Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 4, 1143-1152 ISSN: 1927-5307

ANTI S-FUZZY NORMAL SUBHEMIRINGS AND LOWER LEVEL SUBSETS OF A HEMIRING

K.UMADEVI^{1,*}, C. ELANGO², AND P.THANGAVELU³

¹Department of Mathematics, Noorul Islam University, Kumaracoil, Tamilnadu ,India ²Department of Mathematics, Cardamom Planter's Association College, Bodinayakanoor,

Tamilnadu, India

³Department of Mathematics, Karunya University, Coimbatore, Tamilnadu ,India

Abstract: In this paper, we made an attempt to study the algebraic nature of an anti S-fuzzy normal subhemiring and lower level subset of a hemiring.

Keywords: fuzzy set, anti S-fuzzy subhemiring, anti S-fuzzy normal subhemiring, lower level subset.2000 AMS Subject Classification: 03F55, 06D72, 08A72.

0. Introduction

There are many concepts of universal algebras generalizing an associative ring (R; +; .). Some of them in particular, nearrings and several kinds of semirings have been prove very useful. Semirings (called also halfrings) are algebras (R; +; .) share the same properties as a ring except that (R; +) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +, .) is said to be a semiring if (R; +) and (R; .) are semigroups satisfying a. (b+c) = a. b+a. c and (b+c) .a = b. a+c. a for all a, b and c in R. A semiring R may have

^{*}Corresponding author

Received May 24, 2013

an identity 1, defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. A semiring R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A.Zadeh[14], several researchers explored on the generalization of the concept of fuzzy sets. The notion of anti fuzzy left h- ideals in hemirings was introduced by Akram.M and K.H.Dar [1]. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan[7]. In this paper, we introduce the some Theorems in anti S-fuzzy normal subhemiring and lower level subset of a hemiring.

1. Preliminaries

1.1 Definition: A S-norm is a binary operation S: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying the following requirements;

(i) 0 S x = x, 1 S x = 1 (boundary condition)

(ii) x S y = y S x (commutativity)

(iii) x S (y S z) = (x S y) S z (associativity)

(iv) if $x \le y$ and $w \le z$, then $x \le y \le z$ (monotonicity).

1.2 Definition: Let X be a non-empty set. A **fuzzy subset** A of X is a function $A: X \rightarrow [0, 1]$.

1.3 Definition: Let (R, +, .) be a hemiring. A fuzzy subset A of R is said to be an anti S-fuzzy subhemiring(anti fuzzy subhemiring with respect to S-norm) of R if it satisfies the following conditions:

(i) $\mu_A(x+y) \leq S(\mu_A(x), \mu_A(y)),$

(ii) $\mu_A(xy) \leq S(\mu_A(x), \mu_A(y))$, for all x and y in R.

1.4 Definition: Let A and B be fuzzy subsets of sets G and H, respectively. Antiproduct of A and B, denoted by A×B, is defined as $A \times B = \{ \langle (x, y), \mu_{A \times B}(x, y) \rangle /$ for all x in G and y in H }, where $\mu_{A \times B}(x, y) = \max \{ \mu_A(x), \mu_B(y) \}$.

1.5 Definition: Let A be a fuzzy subset in a set S, the anti-strongest fuzzy relation on S, that is a fuzzy relation on A is V given by $\mu_V(x, y) = \max \{ \mu_A(x), \}$

 $\mu_A(y)$ }, for all x and y in S.

1.6 Definition: Let (R, +, .) and (R', +, .) be any two hemirings. Let $f : R \to R'$ be any function and A be an anti S-fuzzy subhemiring in R, V be an anti S-fuzzy subhemiring in f (R) = R', defined by $\mu_V(y) = \inf_{x \in f^{-1}(y)} \mu_A(x)$, for all x in R

and y in R^{1} . Then A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

1.7 Definition: Let (R, +, .) be a hemiring. An anti S-fuzzy subhemiring A of R is said to be an anti S-fuzzy normal subhemiring (ASFNSHR) of R if $\mu_A(xy) = \mu_A(yx)$, for all x and y in R.

1.8 Definition: Let A be a fuzzy subset of X. For α in [0, 1], the lower level subset of A is the set $A_{\alpha} = \{ x \in X : \mu_A(x) \le \alpha \}.$

2. SOME PROPERTIES:

2.1 Theorem[11]: Union of any two(a family) of anti S-fuzzy subhemirings of a hemiring R is an anti S-fuzzy subhemiring of R.

2.2 Theorem[11]: If A and B are any two anti S-fuzzy subhemirings of the hemirings R_1 and R_2 respectively, then anti-product A×B is an anti S-fuzzy subhemiring of $R_1 \times R_2$.

2.3 Theorem[11]: Let A be a fuzzy subset of a hemiring R and V be the anti-strongest fuzzy relation of R. Then A is an anti S-fuzzy subhemiring of R if and only if V is an anti S-fuzzy subhemiring of $R \times R$.

2.4 Theorem[11]: Let R and R¹ be any two hemirings. The homomorphic image (preimage) of an anti S-fuzzy subhemiring of R is an anti S-fuzzy subhemiring of R¹.

2.5 Theorem[11]: Let R and R^{1} be any two hemirings. The anti-homomorphic image (preimage) of an anti S-fuzzy subhemiring of R is an anti S-fuzzy subhemiring of R^{1}.

2.6 Theorem: Let (R, +, .) be a hemiring. If any two anti S-fuzzy normal subhemirings of R, then their union is an anti S-fuzzy normal subhemiring of R.

Proof: Let x and y \in R. Let A ={ $\langle x, \mu_A(x) \rangle / x \in R$ } and B = { $\langle x, \mu_B(x) \rangle / x \in R$ }

 $x \in R$ } be anti S-fuzzy normal subhemirings of a hemiring R. Let $C = A \cup B$ and $C = \{ \langle x, \mu_C(x) \rangle / x \in R \}$, where $\mu_C(x) = \max \{ \mu_A(x), \mu_B(x) \}$. Then, Clearly C is an anti S-fuzzy subhemiring of a hemiring R, since A and B are two anti S-fuzzy subhemirings of the hemiring R. Then

 $\mu_C(xy) = \max \{ \mu_A(xy), \mu_B(xy) \} = \max \{ \mu_A(yx), \mu_B(yx) \} = \mu_C(yx), \text{ for all } x \text{ and } y \text{ in } R.$ Hence $A \cup B$ is an anti S-fuzzy normal subhemiring of the hemiring R.

2.7 Theorem: Let (R, +, .) be a hemiring. The union of a family of anti S-fuzzy normal subhemirings of R is an anti S-fuzzy normal subhemiring of R.Proof: It is trivial.

2.8 Theorem: Let A and B be anti S-fuzzy subhemirings of the hemirings G and H, respectively. If A and B are anti S-fuzzy normal subhemirings, then $A \times B$ is an anti S-fuzzy normal subhemiring of $G \times H$.

Proof: Let A and B be anti S-fuzzy normal subhemirings of the hemirings G and H respectively. Clearly A×B is an anti S-fuzzy subhemiring of G×H. Let x_1 and x_2 be in G, y_1 and y_2 be in H. Then (x_1,y_1) and (x_2,y_2) are in G×H. Now, $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \max \{\mu_A(x_1x_2), \mu_B(y_1y_2)\} = \max \{\mu_A(x_2x_1), \mu_B(y_2y_1)\} = \mu_{A\times B}(x_2x_1, y_2y_1) = \mu_{A\times B}[(x_2, y_2)(x_1, y_1)]$. Hence A×B is an anti S-fuzzy normal subhemiring of G×H.

2.9 Theorem: Let A be a fuzzy subset in a hemiring R and V be the anti-strongest fuzzy relation on R. Then A is an anti S-fuzzy normal subhemiring of R if and only if V is an anti S-fuzzy normal subhemiring of $R \times R$.

Proof: It is trivial.

2.10 Theorem: Let (R, +, .) and $(R^{1}, +, .)$ be any two hemirings. The homomorphic image of an anti S-fuzzy normal subhemiring of R is an anti S-fuzzy normal subhemiring of R¹.

Proof: Let $f : R \to R^{1}$ be a homomorphism. Then, f(x+y)=f(x)+f(y), f(xy) = f(x)f(y), for all x and y in R. Let V = f(A), where A is an anti S-fuzzy normal subhemiring of a hemiring R. Now, for f(x), f(y) in R^{1} , clearly V is an anti S-fuzzy subhemiring of a hemiring R^{1} , since A is an anti S-fuzzy subhemiring of a hemiring R¹, since A is an anti S-fuzzy subhemiring of a hemiring R. Now, $\mu_{v}(f(x)f(y)) \le \mu_{A}(xy) = \mu_{A}(yx) \ge \mu_{v}(f(yx)) = \mu_{v}(f(y)f(x))$,

which implies that $\mu_v(f(x)f(y)) = \mu_v(f(y) f(x))$, for all f(x) and f(y) in R¹. Hence V is an anti S-fuzzy normal subhemiring of a hemiring R¹.

2.11 Theorem: Let (R, +, .) and $(R^{I}, +, .)$ be any two hemirings. The homomorphic preimage of an anti S-fuzzy normal subhemiring of R^{I} is an anti S-fuzzy normal subhemiring of R.

Proof: Let V = f(A), where V is an anti S-fuzzy normal subhemiring of a hemiring R¹. Let x and y in R. Then, clearly A is an anti S-fuzzy subhemiring of a hemiring R, since V is an anti S-fuzzy subhemiring of a hemiring R¹. Now,

 $\mu_A(xy) = \mu_v(f(x)f(y)) = \mu_v(f(y)f(x)) = \mu_v(f(yx)) = \mu_A(yx)$, which implies that $\mu_A(xy) = \mu_A(yx)$, for all x and y in R. Hence A is an anti S-fuzzy normal subhemiring of a hemiring R.

2.12 Theorem: Let (R, +, .) and $(R^{I}, +, .)$ be any two hemirings. The anti-homomorphic image of an anti S-fuzzy normal subhemiring of R is an anti S-fuzzy normal subhemiring of R^I.

Proof: Let $f : R \to R^{\dagger}$ be an anti-homomorphism. Then, f(x+y) = f(y)+f(x), f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where A is an anti S-fuzzy normal subhemiring of a hemiring R. Now, for f(x) and f(y) in R^{\dagger}, clearly V is an anti S-fuzzy subhemiring of a hemiring R^{\dagger}, since A is an anti S-fuzzy subhemiring of a hemiring R^{\dagger}, since A is an anti S-fuzzy subhemiring R. Now, $\mu_v(f(x)f(y)) \le \mu_A(yx) = \mu_A(xy) \ge \mu_v(f(xy)) = \mu_v(f(y)f(x))$, which implies that $\mu_v(f(x)f(y)) = \mu_v(f(y)f(x))$, for all f(x) and f(y) in R^{\dagger}. Hence V is an anti S-fuzzy normal subhemiring of a hemiring R^{\dagger}.

2.13 Theorem: Let (R, +, .) and $(R^{I}, +, .)$ be any two hemirings. The anti-homomorphic preimage of an anti S-fuzzy normal subhemiring of R^{I} is an anti S-fuzzy normal subhemiring of R.

Proof: Let V = f(A), where V is an anti S-fuzzy normal subhemiring of a hemiring R¹. Let x and y in R, then, clearly A is an anti S-fuzzy subhemiring of a hemiring R, since V is an anti S-fuzzy subhemiring of a hemiring R¹. Now,

 $\mu_A(xy) = \mu_v(f(y)f(x)) = \mu_v(f(x)f(y)) = \mu_v(f(yx)) = \mu_A(yx)$, which implies that $\mu_A(xy) = \mu_A(yx)$, for all x and y in R. Hence A is an anti S-fuzzy normal subhemiring of a hemiring R.

In the following Theorem • is the composition operation of functions:

2.14 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring H and f is an isomorphism from a hemiring R onto H. If A is an anti S-fuzzy normal subhemiring of the hemiring H, then $A \circ f$ is an anti S-fuzzy normal subhemiring of the hemiring R.

Proof: Let x and y in R. Then we have, clearly A°f is an anti S-fuzzy subhemiring of a hemiring R. Now, $(\mu_A \circ f)(xy) = \mu_A(f(x)f(y)) = \mu_A(f(y)f(x)) = \mu_A(f(yx))=(\mu_A \circ f)(yx)$, which implies that $(\mu_A \circ f)(xy) = (\mu_A \circ f)(yx)$, for all x and y in R. Hence A°f is an anti S-fuzzy normal subhemiring of a hemiring R.

2.15 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from a hemiring R onto H. If A is an anti S-fuzzy normal subhemiring of the hemiring H, then $A \circ f$ is an anti S-fuzzy normal subhemiring of the hemiring R.

Proof: Let x and y in R. Then we have, clearly A°f is an anti S-fuzzy subhemiring of the hemiring R. Now, $(\mu_A°f)(xy) = \mu_A(f(y)f(x)) = \mu_A(f(x)f(y)) = \mu_A(f(yx)) = (\mu_A°f)(yx)$, which implies that $(\mu_A°f)(xy) = (\mu_A°f)(yx)$, for all x and y in R. Hence A°f is an anti S-fuzzy normal subhemiring of the hemiring R.

2.16 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. Then for α in [0, 1] such that $\mu_A(0) \leq \alpha$, A_{α} is a lower level subhemiring of R.

Proof: For all x and y in A_{α} . Now, $\mu_A(x+y) \leq S(\mu_A(x), \mu_A(y)) \leq \alpha$, which implies that $\mu_A(x+y) \leq \alpha$. And, $\mu_A(xy) \leq S(\mu_A(x), \mu_A(y)) \leq \alpha$, which implies that

 $\mu_A(xy) \le \alpha$. Hence A_α is a lower level subhemiring of a hemiring R.

2.17 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. Then two lower level subhemiring $A_{\alpha 1}$, $A_{\alpha 2}$ and α_1 , α_2 in [0, 1] such that $\mu_A(0) \le \alpha_1$,

 $\mu_A(0) \le \alpha_2$ with $\alpha_1 < \alpha_2$ of A are equal if and only if there is no x in R such that $\alpha_2 > \mu_A(x) > \alpha_1$.

Proof: Assume that $A_{\alpha 1} = A_{\alpha 2}$. Suppose there exists x in R such that $\alpha_2 > \mu_A(x) > \alpha_1$. Then $A_{\alpha 1} \subseteq A_{\alpha 2}$ implies x belongs to $A_{\alpha 2}$, but not in $A_{\alpha 1}$. This is contradiction to $A_{\alpha 1} = A_{\alpha 2}$. Therefore there is no $x \in R$ such that $\alpha_2 > \mu_A(x) > \alpha_1$. Conversely if there is no $x \in R$ such that $\alpha_2 > \mu_A(x) > \alpha_1$. Then $A_{\alpha 1} = A_{\alpha 2}$.

2.18 Theorem: Let R be a hemiring and A be a fuzzy subset of R such that A_{α} be a subhemiring of R. If α in [0, 1], then A is an anti S-fuzzy subhemiring of R. **Proof:** Let x and y in R and $\mu_A(x) = \alpha_1$ and $\mu_A(y) = \alpha_2$. If $\alpha_1 < \alpha_2$, then x, $y \in A_{\alpha 2}$, $\mu_A(x+y) \le \alpha_2 = \max \{ \mu_A(x), \mu_A(y) \} \le S(\mu_A(x), \mu_A(y))$, which implies that $\mu_A(x+y) \le S(\mu_A(x), \mu_A(y))$, for all x and y in R and $\mu_A(xy) \le \alpha_2 = \max \{ \mu_A(x), \mu_A(y) \}$, for all x and y in R and $\mu_A(xy) \le \alpha_2 = \max \{ \mu_A(x), \mu_A(y) \}$, which implies that $\mu_A(x+y) \le S(\mu_A(x), \mu_A(y))$, for all x and y in R and $\mu_A(xy) \le S(\mu_A(x), \mu_A(y))$, for all x and y in A_{\alpha1}, $\mu_A(x+y) \le \alpha_1 = \max \{ \mu_A(y), \mu_A(x) \} \le S(\mu_A(y), \mu_A(x))$, which implies that $\mu_A(x+y) \le S(\mu_A(x), \mu_A(y))$, for all x and y in R and $\mu_A(xy) \le \alpha_2 = \max \{ \mu_A(y), \mu_A(x) \} \le S(\mu_A(y), \mu_A(x))$, which implies that $\mu_A(x+y) \le S(\mu_A(x), \mu_A(y))$, for all x and y in R and $\mu_A(xy) \le \alpha_2 = \max \{ \mu_A(y), \mu_A(x) \} \le S(\mu_A(y), \mu_A(x))$, which implies that $\mu_A(x+y) \le S(\mu_A(x), \mu_A(y))$, for all x and y in R and $\mu_A(xy) \le \alpha_2 = \max \{ \mu_A(y), \mu_A(x) \} \le S(\mu_A(y), \mu_A(x))$, which implies that $\mu_A(x+y) \le S(\mu_A(x), \mu_A(y))$, for all x and y in R and $\mu_A(xy) \le \alpha_2 = \max \{ \mu_A(y), \mu_A(x) \} \le S(\mu_A(y), \mu_A(x))$, which implies that $\mu_A(xy) \le S(\mu_A(x), \mu_A(y))$.

2.19 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If any two lower level subhemirings of A belongs to R, then their intersection is also lower level subhemiring of A in R.

Proof: Let $\alpha_1, \alpha_2 \in [0, 1]$. If $\alpha_1 < \mu_A(x) < \alpha_2$, then $A_{\alpha_1} \subseteq A_{\alpha_2}$. Therefore,

 $A_{\alpha 1} \cap A_{\alpha 2} = A_{\alpha 1}$, but $A_{\alpha 1}$ is a lower level subhemiring of A. If $\alpha_1 > \mu_A(x) > \alpha_2$, then $A_{\alpha 2} \subseteq A_{\alpha 1}$. Therefore, $A_{\alpha 1} \cap A_{\alpha 2} = A_{\alpha 2}$, but $A_{\alpha 2}$ is a lower level subhemiring of A. If $\alpha_1 = \alpha_2$, then $A_{\alpha 1} = A_{\alpha 2}$. Hence intersection of any two lower level subhemirings is also a lower level subhemiring of A.

2.20 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If $\alpha_i \in [0, 1]$ and $A_{\alpha i}$, $i \in I$ is a collection of lower level subhemirings of A, then their intersection is also a lower level subhemiring of A.

Proof: It is trivial.

2.21 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If any two lower level subhemirings of A belongs to R, then their union is also a lower level subhemiring of A in R.

Proof: It is trivial.

2.22 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If $\alpha_i \in [0, 1]$ and $A_{\alpha i}$, $i \in I$ is a collection of lower level subhemirings of A, then their union is also a lower level subhemiring of A.

Proof: It is trivial.

2.23 Theorem: The homomorphic image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R^{\dagger} .

Proof: Let $f : \mathbb{R} \to \mathbb{R}^{1}$ be a homomorphism. Then f(x+y)=f(x)+f(y), f(xy)=f(x)f(y), for all x and y in R. Let V = f(A), where A is an anti S-fuzzy subhemiring of a hemiring R. Clearly V is an anti S-fuzzy subhemiring of a hemiring \mathbb{R}^{1} . Let x and y in R, implies f(x) and f(y) in \mathbb{R}^{1} . Let A_{α} is a lower level subhemiring of A. Now, $\mu_{V}(f(x)) \leq \mu_{A}(x) \leq \alpha$, which implies that $\mu_{V}(f(x)) \leq \alpha$ and $\mu_{V}(f(y)) \leq \mu_{A}(y) \leq \alpha$, which implies that $\mu_{V}(f(y)) \leq \alpha$ and $\mu_{V}(f(x)+f(y)) \leq \mu_{A}(x+y) \leq \alpha$, which implies that $\mu_{V}(f(x)+f(y)) \leq \alpha$. Also, $\mu_{V}(f(x)f(y)) \leq \mu_{A}(xy) \leq \alpha$, which implies that $\mu_{V}(f(x)f(y)) \leq \alpha$. Hence $f(A_{\alpha})$ is a lower level subhemiring of an anti S-fuzzy subhemiring V of a hemiring \mathbb{R}^{1} .

2.24 Theorem: The homomorphic pre-image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R^1 is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R.

Proof: Let V = f(A), where V is an anti S-fuzzy subhemiring of a hemiring R¹. Clearly A is an anti S-fuzzy subhemiring of a hemiring R. Let f(x) and f(y) in R¹, implies x and y in R. Let $f(A_{\alpha})$ is a lower level subhemiring of V. Now,

 $\mu_A(x) = \mu_V(f(x)) \le \alpha$, implies that $\mu_A(x) \le \alpha$; $\mu_A(y) = \mu_V(f(y)) \le \alpha$, implies that $\mu_A(y) \le \alpha$ and $\mu_A(x+y) = \mu_V(f(x)+f(y)) \le \alpha$, which implies that $\mu_A(x+y) \le \alpha$. Also, $\mu_A(xy) = \mu_V(f(x)f(y)) \le \alpha$, which implies that $\mu_A(xy) \le \alpha$. Hence, A_α is a lower level subhemiring of an anti S-fuzzy subhemiring A of R.

2.25 Theorem: The anti-homomorphic image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R^{\dagger} .

Proof: Let $f : R \rightarrow R^{1}$ be an anti-homomorphism. Then f(x + y) = f(y) + f(x), f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where A is an anti S-fuzzy subhemiring of R. Clearly V is an anti S-fuzzy subhemiring of R¹. Let x and y in R, implies f(x) and f(y) in R¹. Let A_{α} is a lower level subhemiring of A. Now, $\mu_V(f(x)) \leq \mu_A(x) \leq \alpha$, which implies that $\mu_V(f(x)) \leq \alpha$; $\mu_V(f(y)) \leq \mu_A(y) \leq \alpha$, which implies that $\mu_V(f(y)) \leq \alpha$. Now, $\mu_V(f(x)+f(y)) \leq \mu_A(y+x) \leq \alpha$, which implies that, $\mu_V(f(x)+f(y)) \leq \alpha$. Also, $\mu_V(f(x)f(y)) \leq \mu_A(yx) \leq \alpha$, which implies that $\mu_V(f(x)f(y)) \leq \alpha$. Hence $f(A_\alpha)$ is a lower level subhemiring of an anti S-fuzzy subhemiring V of R¹.

2.26 Theorem: The anti-homomorphic pre-image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R^{\dagger} is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R.

Proof: Let V = f(A), where V is an anti S-fuzzy subhemiring of a hemiring R¹. Clearly A is an anti S-fuzzy subhemiring of a hemiring R. Let f(x) and f(y) in R¹, implies x and y in R. Let $f(A_{\alpha})$ is a lower level subhemiring of V. Now, $\mu_A(x) = \mu_V(f(x)) \le \alpha$, which implies that $\mu_A(x) \le \alpha$; $\mu_A(y) = \mu_V(f(y)) \le \alpha$, which

implies that $\mu_A(y) \le \alpha$. Now, $\mu_A(x+y) = \mu_V(f(y)+f(x)) \le \alpha$, which implies that

 $\mu_A(x + y) \le \alpha$. Also, $\mu_A(xy) = \mu_V(f(y)f(x)) \le \alpha$, which implies that $\mu_A(xy) \le \alpha$.

Hence A_{α} is a lower level subhemiring of an anti S-fuzzy subhemiring A of R.

REFERENCES

- Akram M and K.H.Dar, On anti fuzzy left h- ideals in hemirings, International Mathematical Forum, 2(46); 2295 – 2304, 2007.
- [2] Anitha. N and Arjunan. K, Homomorphism in Intuitionistic fuzzy subhemirings of a hemiring, International J.of.Math. Sci.& Engg. Appls.(IJMSEA), Vol.4 (V); 165 – 172, 2010.
- [3] Anthony.J.M. and H Sherwood, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69; 124 -130, 1979.
- [4] Asok Kumer Ray, On product of fuzzy subgroups, fuzzy sets and sysrems, 105(1999),181-183.
- [5] Biswas .R., Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35(1990), 121-124.
- [6] Naganathan. S, Arjunan.K and Palaniappan. N, Level subsets of intuitionistic L-fuzzy subgroups of a group, International journal of computational and applied mathematics, Volume 4(2009)., 177– 184.

- [7] Palaniappan. N & K. Arjunan, The homomorphism, anti homomorphism of a fuzzy and an anti-fuzzy ideals of a ring, Varahmihir Journal of Mathematical Sciences, 6,1(2008); 181-006.
- [8] Palaniappan. N & K. Arjunan, Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4,1(2007), 59-64.
- [9] Palaniappan. N & K.Arjunan, Some properties of intuitionistic fuzzy subgroups, Acta Ciencia Indica, Vol.XXXIII, 2(2007), 321-328.
- [10] Rajesh Kumar, Fuzzy Algebra, University of Delhi Publication Division, Volume 1(1993).
- [11] Umadevi.K, Elango.C, Thangavelu.P, Anti S-fuzzy subhemirings of a hemiring, Internation journal of scientific research(communicated)
- [12] Vasantha kandasamy.W.B, Smarandache fuzzy algebra, American research press, Rehoboth, (2003).
- [13] Xueling MA. Jianming ZHAN, On Fuzzy h Ideals of hemirings, Journal of Systems science & Complexity, 20(2007), 470 – 478.
- [14] Zadeh . L . A, Fuzzy sets, Information and control, 8(1965) 338-353,