Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 5, 1161-1169 ISSN: 1927-5307

JORDAN GENERALIZED TRIPLE DERIVATIONS OF PRIME Γ -RINGS

A.K.JOARDAR AND A.C.PAUL*

Department of Mathematics, University of Rajshahi, Rajshahi University-6205, Rajshahi, Bangladesh

Abstract. In this article, we develop some important results relating to the concepts of generalized triple derivation and Jordan generalized triple derivation of gamma rings. Through every generalized triple derivation of a gamma ring M is obviously a Jordan generalized triple derivation of M, but the converse statement is in general not true. Here we prove that every Jordan generalized triple derivation of a 2-torsion free prime gamma ring is a generalized derivation.

Keywords: Derivation and generalized triple derivation, Jordan generalized triple derivation, gamma rings and prime gamma rings.

2000 AMS Subject Classification: Primary 16Y30, 16W25, Secondary 16U80, 47H09

1. INTRODUCTION

Let M and Γ be additive abelian groups. M is said to be a Γ -ring if there exists a mapping $M \times \Gamma \times M \to M$ (sending (x, α, y) into $x\alpha y$) such that

 $(a)(x+y)\alpha z = x\alpha z + y\alpha z,$

 $x(\alpha + \beta)y = x\alpha y + x\beta y,$

 $x\alpha(y+z) = x\alpha y + x\alpha z,$

 $(b)(x\alpha y)\beta z = x\alpha(y\beta z),$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

^{*}Corresponding author

Received January 2, 2012

A subset A of a Γ -ring M is a left(right) ideal of M if A is an additive subgroup of M and $M\Gamma A = \{m\alpha a : m \in M, \alpha \in \Gamma \text{ and } a \in A\}$, $(A\Gamma M)$ is contained in A. An ideal P of a Γ -ring M is prime if $P \neq M$ and for any ideals A and B of M, $A\Gamma B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$. M is prime if $a\Gamma M\Gamma b = 0$ with $a, b \in M$, then a = 0 or b = 0. M is 2-torsion free if 2m = 0, for $m \in M$ implies m = 0.

N. Nobusawa [5] was first introduced the notion of a gamma ring. The gamma ring due to N. Nobusawa is now denoted by Γ_N -ring. Next Barnes [1] generalized it and gave the above defination. Now a day we mean the gamma ring which is given by Barnes. It is clear that every ring is a gamma ring.

M. Bresar [3] worked on Jordan triple derivations of semiprime rings and he proved that R is a two torsion free semiprime ring, then every Jordan derivation is a derivation.

Wu Jing and Shijie [6] defined generalized Jordan triple derivation. They showed that every generalized Jordan triple derivation is a generalized derivation.

M. Sapanci and A. Nakajima [4] worked on Jordan derivation on completely prime gamma rings. They proved that every Jordan derivation on a two torsion free completely prime gamma rings is a derivation.

In this paper, we define generalized triple derivation and Jordan generalized triple derivation of a gamma ring. We give an example of a generalized triple derivation and an example of a Jordan generalized triple derivation for gamma rings. We also prove that every Jordan generalized triple derivation is a generalized derivation if it is a two torsion free prime Γ -ring.

2. JORDAN GENERALIZED TRIPLE DERIVATION.

Let R be an associative ring. An additive mapping $d : R \to R$ is called a Triple derivation if

d(abc) = d(a)bc + ad(b)c + abd(c).

and a Jordan Triple derivation if

d(aba) = d(a)ba + ad(b)a + abd(a).

Let M be Γ -ring. An additive mapping $f: M \to M$ is called a generalized Triple derivation if

$$f(a\alpha b\beta c) = f(a)\alpha b\beta c + a\alpha d(b)\beta c + a\alpha b\beta d(c)$$
. For all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$

and a Jordan generalized Triple derivation if

$$f(a\alpha b\beta a) = f(a)\alpha b\beta a + a\alpha d(b)\beta a + a\alpha b\beta d(a)$$
. For all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$

It is clear that every generalized triple derivation is a Jordan generalized triple derivation but the converse is not ingeneral true.

Now we give the following examples:

2.1 Example

Let R be an associative ring with unity element 1. Let $M = M_{1,2}(R)$ and $\Gamma = \left\{ \begin{pmatrix} n.1 \\ 0 \end{pmatrix}, n \in Z \right\}$. Then M is a Γ -ring. Let $f : R \to R$ be a generalized triple derivation with associated

derivation $d: R \to R$. Now define

F((x,y))=(f(x),f(y)) and D((x,y))=(d(x),d(y)). Then F is a generalized triple derivation associated to the derivation d.

To show it consider
$$a = (x_1, y_1), b = (x_2, y_2), c = (x_3, y_3) \alpha = \begin{pmatrix} n_1 \cdot 1 \\ 0 \end{pmatrix}, \beta = \begin{pmatrix} n_2 \cdot 1 \\ 0 \end{pmatrix},$$

then $a\alpha b\beta c = (x_1n_1x_2n_2x_3, x_1n_1x_2n_2y_3)$

And finally we get $F(a\alpha b\beta c) = F(a)\alpha b\beta c + a\alpha D(b)\beta c + a\alpha b\beta D(c)$. F is a generalized triple derivation associated to the derivation D.

2.2 Example

Let M be a Γ -ring defined as in example 2.1. Let $N = \{(x, x) : x \in M\}$.

Then N is a Γ -ring containd in M. Let d be a triple derivation given in example 2.1. Define

 $D: N \to N$ is a Jordan triple derivation. Define F((x,x))=(f(x),f(x)).

Then F is a Jordan generalized triple derivation.

To show it consider a = (x, x), b = (y, y) and $\alpha = \begin{pmatrix} n_1 \cdot 1 \\ 0 \end{pmatrix}$, $\beta = \begin{pmatrix} n_2 \cdot 1 \\ 0 \end{pmatrix}$ then $a\alpha b\beta a = (xn_1yn_2x, xn_1yn_2x)$, $F(a\alpha b\beta a) = F(a)\alpha b\beta a + a\alpha D(b)\beta a + a\alpha b\beta D(a)$. So F is a Jordan generalized triple derivation associated to the derivation D. Note that it is not a generalized Jordan triple derivation.

Lemma 2.1. Let M be a Γ ring and d be a Jordan triple derivation of a Γ ring M. Then for all $a, b, c \in M$, we have $d(a\alpha b\beta c + c\alpha b\beta a) = d(a)\alpha b\beta c + d(c)\alpha b\beta a + a\alpha d(b)\beta c + c\alpha d(b)\beta a + c\alpha b\beta d(a) + a\alpha b\beta d(c).$

proof: Computing $d((a+c)\alpha b\beta(a+c))$ and cancelling the like terms from both sides, we prove the lemma.

Lemma 2.2. Let M be a Γ ring and d be a Jordan generalized triple derivation on a Γ ring M. Then for all $a, b, c \in M$, we have $f(a\alpha b\beta c + c\alpha b\beta a) = f(a)\alpha b\beta c + f(c)\alpha b\beta a + a\alpha d(b)\beta c + c\alpha d(b)\beta a + c\alpha b\beta d(a) + a\alpha b\beta d(c).$

proof: Computing $f((a+c)\alpha b\beta(a+c))$ and cancelling the like terms from both sides, we prove the lemma.

Definition 1. Let M be a Γ -ring. Then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ we define $[a, b, c]_{\alpha,\beta} = a\alpha b\beta c - c\alpha b\beta a$.

Lemma 2.3. If M is a Γ -ring, then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ (1) $[a, b, c]_{\alpha,\beta} + [c, b, a]_{\alpha,\beta} = 0$ (2) $[a + c, b, d]_{\alpha,\beta} = [a, b, d]_{\alpha,\beta} + [c, b, d]_{\alpha,\beta}$ (3) $[a, b, c + d]_{\alpha,\beta} = [a, b, c]_{\alpha,\beta} + [a, b, d]_{\alpha,\beta}$ (4) $[a, b + d, c]_{\alpha,\beta} = [a, b, c]_{\alpha,\beta} + [a, d, c]_{\alpha,\beta}$ (5) $[a, b, c]_{\alpha+\beta,\gamma} = [a, b, c]_{\alpha,\gamma} + [a, b, c]_{\beta,\gamma}$ (6) $[a, b, c]_{\alpha,\beta+\gamma} = [a, b, c]_{\alpha,\beta} + [a, b, c]_{\alpha,\gamma}$ proof: Obvious

Definition 2. Let d be a Jordan triple derivation of a Γ -ring M. Then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ we define $G_{\alpha,\beta}(a, b, c) = d(a\alpha b\beta c) - d(a)\alpha b\beta c - a\alpha d(b)\beta c - a\alpha b\beta d(c).$

Lemma 2.4. Let d be a Jordan triple derivation of a Γ -ring M. Then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ we have (1) $G_{\alpha,\beta}(a, b, c) + G_{\alpha,\beta}(c, b, a) = 0$ (2) $G_{\alpha,\beta}(a + c, b, e) = G_{\alpha,\beta}(a, b, e) + G_{\alpha,\beta}(c, b, e)$ (3) $G_{\alpha,\beta}(a, b, c + e) = G_{\alpha,\beta}(a, b, c) + G_{\alpha,\beta}(a, b, e)$ (4) $G_{\alpha,\beta}(a, b + c, e) = G_{\alpha,\beta}(a, b, c) + G_{\alpha,\beta}(a, c, e)$ (5) $G_{\alpha+\gamma,\beta}(a, b, c) = G_{\alpha,\beta}(a, b, c) + G_{\gamma,\beta}(a, b, c)$ (6) $G_{\alpha,\beta+\gamma}(a, b, c) = G_{\alpha,\beta}(a, b, c) + G_{\alpha,\gamma}(a, b, c).$

proof: Obvious

Lemma 2.5. If M is a Γ -ring, then $G_{\alpha,\beta}(a,b,c)\gamma x\delta[a,b,c]_{\alpha,\beta} + [a,b,c]_{\alpha,\beta}\gamma x\delta G_{\alpha,\beta}(a,b,c) = 0$ for all $x \in M$ and $\gamma, \delta \in \Gamma$.

proof: First, we compute $d(a\alpha(b\beta c\gamma x\delta c\alpha b)\beta a + c\alpha(b\beta a\gamma x\delta a\alpha b)\beta c)$ by using the definition of Jordan triple derivation we get $d(a)\alpha b\beta c\gamma x\delta c\alpha b\beta a + a\alpha d(b)\beta c\gamma x\delta c\alpha b\beta a + a\alpha b\beta d(c)\gamma x\delta c\alpha b\beta a + a\alpha b\beta c\gamma x\delta d(c)\alpha b\beta a + a\alpha b\beta c\gamma x\delta c\alpha d(b)\beta a + a\alpha b\beta c\gamma x\delta c\alpha b\beta d(a) + d(c)\alpha b\beta a\gamma x\delta a\alpha b\beta c + c\alpha d(b)\beta a\gamma x\delta a\alpha b\beta c + c\alpha b\beta a\gamma d(a)\delta a\alpha b\beta c + c\alpha b\beta a\gamma x\delta d(a)\alpha b\beta c + c\alpha b\beta a\gamma x\delta a\alpha d(b)\beta c + c\alpha b\beta a\gamma x\delta a\alpha b\beta c + c\alpha b\beta a\gamma d(x)\delta a\alpha b\beta c + c\alpha b\beta a\gamma x\delta d(a)\alpha b\beta c + c\alpha b\beta a\gamma x\delta a\alpha d(b)\beta c + c\alpha b\beta a\gamma x\delta a\alpha b\beta d(c)$. On the other hand, we $d((a\alpha b\beta c)\gamma x\delta (c\alpha b\beta a) + (c\alpha b\beta a)\gamma x\delta (a\alpha b\beta c))$ and using lemma 2.1, then we get $d(a\alpha b\beta c)\gamma x\delta c\alpha b\beta a + d(c\alpha b\beta a)\gamma x\delta a\alpha b\beta c + a\alpha b\beta c\gamma d(x)\delta c\alpha b\beta a + c\alpha b\beta a\gamma x\delta d(a\alpha b\beta c)$ Since these two are equal, cancelling the like terms from both sides of this equality and then rearranging them, we get

 $G_{\alpha,\beta}(a,b,c)\gamma x\delta[a,b,c]_{\alpha,\beta} + [a,b,c]_{\alpha,\beta}\gamma x\delta G_{\alpha,\beta}(a,b,c) = 0$

Lemma 2.6. Let M be a 2-torsion free semi prime Γ -ring and suppose that $a, b \in M$. If $a\Gamma m\Gamma b + b\Gamma m\Gamma a = 0$ for all $m \in M$, then $a\Gamma m\Gamma b = b\Gamma m\Gamma a = 0$

proof: Let m and m' be two arbitrary elements of M. Then by hypothesis, we have $(a\Gamma m\Gamma b)\Gamma m'\Gamma(a\Gamma m\Gamma b) = -(b\Gamma m\Gamma a)\Gamma m'\Gamma(a\Gamma m\Gamma b) = -(b\Gamma(m\Gamma a)\Gamma m')\Gamma a)\Gamma m\Gamma b) = (a\Gamma(m\Gamma a\Gamma m')\Gamma b)\Gamma m\Gamma a\Gamma m\Gamma(a\Gamma m'\Gamma b)\Gamma m\Gamma b) = -a\Gamma m\Gamma(b\Gamma m'\Gamma a)\Gamma m\Gamma b) = -(a\Gamma m\Gamma b)\Gamma m'\Gamma(a\Gamma m\Gamma b).$ This implies, $2(a\Gamma m\Gamma b)\Gamma m'\Gamma(a\Gamma m\Gamma b) = 0.$ Since M is a 2-torsion free, $(a\Gamma m\Gamma b)\Gamma m'\Gamma(a\Gamma m\Gamma b) = 0$

By the semiprimeness of M, $a\Gamma m\Gamma b = 0$ for all $m \in M$. Hence we get $a\Gamma m\Gamma b = a\Gamma m\Gamma b = 0$ for all $m \in M$.

Lemma 2.7. Let M is a 2-torsion free prime Γ -ring. Then for all $a, b, x \in M$ and $\alpha, \beta, \gamma, \delta \in \Gamma$, then $G_{\alpha,\beta}(a, b, c)\gamma x \delta[a, b, c]_{\alpha,\beta} = [a, b, c]_{\alpha,\beta}\gamma x \delta G_{\alpha,\beta}(a, b, c) = 0.$

proof: The lemma is semiler to the proof of [7] corollary 3.11

Definition 3. Let f be a Jordan generalized teiple derivation of a Γ -ring M. Then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ we define $F_{\alpha,\beta}(a, b, c) = f(a\alpha b\beta c) - f(a)\alpha b\gamma c - a\alpha d(b)\beta c - a\alpha b\beta d(c).$

Lemma 2.8. Let f be a Jordan generalized teiple derivation of a Γ -ring M. Then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ (1) $F_{\alpha,\beta}(a, b, c) + F_{\alpha,\beta}(c, b, a) = 0$ (2) $F_{\alpha,\beta}(a + c, b, e) = F_{\alpha,\beta}(a, b, e) + F_{\alpha,\beta}(c, b, e)$ (3) $F_{\alpha,\beta}(a, b, c + e) = F_{\alpha,\beta}(a, b, c) + F_{\alpha,\beta}(a, b, e)$ (4) $F_{\alpha,\beta}(a, b + c, e) = F_{\alpha,\beta}(a, b, c) + F_{\alpha,\beta}(a, c, e)$ (5) $F_{\alpha+\beta,\gamma}(a, b, c) = F_{\alpha,\gamma}(a, b, c) + F_{\beta,\gamma}(a, b, c)$ (6) $F_{\alpha,\beta+\gamma}(a, b, c) = F_{\alpha,\beta}(a, b, c) + F_{\alpha,\gamma}(a, b, c)$

proof: Obvious

Lemma 2.9. If M is a Prime Γ -ring, then $F_{\alpha,\beta}(a, b, c)\gamma x\delta[a, b, c]_{\alpha,\beta} + [a, b, c]_{\alpha,\beta}\gamma x\delta G_{\alpha,\beta}(a, b, c) = 0$ for all $x \in M$ and $\gamma, \delta \in \Gamma$.

proof: First, we compute $f(a\alpha(b\beta c\gamma x\delta c\alpha b)\beta a + c\alpha(b\beta a\gamma x\delta a\alpha b)\beta c)$ by using the definition of Jordan generalized triple derivation we get $f(a)\alpha b\beta c\gamma x\delta c\alpha b\beta a + a\alpha d(b)\beta c\gamma x\delta c\alpha b\beta a + a\alpha b\beta c\gamma d(x)\delta c\alpha b\beta a + a\alpha b\beta c\gamma x\delta d(c)\alpha b\beta a + a\alpha b\beta c\gamma x\delta c\alpha d(b)\beta a + a\alpha b\beta c\gamma x\delta c\alpha b\beta d(a) + f(c)\alpha b\beta a\gamma x\delta a\alpha b\beta c + c\alpha d(b)\beta a\gamma x\delta a\alpha b\beta c + c\alpha b\beta d(a)\gamma x\delta a\alpha b\beta c + c\alpha b\beta a\gamma x\delta a\alpha b\beta c + c\alpha b\beta a\gamma x\delta a\alpha b\beta d(c).$

On the other hand, we compute $f((a\alpha b\beta c)\gamma x\delta(c\alpha b\beta a) + f(c\alpha b\beta a)\gamma x\delta(a\alpha b\beta c) + (a\alpha b\beta c)\gamma d(x)\delta(a\alpha b\beta c) + (c\alpha b\beta a)\gamma d(x)\delta(a\alpha b\beta c) + (a\alpha b\beta c)\gamma x\delta d(c\alpha b\beta a) + (c\alpha b\beta a)\gamma x\delta d(a\alpha b\beta c)$ we get $d(a\alpha b\beta c)\gamma x\delta c\alpha b\beta a + d(c\alpha b\beta a)\gamma x\delta a\alpha b\beta c + a\alpha b\beta c\gamma d(x)\delta c\alpha b\beta a + c\alpha b\beta a\gamma d(x)\delta a\alpha b\beta c + a\alpha b\beta c\gamma x\delta d(c\alpha b\beta a) + c\alpha b\beta a\gamma x\delta d(a\alpha b\beta c)$ Since these two are equal, cancelling the like terms from both sides of this equality and then rearranging them, we get

 $F_{\alpha,\beta}(a,b,c)\gamma x\delta[a,b,c]_{\alpha,\beta} + [a,b,c]_{\alpha,\beta}\gamma x\delta G_{\alpha,\beta}(a,b,c) = 0.$

Lemma 2.10. If M is a Prime Γ -ring , then

 $F_{\alpha,\beta}(a,b,c)\gamma x\delta[a,b,c]_{\alpha,\beta} = 0$ for all $x \in M$ and $\gamma, \delta \in \Gamma$.

proof: From lemma 2.9 we get $F_{\alpha,\beta}(a,b,c)\gamma x\delta[a,b,c]_{\alpha,\beta} + [a,b,c]_{\alpha,\beta}\gamma x\delta G_{\alpha,\beta}(a,b,c) = 0$ and using lemma 2.5 we get

 $F_{\alpha,\beta}(a,b,c)\gamma x\delta[a,b,c]_{\alpha,\beta}=0.$

Lemma 2.11. If M is a semi Prime Γ -ring, then

 $[a, b, c]_{\alpha,\beta} \gamma x \delta F_{\alpha,\beta}(a, b, c) = 0$ for all $x \in M$ and $\gamma, \delta \in \Gamma$.

proof: Since $[a, b, c]_{\alpha,\beta} \gamma x \delta F_{\alpha,\beta}(a, b, c) \gamma x \delta [a, b, c]_{\alpha,\beta} \gamma x \delta F_{\alpha,\beta}(a, b, c) = 0$, then by semiprimeness of Γ ring M we get $[a, b, c]_{\alpha,\beta} \gamma x \delta F_{\alpha,\beta}(a, b, c) = 0$

Lemma 2.12. Let M is a 2-torsion free semi prime Γ -ring. Then for all $a, b, c, u, v, w, x \in M$ and $\alpha, \beta, \gamma, \delta \in \Gamma$, then $F_{\alpha,\beta}(a, b, c)\gamma x \delta[u, v, w]_{\alpha,\beta} = 0$.

Proof: Replacing a by a+u in the lemma 2.10 we get $F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,b,c]_{\alpha,\beta}+F_{\alpha,\beta}(u,b,c)\gamma x\delta[a,b,c]_{\alpha,\beta} = 0$. Now $F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,b,c]_{\alpha,\beta}\gamma x\delta F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,b,c]_{\alpha,\beta} =$

 $-F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,b,c]_{\alpha,\beta}\gamma x\delta F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,b,c]_{\alpha,\beta} = 0$ by using lemma 2.6. Since M is a 2-torsion free semiprime Γ -ring, then $F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,b,c]_{\alpha,\beta} = 0$. Similarly, replacing b by b+v and c by c+w we get $F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,v,w]_{\alpha,\beta} = 0$

Lemma 2.13. Let M is a 2-torsion free prime Γ -ring. Then for all $a, b, c, x \in M$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. Then $F_{\alpha,\beta}(a, b, c) = 0$ or $[u, v, w]_{\alpha,\beta} = 0$

proof:From lemma 2.12 we get $F_{\alpha,\beta}(a,b,c)\gamma x\delta[u,v,w]_{\alpha,\beta} = 0$. Since M is a prime Γ -ring, then either $F_{\alpha,\beta}(a,b,c) = 0$ or $[u,v,w]_{\alpha,\beta} = 0$

Theorem 2.1. Let M is prime Γ -ring, then every generalized Jordan triple derivation is a generalized triple derivation.

proof: By lemma 2.13, we have $F_{\alpha,\beta}(a,b,c) = 0$ or $[u,v,w]_{\alpha,\beta} = 0$.

case 1: Suppose $[u, v, w]_{\alpha,\beta} = 0$, then $u\alpha v\beta w = w\alpha v\beta u$. Therefore, we have from lemma 2.2, $f(u\alpha v\beta w) = f(u)\alpha v\beta w + u\alpha d(v)\beta w + u\alpha v\beta d(w)$ i.e Jordan generalized triple derivation is a generalized triple derivation.

case 2: Suppose $F_{\alpha,\beta}(a, b, c) = 0$ then $f(a\alpha b\beta c) = f(a)\alpha b\beta c + a\alpha d(b)\beta c + a\alpha b\beta d(c)$. Hence Jordan generalized triple derivation is a generalized triple derivation.

Theorem 2.2. Any Jordan triple derivation of a 2-torsion free prime Γ -ring is a derivation.

proof: Consider $w = f(a\alpha(b\gamma x\delta a)\alpha b)$ $= f(a)\alpha b\gamma x\delta a\alpha b + a\alpha d(b\gamma x\delta a)\alpha b + a\alpha b\gamma x\delta a\alpha d(b)$ $= f(a)\alpha b\gamma x\delta a\alpha b + a\alpha d(b)\gamma x\delta a\alpha b + a\alpha b\gamma d(x)\delta a\alpha b + a\alpha b\gamma x\delta d(a)\alpha b + a\alpha b\gamma x\delta a\alpha d(b)$ Again, $W = f((a\alpha b)\gamma x\delta(a\alpha b)) = f(a\alpha b)\gamma x\delta a\alpha b + a\alpha b\gamma d(x)\delta a\alpha b + a\alpha b\gamma x\delta d(a\alpha b)$ Comparing the two exprations so obtained for W we obtain $(f(a\alpha b) - f(a)\alpha b - a\alpha d(b))\gamma x\delta a\alpha b + a\alpha b\gamma x\delta (d(a\alpha b) - d(a)\alpha b - a\alpha d(b)) = 0$ Since d is a derivation , so $(f(a\alpha b) - f(a)\alpha b - a\alpha d(b))\gamma x\delta a\alpha b = 0$, Again by primeness of M, $f(a\alpha b) - f(a)\alpha b - a\alpha d(b) = 0$, i.e. f is generalized derivation.

References

- [1] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18(1966), 411-422.
- H.E. Bell and Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hung., 53(3-4) (1989), 339-346.
- [3] Huang Shuliang, Generalized Derivations of Prime Rings Journal of Algebra 127, 218-228(1989)
- [4] Mehmet Sapanci and Atsushi Nakajima, Jordan Derivations on Completely Prime Γ-Rings, Math. Japonica 46, No. 1(1997), 47-51
- [5] N. Nobusawa, On a generalized tion of the ring theory, Osaka J. Math. 1(1964), 81-89.
- [6] Wu Jing and Shijie Le, Generalized Jordan Derivations on Prime Rings and Standard Operator Algebras., Taiwanese journal of mathematics., Vol. 7, No. 4, 605-613, December 2003
- [7] S. Chakraborty and A. C. Paul, On Jordan generalized k-Derivations of 2-Torsion Free Prime Γ_N -rings International Mathematical Forum, 2, 2007,no. 57, 2823-2829