge_{x \in X}(A(x) \rightarrow R(x, y))\right. \\
& =\bigwedge_{y \in X}\left(B(y) \Rightarrow R^{\rightarrow}(A)(y)\right)=e_{L^{Y}}^{\Uparrow}\left(B, R^{\rightarrow}(B)\right)
\end{aligned}
$$

(4) and (6) are proved from Corollary 1.12 and Theorem 1.13, respectively.

Theorem 2.4.Let $F, G: L^{X} \rightarrow L^{X}$ be maps such that

$$
e_{L^{X}}^{\Uparrow}(F(A), B)=e_{L^{X}}^{\Uparrow}(A, G(B))
$$

Then the following statements are equivalent.
(1) F is a right interior operator.
(2) G is a right closure operator.
(3) $F \circ G=F$.
(4) $G \circ F=G$.

Proof. Since $e_{L^{X}}^{\Uparrow}(F(A), B)=e_{L^{X}}^{\Uparrow}(A, G(B))$, by Theorem 1.9(1), F and G are right isotone maps.
$(1) \Rightarrow(2)$. Since $\top=e_{L^{X}}^{\Uparrow}(F(A), A)=e_{L^{X}}^{\Uparrow}(A, G(A))$, then $A \leq G(A)$.

$$
\begin{aligned}
& e_{L^{X}}^{\Uparrow}(G(G(A)), G(A))=e_{L^{X}}^{\Uparrow}(F(G(G(A))), A)=e_{L^{X}}^{\Uparrow}(F(F(G(G(A)))), A) \\
& =e_{L^{X}}^{\Uparrow}(F(G(G(A))), G(A))=e_{L^{X}}^{\Uparrow}(G(G(A)), G(G(A)))=\mathrm{\top}
\end{aligned}
$$

Thus G is a right closure operator.
$(2) \Rightarrow(3)$. Since F is a right isotone map, $\top=e_{L^{X}}^{\Uparrow}(A, G(A)) \leq e_{L^{X}}^{\Uparrow}(F(A), F(G(A)))$.
Then $F(A) \leq F(G(A))$. Moreover, $F(A)=F(G(A))$ from:

$$
\begin{aligned}
& e_{L^{X}}^{\Uparrow}(F(G(A)), F(A))=e_{L^{X}}^{\Uparrow}(G(A), G(F(A)))=e_{L^{X}}^{\Uparrow}(G(A), G(G(F(A)))) \\
& \geq e_{L^{X}}^{\Uparrow}(A, G(F(A)))=\mathrm{T} .(G \text { is a right isotone map })
\end{aligned}
$$

(3) $\Rightarrow(4)$. Let $F \circ G=F$. Then $G \circ F \circ G=G \circ F$. Since $G \circ F \circ G \geq G$ and $F \circ G(A) \leq A$ implies $G \circ F \circ G(A) \leq G(A)$. So, $G \circ F=G \circ F \circ G=G$.
$(4) \Rightarrow(3)$. It follows from $F \circ G \circ F=F$.
(3) and $(4) \Rightarrow(1) \cdot e_{L^{x}}^{\Uparrow}(F(A), A) \geq e_{L^{x}}^{\Uparrow}(F(A), F(G(A))) \odot e_{L^{X}}^{\Uparrow}(F(G(A)), A)=\mathrm{\top} \odot \top=$ T. Moreover, $e_{L^{X}}^{\Uparrow}(F(A), F(F(A)))=e_{L^{X}}^{\Uparrow}(A, G(F(F(A))))=e_{L^{X}}^{\Uparrow}(A, G(F(A)))=$ T.

The following corollary are similarly proved as Theorem 2.4.
Corollary 2.5. Let $F, G: L^{X} \rightarrow L^{X}$ be maps such that

$$
e_{L^{X}}^{\uparrow}(F(A), B)=e_{L^{X}}^{\uparrow}(A, G(B)) .
$$

Then the following statements are equivalent.
(1) F is a left interior operator.
(2) G is a left closure operator.
(3) $F \circ G=F$.
(4) $G \circ F=G$.

Theorem 2.6.Let $F, G: L^{X} \rightarrow L^{X}$ be maps such that

$$
e_{L^{X}}^{\uparrow}(F(A), B)=e_{L^{X}}^{\uparrow}(A, G(B))
$$

Then the following statements are equivalent.
(1) F is a left closure operator.
(2) G is a left interior operator.
(3) $G \circ F=F$.
(4) $F \circ G=G$.

Proof. Since $e_{L^{X}}^{\uparrow}(F(A), B)=e_{L^{X}}^{\uparrow}(A, G(B))$, by Theorem 1.9(2), F and G are left isotone maps.
$(1) \Rightarrow(3)$. Since $F(A)=F(G(F(A)))$, we have

$$
e_{L^{X}}^{\uparrow}(G(F(A)), F(A))=e_{L^{X}}^{\uparrow}(G(F(A)), F(G(F(A))))=\top .
$$

Then $G(F(A)) \leq F(A)$. Moreover,

$$
e_{L^{X}}^{\uparrow}(F(A), G(F(A)))=e_{L^{X}}^{\uparrow}(F(F(A)), F(G(F(A))))=e_{L^{X}}^{\uparrow}(F(F(A)), F(A))=\top .
$$

Then $G(F(A)) \geq F(A)$.
$(3) \Rightarrow(1)$. Since F is a left isotone map and $A \leq G(F(A))$,

$$
e_{L^{X}}^{\uparrow}(A, F(A))=e_{L^{X}}^{\uparrow}(A, G(F(A)))=\top .
$$

Then $A \leq F(A)$.

$$
e_{L^{X}}^{\uparrow}(F(F(A)), F(A))=e_{L^{X}}^{\uparrow}(F(A), G(F(A)))=e_{L^{X}}^{\Uparrow}(F(A), F(A))=\top .
$$

Thus $F(A)=F(F(A))$.
(3) $\Leftrightarrow(4)$. It follows from $G \circ F \circ G=G$ and $F \circ G \circ F=F$.
$(2) \Leftrightarrow(4)$. We prove a similar method as $(1) \Leftrightarrow(3)$.
The following corollary are similarly proved as Theorem 2.5.
Corollary 2.7. Let $F, G: L^{X} \rightarrow L^{X}$ be maps such that

$$
e_{L^{X}}^{\Uparrow}(F(A), B)=e_{L^{X}}^{\Uparrow}(A, G(B))
$$

Then the following statements are equivalent.
(1) F is a right closure operator.
(2) G is a right interior operator.
(3) $G \circ F=F$.
(4) $F \circ G=G$.

Example 2.8.Let $K=\left\{(x, y) \in R^{2} \mid x>0\right\}$ be a set and we define an operation $\otimes: K \times K \rightarrow K$ as follows:

$$
\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right)
$$

Then (K, \otimes) is a group with $e=(1,0),(x, y)^{-1}=\left(\frac{1}{x},-\frac{y}{x}\right)$.
We have a positive cone $P=\left\{(a, b) \in R^{2} \mid a=1, b \geq 0\right.$, or $\left.a>1\right\}$ because $P \cap P^{-1}=$ $\{(1,0)\}, P \odot P \subset P,(a, b)^{-1} \odot P \odot(a, b)=P$ and $P \cup P^{-1}=K$. For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in K$, we define

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) & \Leftrightarrow\left(x_{1}, y_{1}\right)^{-1} \odot\left(x_{2}, y_{2}\right) \in P,\left(x_{2}, y_{2}\right) \odot\left(x_{1}, y_{1}\right)^{-1} \in P \\
& \Leftrightarrow x_{1}<x_{2} \text { or } x_{1}=x_{2}, y_{1} \leq y_{2}
\end{aligned}
$$

Then $(K, \leq \otimes)$ is a lattice-group.
The structure $\left(L, \odot, \Rightarrow, \rightarrow,\left(\frac{1}{2}, 1\right),(1,0)\right)$ is a generalized residuated lattice with strong negation where $\perp=\left(\frac{1}{2}, 1\right)$ is the least element and $\top=(1,0)$ is the greatest element from the following statements:

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \odot\left(x_{2}, y_{2}\right) & =\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right) \vee\left(\frac{1}{2}, 1\right)=\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right) \vee\left(\frac{1}{2}, 1\right) \\
\left(x_{1}, y_{1}\right) \Rightarrow\left(x_{2}, y_{2}\right) & =\left(\left(x_{1}, y_{1}\right)^{-1} \otimes\left(x_{2}, y_{2}\right)\right) \wedge(1,0)=\left(\frac{x_{2}}{x_{1}}, \frac{y_{2}-y_{1}}{x_{1}}\right) \wedge(1,0), \\
\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right) & =\left(\left(x_{2}, y_{2}\right) \otimes\left(x_{1}, y_{1}\right)^{-1}\right) \wedge(1,0)=\left(\frac{x_{2}}{x_{1}},-\frac{x_{2} y_{1}}{x_{1}}+y_{2}\right) \wedge(1,0) .
\end{aligned}
$$

Furthermore, we have $(x, y)=(x, y)^{* \circ}=(x, y)^{0 *}$ from:

$$
\begin{aligned}
& (x, y)^{*}=(x, y) \Rightarrow\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \\
& (x, y)^{* \circ}=\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \rightarrow\left(\frac{1}{2}, 1\right)=(x, y) .
\end{aligned}
$$

Let $X=\{a, b, c\}$ be a set. Define $\left(e_{X}^{1}(a, b)\right),\left(e_{X}^{2}(a, b)\right) \in L^{X \times X}$ as

$$
e_{X}^{1}=\left(\begin{array}{ccc}
(1,0) & \left(\frac{5}{8}, \frac{5}{2}\right) & \left(\frac{5}{6}, \frac{5}{3}\right) \\
\left(\frac{5}{7}, \frac{30}{7}\right) & (1,0) & \left(\frac{5}{8},-\frac{5}{4}\right) \\
(1,-2) & \left(\frac{5}{7}, \frac{10}{3}\right) & (1,0)
\end{array}\right) e_{X}^{2}=\left(\begin{array}{ccc}
(1,0) & \left(\frac{2}{3}, 5\right) & \left(\frac{5}{6}, 1\right) \\
\left(\frac{5}{7}, 3\right) & (1,0) & \left(\frac{6}{7}, 4\right) \\
\left(\frac{5}{6},-1\right) & \left(\frac{3}{4}, 2\right) & (1,0)
\end{array}\right)
$$

We easily show that e_{X}^{1} is a right partial order and e_{X}^{2} is a left partial order. But e_{X}^{2} is not a right partial order because

$$
e_{X}^{2}(b, c) \odot e_{X}^{2}(c, a)=\left(\frac{6}{7}, 4\right) \odot\left(\frac{5}{6},-1\right)=\left(\frac{5}{7}, \frac{22}{7}\right) \not \leq e_{X}^{2}(b, a)=\left(\frac{5}{7}, 3\right) .
$$

For $A=\left(\left(\frac{2}{3}, 1\right),\left(\frac{3}{5},-1\right),(1,-1)\right)^{t}$,

$$
\begin{gathered}
\odot\left(e_{X}^{2}\right)(A)=\left(\left(\frac{5}{6},-2\right),\left(\frac{3}{4}, 1\right),(1,-1)\right)^{t}, \\
\left(e_{X}^{2}\right)^{\uparrow}\left({ }^{\odot}\left(e_{X}^{2}\right)(A)\right)={ }^{\odot}\left(e_{X}^{2}\right)(A), \\
\left(e_{X}^{2}\right)^{\odot}(A)=\left(\left(\frac{5}{6},-\frac{11}{6}\right),\left(\frac{3}{4}, 1\right),(1,-1)\right)^{t}, \\
\left(e_{X}^{2}\right)^{\Uparrow}\left(\left(e_{X}^{2}\right)^{\odot}(A)\right)=\left(\left(\frac{5}{6},-\frac{11}{6}\right),\left(\frac{3}{4}, 1\right),\left(1,-\frac{4}{3}\right)\right)^{t} \neq\left(e_{X}^{2}\right)^{\odot}(A) .
\end{gathered}
$$

Since e_{X}^{2} is not a right partial order, by Theorem $2.1(4),\left(e_{X}^{2}\right)^{\Uparrow}\left(\left(e_{X}^{2}\right)^{\odot}(A)\right) \neq\left(e_{X}^{2}\right)^{\odot}(A)$.
Let $X=\{a, b, c\}$ and $Y=\{u, v\}$ be sets. Define $R \in L^{X \times Y}$ as

$$
R=\left(\begin{array}{cc}
(1,0) & \left(\frac{5}{8}, \frac{5}{2}\right) \\
\left(\frac{5}{7}, \frac{30}{7}\right) & \left(\frac{5}{8},-\frac{5}{4}\right) \\
\left(\frac{1}{2}, 2\right) & \left(\frac{5}{6}, \frac{10}{3}\right)
\end{array}\right)
$$

For $A=\left(\left(\frac{2}{3}, 1\right),\left(\frac{1}{2}, 2\right),\left(\frac{2}{3},-1\right)\right)^{t}$,

$$
\begin{aligned}
R^{\rightarrow}(A)= & \left(\left(\frac{3}{4}, \frac{11}{4}\right),\left(\frac{15}{16},-\frac{25}{16}\right)\right)^{t}, \quad R^{\Rightarrow}(A)=\left(\left(\frac{3}{4}, \frac{9}{2}\right),\left(\frac{15}{16}, \frac{9}{4}\right)\right)^{t} \\
& R^{\leftarrow}\left(R^{\rightarrow}(A)\right)=\left(\left(\frac{2}{3}, \frac{13}{3}\right),\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{2}{3},-1\right)\right)^{t}, \\
& R^{\leftarrow}\left(R^{\Rightarrow}(A)\right)=\left(\left(\frac{2}{3}, \frac{85}{24}\right),\left(\frac{2}{3},-\frac{5}{24}\right),\left(\frac{2}{3}, \frac{1}{6}\right)\right)^{t} .
\end{aligned}
$$

References

[1] R. Bělohlávek, Fuzzy Galois connection, Math. Log. Quart., 45 (2000), 497-504.
[2] R. Bělohlávek, Fuzzy closure operator, J. Math. Anal. Appl., 262 (2001), 473-486.
[3] R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart., 47 (2001), 111-116.
[4] G. Georgescu, A. Popescue, Non-commutative Galois connections, Soft Computing, 7(2003), 458-467.
[5] G. Georgescu, A. Popescue, Non-dual fuzzy connections, Arch. Math. Log. 43(2004), 1009-1039.
[6] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995.
[7] Y.C. Kim, Y.S. Kim, Right and left closure operators, (accepted to Mathematica Aeterna).
[8] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning, 50 (2009), 695-707.
[9] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.
[10] W. Yao, L.X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Quart., 55(1)(2009), 105-112.

