

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 4, 993-1003

ISSN: 1927-5307

ON THE SQUARE AND CUBE ROOTS OF P-ADIC NUMBERS

PAUL SAMUEL P. IGNACIO
Department of Mathematics and Computer Science, University of the Philippines Baguio, Baguio City 2600, Philippines

Abstract

The study of the field of p-adic numbers has been an important area of research in mathematics, giving rise to several important results such as the Hasse-Minkowski Theorem and the Local-Global Principle. The analysis on the complete ultrametric space \mathbb{Q}_{p} reveals many interesting properties that are radically different from \mathbb{R}, the completion of \mathbb{Q} with respect to the euclidean norm. The application of different numerical methods, and the analysis of their convergence in \mathbb{Q}_{p} has been a recent development in computational number theory. The application of the Newton-Raphson, fixed-point, and secant methods to compute for the square and cube roots of p-adic numbers in \mathbb{Q}_{p} have been respectively addressed in $[2,5,6]$. In this paper, we complete the problem in [2] by computing the q th root of p-adic numbers in \mathbb{Q}_{p} where $p \leq q \leq 3$. Given a root of order r, we determine the order of the nth iterate of the Newton-Raphson method, provide sufficient conditions for its convergence, and give the number of iterations required for any desired number of correct digits in the approximate.

Keywords: p-adic numbers; Newton-Raphson; square roots.
2000 AMS Subject Classification: 11J61; 11S05; 11Y99

1. Introduction

The use of algorithmic techniques and concepts to compute for p-adic numbers dates back to the time when Kurt Hensel developed the foundations of p-adic analysis. The basic
idea behind the use of numerical root-finding methods to compute for p-adic numbers is to determine the digits in their p-adic expansion using iterative methods. A classic result in p-adic analysis that employs numerical concepts is Hensel's lemma which provides the conditions for the existence of p-adic integral solutions of polynomials in $\mathbb{Z}_{p}[x]$. A wellknown application of Hensel's lemma is on the computation of the square roots in \mathbb{Z}_{p} of p-adic numbers using a method now known as Hensel lifting. Serre in [4] explicitly laid the conditions for the extension of the existence of square roots of p-adic numbers in \mathbb{Q}_{p}. The computation of the square roots and cube roots of p-adic numbers respectively using the fixed-point method and the secant method have been addressed in $[5,6]$. In [2], the Newton-Raphson method was used to compute the square roots and cube roots of p-adic numbers respectively for the cases where $p>2$ and $p>3$. In this paper, we complete the problem in [2] by addressing the case where $p=2$ for the square root and $p \leq 3$ for the cube root of p-adic numbers. For both cases, we provide the order of the nth iterate of the Newton-Raphson method, sufficient conditions for convergence, and the number of iterations required for any desired number of correct digits in the approximate.

2. Preliminaries

We necessarily start by defining a valuation on \mathbb{Q}.
Definition 2.1 Let $p \in \mathbb{N}$ be a prime number, $0 \neq x \in \mathbb{Q}$. The p-adic valuation $v_{p}(x)$ of x is defined as

$$
v_{p}(x)= \begin{cases}r & \text { if } x \in \mathbb{Z} \text { and } r \text { is the largest integer such that } x \equiv 0\left(\bmod p^{r}\right) \\ v_{p}(a)-v_{p}(b) & \text { if } x=\frac{a}{b}, a, b \in \mathbb{Z},(a, b)=1 \text { and } b \neq 0\end{cases}
$$

With this valuation, we can define a map $|\cdot|_{p}: \mathbb{Q} \rightarrow \mathbb{R}^{+}$as follows:
Definition 2.2 Let $p \in \mathbb{N}$ be a prime number, $x \in \mathbb{Q}$. The p-adic norm $|\cdot|_{p}$ of x is defined as

$$
|x|_{p}= \begin{cases}p^{-v_{p}(x)} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Using the p-adic norm and the process of completion, we have the following definition. Definition 2.3 The field of p-adic numbers \mathbb{Q}_{p} is the completion of \mathbb{Q} with respect to the p-adic norm $|\cdot|_{p}$. The elements of \mathbb{Q}_{p} are equivalence classes of Cauchy sequences in \mathbb{Q} with respect to the extension of the p-adic norm defined as

$$
|a|_{p}=\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}
$$

where $\left\{a_{n}\right\}$ is a Cauchy sequence of rational numbers representing $a \in \mathbb{Q}_{p}$.
Because the p-adic norm $|\cdot|_{p}$ is non-Archimedean, we call $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$ a complete ultrametric space. An interesting property of this complete ultrametric space is that we get a stronger condition for convergent sequences in \mathbb{Q}_{p}.
Theorem 2.4 A sequence $\left\{x_{n}\right\}$ in \mathbb{Q}_{p} is convergent if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|_{p}=0 \tag{1}
\end{equation*}
$$

Since each element in \mathbb{Q}_{p} is an equivalence class, the following theorem provides a convenient way to write the elements using its (unique) canonical representative.

Definition 2.5 Every p-adic number $a \in \mathbb{Q}_{p}$ has a unique representation

$$
a=a_{n} p^{n}+a_{n+1} p^{n+1}+\ldots+a_{-1} p^{-1}+a_{0}+a_{1} p+a_{2} p^{2}+\ldots=\sum_{i=n}^{\infty} a_{i} p^{i}
$$

where $a_{i} \in \mathbb{Z}$ and $0 \leq a_{i} \leq p-1$ for $i \geq n$ and $n<0$.
A quick method of writing p-adic numbers is by writing just the coefficients of the powers of p. For instance, in $\mathbb{Q}_{3}, 12=0 \cdot 3^{0}+1 \cdot 3^{1}+1 \cdot 3^{2}+0 \cdot 3^{3}+\ldots=.0110 \ldots$
Definition 2.6 Let \mathbb{Z}_{p} denote the set of p-adic integers, then

$$
\mathbb{Z}_{p}=\left\{a \in \mathbb{Q}_{p}: a=\sum_{i=0}^{\infty} a_{i} p^{i}, 0 \leq a_{i} \leq p-1\right\}=\left\{a \in \mathbb{Q}_{p}:|a|_{p} \leq 1\right\}
$$

The set \mathbb{Z}_{p}^{\times}of p-adic units is given by

$$
\mathbb{Z}_{p}^{\times}=\left\{a \in \mathbb{Z}_{p}: a=\sum_{i=0}^{\infty} a_{i} p^{i}, a_{0} \neq 0\right\}=\left\{a \in \mathbb{Q}_{p}:|a|_{p}=1\right\}
$$

One can verify that all integers are p-adic integers. However it can be checked that $\frac{1}{2}$, among others, is an integer in \mathbb{Q}_{7}.

An alternative way of writing p-adic numbers is in terms of their p-adic valuation.
Theorem 2.7 Let $a \in \mathbb{Q}_{p}^{*}$, then

$$
a=p^{v_{p}(a)} u
$$

for some $u \in \mathbb{Z}_{p}^{\times}$.
The following result will be an important tool in our discussion.
Lemma 2.8 Let $a, b \in \mathbb{Q}_{p}$. Then

$$
a \equiv b\left(\bmod p^{k}\right) \Leftrightarrow|a-b|_{p} \leq p^{-k}
$$

We next define what we shall refer to as the nth root of a p-adic number.
Definition 2.9 A p-adic number $b \in \mathbb{Q}_{p}$ is said to be an nth root of $a \in \mathbb{Q}_{p}$ of order $k \in \mathbb{N}$ if and only if $b^{n} \equiv a\left(\bmod p^{k}\right)$.

This definition is the basis for the following results, the first of which is a simpler restatement of one of Serre's result in [4].

Theorem 2.10 Let $p \neq 2$ be a prime. An element $x \in \mathbb{Q}_{p}$ is a square if and only if it can be written $x=p^{2 n} y^{2}$ with $n \in Z$ and $y \in \mathbb{Z}_{p}^{\times}$a p-adic unit.
Theorem 2.11 Let p be a prime, then
i. If $p \neq 3$, then a has a cube root in \mathbb{Q}_{p} if and only if $v_{p}(a)=3 m, m \in \mathbb{Z}$ and $u=v^{q}$ for some $v \in \mathbb{Z}_{p}^{\times}$.
ii. If $p=3$, then a has a cube root in \mathbb{Q}_{3} if and only if $v_{p}(a)=3 m, m \in \mathbb{Z}$ and $u \equiv 1$ ($\bmod 9)$ or $u \equiv 2(\bmod 3)$.

3. Main results

Since p-adic polynomials have continuous derivatives, for $a \in \mathbb{Q}_{p}$, the function $f(x)=$ $x^{2}-a$ satisfies the conditions of the Newton-Raphson method with recurrence relation

$$
\begin{align*}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{x_{n}^{2}-a}{2 x_{n}} \\
& =\frac{x_{n}^{2}+a}{2 x_{n}} \tag{2}
\end{align*}
$$

On the Square Roots of p-adic Numbers

We shall now use the Newton-Raphson method to compute the square root of p-adic numbers in \mathbb{Q}_{p} where $p=2$. We follow the method used in [2]. Let $a \in \mathbb{Q}_{p}$ such that $|a|_{p}=p^{-2 m}, m \in \mathbb{Z}$.

Proposition 3.1. Let $\left\{x_{n}\right\}$ be the sequence of p-adic numbers obtained from the NewtonRaphson iteration. If x_{0} is a square root of a of order $r,\left|x_{0}\right|_{p}=p^{-m}, r>2 m+1$, and $p=2$, then
(i) $\left|x_{n}\right|_{p}=p^{-m}$ for $n=1,2,3, \ldots$;
(ii) $x_{n}^{2} \equiv a\left(\bmod p^{2^{n} r-2(m+1)\left(2^{n}-1\right)}\right)$;
(iii) $\left\{x_{n}\right\}$ converges to the square root of a

Proof. We prove by induction. Note first that by our assumption, we have

$$
x_{0}^{2}=a+b p^{r}
$$

where $0<b<p$. Since $p=2$ and $r>2 m+1$, Eq. (2) then gives us

$$
\begin{align*}
\left|x_{1}\right|_{p} & =\frac{\left|2 a+b p^{r}\right|_{p}}{\left|2 x_{0}\right|_{p}} \\
& =\frac{\max \left\{|2 a|_{p},\left|b p^{r}\right|_{p}\right\}}{\left|2 x_{0}\right|_{p}} \\
& =\frac{p^{-(2 m+1)}}{p^{-(m+1)}} \\
& =p^{-m} \tag{3}
\end{align*}
$$

Also, by equation (2), we have

$$
x_{1}^{2}-a=\frac{\left(x_{0}^{2}-a\right)^{2}}{4 x_{0}^{2}}
$$

Let $\phi\left(x_{0}\right)=\frac{1}{4 x_{0}^{2}}$ and notice that

$$
\left|\phi\left(x_{0}\right)\right|_{p}=p^{2(m+1)}
$$

Since x_{0} is a square root of a of order r, we have

$$
\left|\left(x_{0}^{2}-a\right)^{2}\right|_{p} \leq p^{-2 r}
$$

and therefore

$$
\begin{aligned}
\left|x_{1}^{2}-a\right|_{p} & \leq p^{2(m+1)} p^{-2 r} \\
& =p^{2(m+1)-2 r}
\end{aligned}
$$

By Lemma 2.8

$$
\begin{equation*}
x_{1}^{2}-a \equiv 0\left(\bmod p^{2 r-2(m+1)}\right) \tag{4}
\end{equation*}
$$

Now, assume that

$$
\begin{align*}
\left|x_{n-1}\right|_{p} & =p^{-m} \tag{5}\\
x_{n-1}^{2} & \equiv a\left(\quad \bmod p^{2^{n-1} r-2(m+1)\left(2^{n-1}-1\right)}\right) \tag{6}
\end{align*}
$$

Hence,

$$
x_{n-1}^{2}=a+b p^{2^{n-1} r-2 m\left(2^{n-1}-1\right)}
$$

where $0<b<p$. By Eq. (2),

$$
\begin{align*}
\left|x_{n}\right|_{p} & =\frac{\left|2 a+b p^{2^{n-1} r-2(m+1)\left(2^{n-1}-1\right)}\right|_{p}}{\left|2 x_{n-1}\right|_{p}} \\
& =\frac{\max \left\{|2 a|_{p},\left|b p^{2^{n-1} r-2(m+1)\left(2^{n-1}-1\right)}\right|_{p}\right\}}{\left|2 x_{n-1}\right|_{p}} \\
& =\frac{p^{-(2 m+1)}}{p^{-(m+1)}} \\
& =p^{-m} \tag{7}
\end{align*}
$$

We also have

$$
x_{n}^{2}-a=\frac{\left(x_{n-1}^{2}-a\right)^{2}}{4 x_{n-1}^{2}}
$$

Let $\phi\left(x_{n-1}\right)=\frac{1}{4 x_{n-1}^{2}}$ and note that by equation (7)

$$
\left|\phi\left(x_{n-1}\right)\right|_{p}=p^{2(m+1)}
$$

Since x_{n-1} is a square root of a of order $2^{n-1} r-2(m+1)\left(2^{n-1}-1\right)$, we have

$$
\begin{align*}
\left|x_{n}^{2}-a\right|_{p} & \leq p^{2(m+1)} p^{-2\left(2^{n-1} r-2(m+1)\left(2^{n-1}-1\right)\right)} \\
& =p^{2(m+1)\left(2^{n}-1\right)-2^{n} r} \tag{8}
\end{align*}
$$

By Lemma 2.8, we have

$$
\begin{equation*}
x_{n}^{2}-a \equiv 0\left(\bmod p^{2^{n} r-2(m+1)\left(2^{n}-1\right)}\right) \tag{9}
\end{equation*}
$$

Finally, (iii) follows clearly from inequality (8) as $n \rightarrow+\infty$. This completes the proof.
Now, let $\gamma_{n}=2^{n} r-2(m+1)\left(2^{n}-1\right)$. We then have the following result.
Proposition 3.2. Let $\left\{x_{n}\right\}$ be the sequence of approximates converging to the square root of a obtained from the Newton-Raphson method in Proposition 3.1. If $p=2$
(a) Then for every iteration, the number of correct digits in the approximate increases by $\gamma_{n}-(m+1)=2^{n} r-(m+1)\left(2^{n+1}-1\right)$
(b) The number of iterations to obtain at least M correct digits is

$$
n=\left\lceil\frac{\ln \left(\frac{M-(m+2)}{r-2(m+1)}\right)}{\ln 2}\right\rceil
$$

Proof. Consider two consecutive approximates x_{n+1} and x_{n}. Note that

$$
\begin{aligned}
\left|x_{n+1}-x_{n}\right|_{p} & =\left|\frac{-1}{2 x_{n}}\right|_{p}\left|\left(x_{n}^{2}-a\right)\right|_{p} \\
& \leq p^{(m+1)-\gamma_{n}}
\end{aligned}
$$

Hence,

$$
x_{n+1}-x_{n} \equiv 0\left(\bmod p^{\gamma_{n}-(m+1)}\right)
$$

Since we want M correct digits in the approximate, we must set the order to $M+m$. That is,

$$
\begin{aligned}
2^{n} r-2(m+1)\left(2^{n}-1\right) & =M+m \\
\Rightarrow 2^{n} & =\frac{M-(m+2)}{r-2(m+1)}
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ is the sequence of p-adic numbers in Proposition 3.1, we have $r-2(m+1)>0$. Hence we take

$$
\begin{equation*}
n=\left\lceil\frac{\ln \left(\frac{M-(m+2)}{r-2(m+1)}\right)}{\ln 2}\right\rceil \tag{10}
\end{equation*}
$$

This n is a sufficient number of iterations to provide at least M correct digits in the approximate.

On the Cube Roots of p-adic Numbers

We now compute for the cube roots of p-adic number in \mathbb{Q}_{p} where $p \leq 3$. Let $|a|_{p}=$ $p^{-3 m}, m \in \mathbb{Z}$ and $f(x)=x^{3}-a$. Employing the Newton-Raphson method, we obtain the new recurrence relation

$$
\begin{equation*}
x_{n+1}=\frac{2 x_{n}^{3}+a}{3 x_{n}^{2}} \tag{11}
\end{equation*}
$$

Proposition 3.3. Let $\left\{x_{n}\right\}$ be the sequence of p-adic numbers obtained from the NewtonRaphson iteration. If x_{0} is a cube root of a of order $r,\left|x_{0}\right|_{p}=p^{-m}$, and $r>3 m$ for $p=2$ or $r>3 m+2$ for $p=3$, then
(i) $\left|x_{n}\right|_{p}=p^{-m}$ for $n=1,2,3, \ldots$
(ii) $\begin{cases}x_{n}^{3} \equiv a\left(\bmod p^{2^{n} r-3 m\left(2^{n}-1\right)}\right) & \text { if } p=2 \\ x_{n}^{3} \equiv a\left(\bmod p^{2^{n} r-(3 m+1)\left(2^{n}-1\right)}\right) & \text { if } p=3\end{cases}$
(iii) $\left\{x_{n}\right\}$ converges to the cube root of a

Proof. We again prove by induction. By our assumption, we have

$$
x_{0}^{3}=a+b p^{r}
$$

where $0<b<p$. Using Eq. (11), we have

$$
\begin{aligned}
\left|x_{1}\right|_{p} & =\frac{\left|3 a+2 b p^{r}\right|_{p}}{\left|3 x_{0}^{2}\right|_{p}} \\
& =\frac{\max \left\{|3 a|_{p},\left|2 b p^{r}\right|_{p}\right\}}{\left|3 x_{0}^{2}\right|_{p}} \\
& = \begin{cases}\frac{p^{-3 m}}{p^{-2 m}} & \text { if } p=2 \\
\frac{p^{-(3 m+1)}}{p^{-(2 m+1)}} & \text { if } p=3\end{cases} \\
& =p^{-m}
\end{aligned}
$$

By equation (11),

$$
x_{1}^{3}-a=\frac{\left(x_{0}^{3}-a\right)^{2}\left(8 x_{0}^{3}+a\right)}{27 x_{0}^{6}}
$$

Let $\phi\left(x_{0}\right)=\frac{\left(8 x_{0}^{3}+a\right)}{27 x_{0}^{6}}$ and note that

$$
\begin{aligned}
\left|\phi\left(x_{0}\right)\right|_{p} & =\frac{\left|8 b p^{r}+9 a\right|_{p}}{\left|27 x_{0}^{6}\right|_{p}} \\
& =\frac{\max \left\{\left|8 b p^{r}\right|_{p},|9 a|_{p}\right\}}{\left|27 x_{0}^{6}\right|_{p}} \\
& = \begin{cases}\frac{p^{-3 m}}{p^{-6 m}} & \text { if } p=2 \\
\frac{p^{-(3 m+2)}}{p^{-(6 m+3)}} & \text { if } p=3\end{cases} \\
& = \begin{cases}p^{3 m} & \text { if } p=2 \\
p^{3 m+1} & \text { if } p=3\end{cases}
\end{aligned}
$$

Since x_{0} is a cube root of a of order r, we have

$$
\left|\left(x_{0}^{3}-a\right)^{2}\right|_{p} \leq p^{-2 r}
$$

and therefore

$$
\left|x_{1}^{3}-a\right|_{p} \leq \begin{cases}p^{3 m-2 r} & \text { if } p=2 \\ p^{(3 m+1)-2 r} & \text { if } p=3\end{cases}
$$

By Lemma 2.8, we have

$$
\left\{\begin{aligned}
x_{1}^{3}-a & \equiv 0\left(\bmod p^{2 r-3 m}\right) \text { if } p=2 \\
x_{1}^{3}-a & \equiv 0\left(\bmod p^{2 r-(3 m+1)}\right) \text { if } p=3
\end{aligned}\right.
$$

As in the square root, proceeding by induction completes the proof and (iii) follows as $n \rightarrow+\infty$. This completes the proof.

Now, let $\alpha=2^{n} r-3 m\left(2^{n}-1\right)$ and $\beta=2^{n} r-(3 m+1)\left(2^{n}-1\right)$. We then have the following result.

Proposition 3.4. Let $\left\{x_{n}\right\}$ be the sequence of approximates in Proposition 3.3.
a. Then for every iteration, the number of correct digits in the approximate increases by $\alpha_{n}-2 m=2^{n} r-3 m 2^{n}+m$ if $p=2$ and $\beta_{n}-(2 m+1)=2^{n} r-(3 m+1) 2^{n}+m$ if $p=3$.
b. The number of iterations to obtain at least M correct digits is

$$
n= \begin{cases}\left\lceil\frac{\ln \left(\frac{M-2 m}{r-3 m}\right)}{\ln 2}\right\rceil & \text { if } p=2 \\ \left\lceil\frac{\ln \left(\frac{M-(2 m+1)}{r-(3 m+1)}\right)}{\ln 2}\right\rceil & \text { if } p=3\end{cases}
$$

Proof. Consider two consecutive approximates x_{n+1} and x_{n}. Note that

$$
\begin{aligned}
\left|x_{n+1}-x_{n}\right|_{p} & =\left|\frac{-1}{3 x_{n}^{2}}\right|_{p}\left|\left(x_{n}^{3}-a\right)\right|_{p} \\
& \leq \begin{cases}p^{2 m-\alpha_{n}} & \text { if } p=2 \\
p^{2 m+1-\beta_{n}} & \text { if } p=3\end{cases}
\end{aligned}
$$

Hence,

$$
x_{n+1}-x_{n} \equiv \begin{cases}0\left(\bmod p^{\alpha_{n}-2 m}\right) & \text { if } p=2 \\ 0\left(\bmod p^{\beta_{n}-(2 m+1)}\right) & \text { if } p=3\end{cases}
$$

Since we require M correct digits in the approximate, we must set the order to $M+m$. That is,

$$
M+m= \begin{cases}2^{n} r-3 m\left(2^{n}-1\right) & \text { if } p=2 \\ 2^{n} r-(3 m+1)\left(2^{n}-1\right) & \text { if } p=3\end{cases}
$$

Since $\left\{x_{n}\right\}$ is the sequence of p-adic numbers in Proposition 3.3, we have $r-3 m>0$ if $p=2$ and $r-(3 m+2)>0$ if $p=3$. Hence we take

$$
n= \begin{cases}\left\lceil\frac{\ln \left(\frac{M-2 m}{r-3 m}\right)}{\ln 2}\right\rceil & \text { if } p=2 \\ \left\lceil\frac{\ln \left(\frac{M-(2 m+1)}{r-(3 m+1)}\right)}{\ln 2}\right\rceil & \text { if } p=3\end{cases}
$$

This n is a sufficient number of iterations to provide at least M correct digits in the approximate.

References

[1] F. Gouvea, P-adic numbers: an introduction, Springer-Verlag (2003)
[2] P.S. Ignacio, J. Addawe, W. Alangui, J. Nable, Computation of the Square and Cube Roots of p-adic Numbers Via Newton-Raphson Method, J. Math. Res., Vol. 5, No. 2 (2013), 31-38.
[3] S. Katok, p-adic Analysis Compared with Real, American Mathematical Society (2007)
[4] J.P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics 7, Springer-Verlag (1973)
[5] T. Zerzaihi, M. Kecies, M. Knapp, Hensel Codes of Square Roots of p-adic Numbers, Appl. Anal. and Disc. Math., Vol. 4 (2010), 32-44.
[6] T. Zerzaihi, M. Kecies, Computation of the Cubic Root of a p-adic Number, J. Math. Res., Vol. 3, No. 3 (2011), 40-47.

