

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 5, 1237-1251

ISSN: 1927-5307

DIFFERENCE CORDIAL LABELING OF CORONA GRAPHS

R. PONRAJ ${ }^{1, *}$, S. SATHISH NARAYANAN ${ }^{2}$, AND R. KALA ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India
${ }^{2}$ Department of Mathematics, Thiruvalluvar College, Papanasam-627425, India
${ }^{3}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India

Abstract

Let G be a (p, q) graph. Let f be a map from $V(G)$ to $\{1,2, \ldots, p\}$. For each edge $x y$, assign the label $|f(x)-f(y)| . \quad f$ is called a difference cordial labeling if f is a one to one map and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph. In this paper, we investigate the difference cordial labeling behavior of $G \odot P_{n}, G \odot m K_{1}(m=1,2,3)$ where G is either a unicycle or a tree and $G_{1} \odot G_{2}$ where G_{1} and G_{2} are some more standard graphs.

Keywords: Corona, comb, tree, cycle, wheel.
2010 AMS Subject Classification: 05C78

1. Introduction Throughout this paper we have considered only simple and undirected graphs. Let $G=(V, E)$ be a (p, q) graph. The number $|V|$ is called the order of G and the number $|E|$ is called the size of G. The concept of difference cordial labeling has been introduced by R. Ponraj, S. Sathish Narayanan and R. Kala in [3]. In [3, 4], difference cordial labeling behaviour of several graphs such as path, cycle, complete graph, complete bipartite grpah, bistar, wheel, web and some more standard graphs have been investigated. In this paper we investigate the difference cordial labeling behaviour

[^0]of $G \odot P_{n}, G \odot m K_{1}(m=1,2,3)$ where G is either a unicycle or a tree, crown $C_{n} \odot K_{1}$, $\operatorname{comb} P_{n} \odot K_{1}, P_{n} \odot C_{m}, C_{n} \odot C_{m}, W_{n} \odot K_{2}, W_{n} \odot 2 K_{1}, L_{n} \odot K_{1}, L_{n} \odot 2 K_{1}$ and $L_{n} \odot K_{2}$. Let x be any real number. Then $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for smallest integer greater than or equal to x. Terms and definitions not defined here are follow from Harary [2].

2. Difference Cordial Graph

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, p\}$ be a bijection. For each edge $u v$, assign the label $|f(u)-f(v)|$. f is called a difference cordial labeling if f is $1-1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph.

3. Main results

Now we look into the corona of G with H. The corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and p copies of H and joining the $i^{\text {th }}$ vertex of G with an edge to every vertex in the $i^{\text {th }}$ copy of $H . C_{n} \odot K_{1}$ is called the crown and $P_{n} \odot K_{1}$ is called the comb. Now we have the following.

Theorem 3.1. Let G be a (p, q) graph. If G satisfies any one of the following then $G \odot P_{n}$ is difference cordial.
(1) G is a tree.
(2) G is a unicycle.
(3) $q=p+1$.

Proof. Let $V(G)=\left\{u_{i}: 1 \leq i \leq p\right\}$ and $P_{n}^{i}: v_{1}^{i} v_{2}^{i} \ldots v_{n}^{i}$ be the $i^{\text {th }}$ copy of the path. $V\left(G \odot P_{n}\right)=V(G) \cup V\left(P_{n}^{i}\right)$ and $E\left(G \odot P_{n}\right)=E(G) \cup \bigcup_{i=1}^{p}\left\{u_{i} v_{j}^{i}: 1 \leq j \leq n\right\} \cup E\left(P_{n}^{i}\right)$. Clearly the order and size of $G \odot P_{n}$ are $(n+1) p$ and $2 n p-p+q$ respectively. We now define an injective map from the vertex set of $G \odot P_{n}$ to the set $\{1,2 \ldots(n+1) p\}$ as
follows:

$$
\begin{array}{llrl}
f\left(u_{i}\right) & =(n+1) i & & 1 \leq i \leq p \\
f\left(v_{j}^{1}\right) & =j & & 1 \leq j \leq n \\
f\left(v_{j}^{i}\right) & =f\left(u_{i-1}\right)+j & & 2 \leq i \leq p, 1 \leq j \leq n
\end{array}
$$

Case 1: G is a tree.
In this case, $e_{f}(0)=n p-1$ and $e_{f}(1)=n p$. Therefore, f is a difference cordial labeling.
Case 2: G is a unicycle.
Since $e_{f}(0)=n p$ and $e_{f}(1)=n p, f$ is a difference cordial labeling.
Case 3: $q=p+1$.
In this case, $e_{f}(0)=n p+1$ and $e_{f}(1)=n p$. Hence, f is a difference cordial labeling.
Theorem 3.2. Let G be a (p, q) graph. If G satisfies any one of the following then $G \odot m K_{1}(m=1,2,3)$ is difference cordial.
(1) G is a tree.
(2) G is a unicycle.
(3) $q=p+1$.

Proof. Let $V(G)=\left\{u_{i}: 1 \leq i \leq p\right\}$.
Case 1: $m=1$.
The proof follows from theorem 3.1.
Case 2: $m=2$.
Let $V\left(G \odot 2 K_{1}\right)=V(G) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq p\right\}$ and $E\left(G \odot 2 K_{1}\right)=E(G) \cup$ $\left\{u_{i} v_{i}, u_{i} w_{i}: 1 \leq i \leq p\right\}$. Note that $G \odot 2 K_{1}$ has $3 p$ vertices and $2 p+q$ edges.
Subcase 1: G is a tree.
Define a one to one map from the vertex set of $G \odot 2 K_{1}$ to the set $\{1,2, \ldots 3 p\}$ as follows:

$$
\begin{array}{ll}
f\left(u_{i}\right)=3 i-2 & \\
\hline f\left(v_{i}\right)=3 i-1 & \\
f\left(w_{i}\right) & =3 i \\
\hline & \\
\hline
\end{array}
$$

$$
\begin{aligned}
f\left(u_{\left\lceil\frac{p}{2}\right\rceil+i}\right) & =3\left\lceil\frac{p}{2}\right\rceil+3 i-1 & & 1 \leq i \leq\left\lfloor\frac{p}{2}\right\rfloor \\
f\left(v_{\left\lceil\frac{p}{2}\right\rceil+i}\right) & =3\left\lceil\frac{p}{2}\right\rceil+3 i-2 & & 1 \leq i \leq\left\lfloor\frac{p}{2}\right\rfloor \\
f\left(w_{\left\lceil\frac{p}{2}\right\rceil+i}\right) & =3\left\lceil\frac{p}{2}\right\rceil+3 i & & 1 \leq i \leq\left\lfloor\frac{p}{2}\right\rfloor
\end{aligned}
$$

Here $e_{f}(0)=p-1+\left\lceil\frac{p}{2}\right\rceil$ and $e_{f}(1)=p+\left\lfloor\frac{p}{2}\right\rfloor$. Hence, f is a difference cordial labeling.
Subcase 2: G is a unicycle.
Label the vertices of $G \odot 2 K_{1}$ as in case 1. In this case, $e_{f}(0)=p+\left\lceil\frac{p}{2}\right\rceil . e_{f}(1)=p+\left\lfloor\frac{p}{2}\right\rfloor$. It follows that f is a difference cordial labeling.

Subcase 3: $q=p+1$.
Label the vertices u_{i}, v_{i} and $w_{i}\left(1 \leq i \leq\left\lceil\frac{p}{2}\right\rceil-1,\left\lceil\frac{p}{2}\right\rceil+1 \leq i \leq p\right)$ as in case 1. Now assign the labels $3\left\lceil\frac{p}{2}\right\rceil-1,3\left\lceil\frac{p}{2}\right\rceil-2$ and $3\left\lceil\frac{p}{2}\right\rceil$ to the vertices $u_{\left\lceil\frac{p}{2}\right\rceil}, v_{\left\lceil\frac{p}{2}\right\rceil}$ and $w_{\left\lceil\frac{p}{2}\right\rceil}$ respectively. Here $e_{f}(0)=p+\left\lceil\frac{p}{2}\right\rceil$ and $e_{f}(1)=p+\left\lfloor\frac{p}{2}\right\rfloor+1$.
Case 3: $m=3$.
Let $V\left(G \odot 3 K_{1}\right)=V(G) \cup\left\{v_{i}, w_{i}, z_{i}: 1 \leq i \leq p\right\}$ and $E\left(G \odot 3 K_{1}\right)=E(G) \cup$ $\left\{u_{i} v_{i}, u_{i} w_{i}, u_{i} z_{i}: 1 \leq i \leq p\right\}$. The order and size of $G \odot 3 K_{1}$ are $4 p$ and $4 p+q$ respectively. Define a map $f: V\left(G \odot 3 K_{1}\right) \rightarrow\{1,2, \ldots 4 p\}$ by

$$
\begin{array}{rll}
f\left(u_{i}\right)=4 i-2 & & 1 \leq i \leq p \\
f\left(v_{i}\right) & =4 i-3 & \\
1 \leq i \leq p \\
f\left(w_{i}\right) & =4 i-1 & \\
& 1 \leq i \leq p \\
f\left(z_{i}\right) & =4 i & \\
1 \leq i \leq p
\end{array}
$$

Subcase 1: G is a tree.
Now $e_{f}(0)=2 p-1$ and $e_{f}(1)=2 p$. Therefore, f satisfies the edge condition of difference cordial labeling.
Subcase 2: G is a unicycle.
In this case, $e_{f}(0)=2 p$ and $e_{f}(1)=2 p$. Hence f is a difference cordial labeling.
Subcase 3: $q=p+1$.
Here $e_{f}(0)=2 p+1$ and $e_{f}(1)=2 p$. This implies, f is a difference cordial labeling.

Corollary 3.3. The crown $C_{n} \odot K_{1}$ is difference cordial.

Corollary 3.4. The comb $P_{n} \odot K_{1}$ is difference cordial.
Next we look into the graph $P_{n} \odot C_{m}$.

Theorem 3.5. $P_{n} \odot C_{m}$ is difference cordial.
Proof. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$ and let $C_{m}^{i}: v_{1}^{i} v_{2}^{i} \ldots v_{n}^{i} v_{1}^{i}$ be the $i^{\text {th }}$ copy of the cycle C_{m}. Therefore $V\left(P_{n} \odot C_{m}\right)=V\left(P_{n}\right) \cup \bigcup_{i=1}^{n} V\left(C_{m}^{i}\right)$ and $E\left(P_{n} \odot C_{m}\right)=E\left(P_{n}\right) \cup$ $\bigcup_{i=1}^{n} E\left(C_{m}^{i}\right) \cup \bigcup_{i=1}^{n}\left\{u_{i} v_{j}^{i}: 1 \leq j \leq m\right\}$. Clearly, $P_{n} \odot C_{m}$ has $n(m+1)$ vertices and $2 m n+n-1$ edges. Define $f: V\left(P_{n} \odot C_{m}\right) \rightarrow\{1,2,3 \ldots n(m+1)\}$ by $f\left(u_{1}\right)=m+1, f\left(u_{2}\right)=m+2$, $f\left(v_{j}^{1}\right)=j, \quad 1 \leq j \leq m, f\left(v_{j}^{2}\right)=m+2+j, \quad 1 \leq j \leq m$, $f\left(u_{2 i+1}\right)=f\left(u_{2 i-1}\right)+2 m+2 \quad 1 \leq i \leq \frac{n-1}{2} \quad$ if $\quad n \equiv 1(\bmod 2)$ $1 \leq i \leq \frac{n-2}{2} \quad$ if $\quad n \equiv 0(\bmod 2)$.
$f\left(u_{2 i+2}\right)=f\left(u_{2 i}\right)+2 m+2 \quad 1 \leq i \leq \frac{n-3}{2} \quad$ if $\quad n \equiv 1(\bmod 2)$

$$
1 \leq i \leq \frac{n-2}{2} \quad \text { if } \quad n \equiv 0(\bmod 2)
$$

$f\left(v_{j}^{2 i+1}\right)=f\left(v_{j}^{2 i-1}\right)+2 m+2 \quad 1 \leq i \leq \frac{n-1}{2} \quad$ if $\quad n \equiv 1(\bmod 2)$
$1 \leq i \leq \frac{n-2}{2} \quad$ if $\quad n \equiv 0(\bmod 2)$.
$f\left(v_{j}^{2 i+2}\right)=f\left(v_{j}^{2 i}\right)+2 m+2 \quad 1 \leq i \leq \frac{n-1}{2} \quad$ if $\quad n \equiv 1(\bmod 2)$
$1 \leq i \leq \frac{n-2}{2} \quad$ if $\quad n \equiv 0(\bmod 2)$.
The table 1 shows that f is a difference cordial labeling.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{2 m n+n-2}{2}$	$\frac{2 m n+n}{2}$
$n \equiv 1(\bmod 2)$	$\frac{2 m n+n-1}{2}$	$\frac{2 m n+n-1}{2}$

TABLE 1

Example 3.6. The difference cordial labeling of $P_{4} \odot C_{3}$ is given in figure 1.

Figure 1

Theorem 3.7. $C_{n} \odot C_{m}$ is difference cordial.
Proof. The graph $C_{n} \odot C_{m}$ is obtained from $P_{n} \odot C_{m}$ by adding the edge $u_{1} u_{n}$. Assign the labels to the vertices of $C_{n} \odot C_{m}$ as in theorem 3.5. In this graph, when n is odd, $e_{f}(0)=\frac{2 m n+n+1}{2}$ and $e_{f}(1)=\frac{2 m n+n-1}{2}$; When n is even, $e_{f}(0)=e_{f}(1)=\frac{2 m n+n}{2}$. Therefore f is a difference cordial labeling.

Now we investigate the difference cordiality of corona of W_{n} with K_{2} and $2 K_{1}$.
Theorem 3.8. $W_{n} \odot K_{2}$ is difference cordial.
Proof. Let $W_{n}=C_{n}+K_{1}$ where C_{n} is the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$ and $V\left(K_{1}\right)=\{u\}$. Let $V\left(W_{n} \odot K_{2}\right)=V\left(W_{n}\right) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n+1\right\}$ and $E\left(W_{n} \odot K_{2}\right)=E\left(W_{n}\right) \cup$ $\left\{u_{i} v_{i}, u_{i} w_{i}, u v_{n+1}, u w_{n+1}, v_{i} w_{i}, v_{n+1} w_{n+1}: 1 \leq i \leq n\right\}$. Note that $W_{n} \odot K_{2}$ has $3 n+3$ vertices and $5 n+3$ edges. Define a one-one function f from $V\left(W_{n} \odot K_{2}\right)$ to the set $\{1,2 \ldots 3 n+3\}$ as follows:

Case 1: n is even.

$$
\begin{array}{rlr}
f\left(u_{2 i-1}\right) & =6 i-3 & 1 \leq i \leq \frac{n}{2} \\
f\left(u_{2 i}\right) & =6 i-2 & 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i-1}\right) & =6 i-5 & 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i}\right) & =6 i-1 & \\
& 1 \leq i \leq \frac{n}{2} \\
f\left(w_{2 i-1}\right) & =6 i-4 & \\
\hline & 1 \leq i \leq \frac{n}{2} \\
f\left(w_{2 i}\right) & =6 i & \\
\hline
\end{array}
$$

$f(u)=3 n+1, f\left(v_{n+1}\right)=3 n+2$ and $f\left(w_{n+1}\right)=3 n+3$.
Case 2: n is odd.
Assign the labels to the vertices u_{i}, v_{i} and $w_{i}(1 \leq i \leq n-1), u, v_{n+1}$ and w_{n+1} as in case 1. Then, label the vertices u_{n}, v_{n} and w_{n} by $3 n-2,3 n-1$ and $3 n$ respectively. The following table 2 proves that f is a difference cordial labeling.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{5 n+2}{2}$	$\frac{5 n+4}{2}$
$n \equiv 1(\bmod 2)$	$\frac{5 n+3}{2}$	$\frac{5 n+3}{2}$
TABLE 2		

Theorem 3.9. $W_{n} \odot 2 K_{1}$ is difference cordial.
Proof. Let $W_{n}=C_{n}+K_{1}$ where C_{n} is the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$ and $V\left(K_{1}\right)=\{u\}$. Let $V\left(W_{n} \odot 2 K_{1}\right)=V\left(W_{n}\right) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n+1\right\}$ and $E\left(W_{n} \odot 2 K_{1}\right)=E\left(W_{n}\right) \cup$ $\left\{u_{i} v_{i}, u_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{u v_{n+1}, u w_{n+1}\right\}$. Define $f: V\left(W_{n} \odot 2 K_{1}\right) \rightarrow\{1,2 \ldots 3 n+3\}$ by

$$
\begin{array}{lll}
f\left(u_{i}\right)=3 i-1 & & 1 \leq i \leq n \\
f\left(v_{i}\right) & =3 i-2 & \\
1 \leq i \leq n \\
f\left(w_{i}\right) & =3 i & \\
1 \leq i \leq n
\end{array}
$$

$f(u)=3 n+1, f\left(v_{n+1}\right)=3 n+2$ and $f\left(w_{n+1}\right)=3 n+3$. Since $e_{f}(0)=e_{f}(1)=2 n+1$, f is a difference cordial labeling of $W_{n} \odot 2 K_{1}$.

The gear graph G_{n} is obtained from the wheel W_{n} by adding a vertex between every pair of adjacent vertices of the cycle C_{n}. Let $V\left(G_{n}\right)=V\left(W_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(G_{n}\right)=E\left(W_{n}\right) \cup\left\{u_{i} v_{i}, v_{j} u_{j+1}: 1 \leq i \leq n, 1 \leq j \leq n\right\}-E\left(C_{n}\right)$.

Theorem 3.10. $G_{n} \odot K_{1}$ is difference cordial.
Proof. Let $V\left(G_{n} \odot K_{1}\right)=V\left(G_{n}\right) \cup\left\{w_{i}, x_{i}: 1 \leq i \leq n\right\} \cup\{w\}$ and $E\left(G_{n} \odot K_{1}\right)=$ $E\left(G_{n}\right) \cup\left\{u_{i} w_{i}, v_{i} x_{i}: 1 \leq i \leq n\right\} \cup\{u w\}$. The order and size of $G_{n} \odot K_{1}$ are $4 n+2$ and $5 n+1$ respectively. Define a one-one map $f: V\left(G_{n} \odot K_{1}\right) \rightarrow\{1,2, \ldots 4 n+2\}$ as follows:

$$
\begin{aligned}
f\left(v_{i}\right) & =4 i-1 & & 1 \leq i \leq n \\
f\left(x_{i}\right) & =4 i & & 1 \leq i \leq n \\
f\left(u_{i}\right) & =4 i-2 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(w_{i}\right) & =4 i-3 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{\left\lfloor\frac{n}{2}\right\rfloor+i}\right) & =4\left\lfloor\frac{n}{2}\right\rfloor+4 i-3 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{\left\lfloor\frac{n}{2}\right\rfloor+i}\right) & =4\left\lfloor\frac{n}{2}\right\rfloor+4 i-2 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil
\end{aligned}
$$

$f(u)=4 n+1$ and $f(w)=4 n+2$. The following table 3 proves that f is a difference cordial labeling of $G_{n} \odot K_{1}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{5 n}{2}$	$\frac{5 n+2}{2}$
$n \equiv 1(\bmod 2)$	$\frac{5 n+1}{2}$	$\frac{5 n+1}{2}$
TABLE 3		

Theorem 3.11. $G_{n} \odot 2 K_{1}$ is difference cordial.
Proof. Let $V\left(G_{n} \odot 2 K_{1}\right)=V\left(G_{n}\right) \cup\left\{w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{w, w^{\prime}\right\}$ and $E\left(G_{n} \odot 2 K_{1}\right)=E\left(G_{n}\right) \cup\left\{u_{i} w_{i}, u_{i} w_{i}^{\prime}, v_{i} x_{i}, v_{i} x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{u w, u w^{\prime}\right\}$. The order and size of $G_{n} \odot 2 K_{1}$ are $6 n+3$ and $7 n+2$ respectively. Define a map $f: V\left(G_{n} \odot 2 K_{1}\right) \rightarrow$ $\{1,2, \ldots 6 n+3\}$ as follows:

$$
\begin{array}{rlrl}
f\left(u_{i}\right) & =6 i-4 & & 1 \leq i \leq\left\lceil\frac{3 n}{4}\right\rceil \\
f\left(w_{i}\right) & =6 i-5 & & 1 \leq i \leq\left\lceil\frac{3 n}{4}\right\rceil \\
f\left(w_{i}^{\prime}\right) & =6 i-3 & & 1 \leq i \leq\left\lceil\frac{3 n}{4}\right\rceil \\
f\left(u_{\left\lceil\frac{3 n}{4}\right\rceil+i}\right)= & 6\left\lceil\frac{3 n}{4}\right\rceil+6 i-5 & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor \\
f\left(w_{\left\lceil\frac{3 n}{4}\right\rceil+i}\right)= & 6\left\lceil\frac{3 n}{4}\right\rceil+6 i-4 & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor \\
\left.\left.f\left(w^{\prime}\right\rceil \frac{3 n}{4}\right\rceil+i\right)= & 6\left\lceil\frac{3 n}{4}\right\rceil+6 i-3 & & 1 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor \\
f\left(v_{i}\right)=6 i-1 & 1 \leq i \leq\left\lfloor\frac{3 n}{4}\right\rfloor & \text { if } & n \equiv 0,2,3(\bmod 4) \\
& 1 \leq i \leq \frac{3 n+1}{4} & \text { if } & n \equiv 1(\bmod 4) . \\
f\left(x_{i}\right)=6 i-2 & 1 \leq i \leq\left\lfloor\frac{3 n}{4}\right\rfloor & \text { if } & n \equiv 0,2,3(\bmod 4) \\
& 1 \leq i \leq \frac{3 n+1}{4} & \text { if } & n \equiv 1(\bmod 4) . \\
f\left(x_{i}^{\prime}\right)=6 i & & 1 \leq i \leq\left\lfloor\frac{3 n}{4}\right\rfloor & \text { if }
\end{array} \quad n \equiv 0,2,3(\bmod 4) .
$$

Case 1: $n \equiv 0,2,3(\bmod 4)$.

$$
\begin{array}{ll}
f\left(v_{\left\lfloor\frac{3 n}{4}\right\rfloor+i}\right)=6\left\lfloor\frac{3 n}{4}\right\rfloor+6 i-2 & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil \\
f\left(x_{\left\lfloor\frac{3 n}{4}\right\rfloor+i}\right)=6\left\lfloor\frac{3 n}{4}\right\rfloor+6 i-1 & 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil
\end{array}
$$

$$
f\left(x_{\left\lfloor\frac{3 n}{4}\right\rfloor+i}^{\prime}\right)=6\left\lfloor\frac{3 n}{4}\right\rfloor+6 i \quad 1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil .
$$

Case 2: $n \equiv 1(\bmod 4)$.

$$
\begin{array}{ll}
f\left(v_{\frac{3 n+1}{4}+i}\right)=\frac{9 n-1}{2}+6 i & 1 \leq i \leq \frac{n-1}{4} \\
f\left(x_{\frac{3 n+1}{4}+i}\right)=\frac{9 n+1}{2}+6 i & 1 \leq i \leq \frac{n-1}{4} \\
f\left(x_{\frac{3 n+1}{4}+i}^{\prime}\right)=\frac{9 n+3}{2}+6 i & 1 \leq i \leq \frac{n-1}{4}
\end{array}
$$

$f(u)=6 n+1, f(w)=6 n+2$ and $f\left(w^{\prime}\right)=6 n+3$. The following table 4 shows that f is a difference cordial labeling of $G_{n} \odot 2 K_{1}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{7 n+2}{2}$	$\frac{7 n+2}{2}$
$n \equiv 1(\bmod 2)$	$\frac{7 n+1}{2}$	$\frac{7 n+3}{2}$
TABLE 4		

Theorem 3.12. $G_{n} \odot K_{2}$ is difference cordial.
Proof. Let $V\left(G_{n} \odot K_{2}\right)=V\left(G_{n}\right) \cup\left\{w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{w, w^{\prime}\right\}$ and $E\left(G_{n} \odot K_{2}\right)$ $=E\left(G_{n}\right) \cup\left\{u_{i} w_{i}, u_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime}, v_{i} x_{i}, v_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{u w, u w^{\prime}, w w^{\prime}\right\}$. The order and size of $G_{n} \odot K_{2}$ are $6 n+3$ and $9 n+3$ respectively. Define a map $f: V\left(G_{n} \odot K_{2}\right) \rightarrow$ $\{1,2, \ldots 6 n+3\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & =6 i-3 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(w_{i}\right) & =6 i-4 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(w_{i}^{\prime}\right) & =6 i-5 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{\left\lfloor\frac{n}{2}\right\rfloor+i}\right) & =6\left\lfloor\frac{n}{2}\right\rfloor+6 i-5 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{\left\lfloor\frac{n}{2}\right\rfloor+i}\right) & =6\left\lfloor\frac{n}{2}\right\rfloor+6 i-4 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor+i\right.}^{\prime}\right) & =6\left\lfloor\frac{n}{2}\right\rfloor+6 i-3 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(v_{i}\right) & =6 i-2 & & 1 \leq i \leq n
\end{aligned}
$$

$$
\begin{aligned}
f\left(x_{i}\right) & =6 i & & 1 \leq i \leq n \\
f\left(x_{i}^{\prime}\right) & =6 i-1 & & 1 \leq i \leq n
\end{aligned}
$$

$f(u)=6 n+1, f(w)=6 n+2$ and $f\left(w^{\prime}\right)=6 n+3$. The following table 5 shows that f is a difference cordial labeling of $G_{n} \odot K_{2}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{9 n+2}{2}$	$\frac{9 n+4}{2}$
$n \equiv 1(\bmod 2)$	$\frac{9 n+3}{2}$	$\frac{9 n+3}{2}$

TABLE 5
$C_{n} \times P_{2}$ is called a prism. Let $V\left(C_{n} \times P_{2}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n} \times P_{2}\right)=$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{1} u_{n}, v_{1} v_{n}\right\}$.

Theorem 3.13. $\left(C_{n} \times P_{2}\right) \odot K_{1}$ is difference cordial.
Proof. Let $V\left(\left(C_{n} \times P_{2}\right) \odot K_{1}\right)=V\left(C_{n} \times P_{2}\right) \cup\left\{x_{i}, y_{i}: 1 \leq i \leq n\right\}, E\left(\left(C_{n} \times P_{2}\right) \odot K_{1}\right)$ $=E\left(C_{n} \times P_{2}\right) \cup\left\{u_{i} x_{i}, v_{i} y_{i}: 1 \leq i \leq n\right\}$. Define $f: V\left(\left(C_{n} \times P_{2}\right) \odot K_{1}\right) \rightarrow\{1,2 \ldots 4 n\}$ by

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =4 i-2 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(x_{2 i-1}\right) & =4 i-3 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(u_{2 i}\right) & =4 i-1 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(x_{2 i}\right) & =4 i & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(v_{i}\right) & =2 n+2 i-1 & & 1 \leq i \leq n \\
f\left(y_{i}\right) & =2 n+2 i & & 1 \leq i \leq n .
\end{aligned}
$$

The following table 6 shows that f is a difference cordial labeling of $\left(C_{n} \times P_{2}\right) \odot K_{1}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{5 n}{2}$	$\frac{5 n}{2}$
$n \equiv 1(\bmod 2)$	$\frac{5 n+1}{2}$	$\frac{5 n-1}{2}$
TABLE 6		

Theorem 3.14. $\left(C_{n} \times P_{2}\right) \odot 2 K_{1}$ is difference cordial.

Proof. Let $V\left(\left(C_{n} \times P_{2}\right) \odot 2 K_{1}\right)=V\left(C_{n} \times P_{2}\right) \cup\left\{x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E\left(\left(C_{n} \times P_{2}\right) \odot 2 K_{1}\right)=E\left(C_{n} \times P_{2}\right) \cup\left\{u_{i} x_{i}, u_{i} x_{i}^{\prime}, v_{i} y_{i}, v_{i} y_{i}^{\prime}: 1 \leq i \leq n\right\}$. Define a map $f: V\left(\left(C_{n} \times P_{2}\right) \odot 2 K_{1}\right) \rightarrow\{1,2 \ldots 6 n\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =3 i-1 & & 1 \leq i \leq n \\
f\left(x_{i}\right) & =3 i-2 & & 1 \leq i \leq n \\
f\left(x_{i}^{\prime}\right) & =3 i & & 1 \leq i \leq n \\
f\left(v_{i}\right) & =3 n+3 i-1 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(y_{i}\right) & =3 n+3 i-2 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(y_{i}^{\prime}\right) & =3 n+3 i & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(v_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =3\left\lceil\frac{n}{2}\right\rceil+3 n+3 i-2 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(y_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =3\left\lceil\frac{n}{2}\right\rceil+3 n+3 i-1 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(y_{\left\lceil\frac{n}{2}\right\rceil+i}^{\prime}\right) & =3\left\lceil\frac{n}{2}\right\rceil+3 n+3 i & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

The following table 7 shows that f is a difference cordial labeling of $\left(C_{n} \times P_{2}\right) \odot 2 K_{1}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{7 n}{2}$	$\frac{7 n}{2}$
$n \equiv 1(\bmod 2)$	$\frac{7 n-1}{2}$	$\frac{7 n+1}{2}$

TABLE 7

Theorem 3.15. $\left(C_{n} \times P_{2}\right) \odot K_{2}$ is difference cordial.
Proof. Let $V\left(\left(C_{n} \times P_{2}\right) \odot K_{2}\right)=V\left(C_{n} \times P_{2}\right) \cup\left\{x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E\left(\left(C_{n} \times P_{2}\right) \odot K_{2}\right)=E\left(C_{n} \times P_{2}\right) \cup\left\{u_{i} x_{i}, u_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime}, v_{i} y_{i}, v_{i} y_{i}^{\prime}, y_{i} y_{i}^{\prime}: 1 \leq i \leq n\right\}$. The order and size of $\left(C_{n} \times P_{2}\right) \odot K_{2}$ are $6 n$ and $9 n$ respectively. Define a map f : $V\left(\left(C_{n} \times P_{2}\right) \odot K_{2}\right) \rightarrow\{1,2 \ldots 6 n\}$ by

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =6 i-3 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(x_{2 i-1}\right) & =6 i-4 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(x_{2 i-1}^{\prime}\right) & =6 i-5 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(u_{2 i}\right) & =6 i-2 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(x_{2 i}\right) & =6 i & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(x_{2 i}^{\prime}\right) & =6 i-1 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(v_{i}\right) & =3 n+3 i-2 & & 1 \leq i \leq n \\
f\left(y_{i}\right) & =3 n+3 i-1 & & 1 \leq i \leq n \\
f\left(y_{i}^{\prime}\right) & =3 n+3 i & & 1 \leq i \leq n .
\end{aligned}
$$

The following table 8 shows that f is a difference cordial labeling of $\left(C_{n} \times P_{2}\right) \odot K_{2}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{9 n}{2}$	$\frac{9 n}{2}$
$n \equiv 1(\bmod 2)$	$\frac{9 n+1}{2}$	$\frac{9 n-1}{2}$

TABLE 8
$L_{n}=P_{n} \times P_{2}$ is called a ladder. We now investigate the difference cordial labeling behavior of the corona of L_{n} with $K_{n}, 2 K_{1}$ and K_{2}.

Theorem 3.16. $L_{n} \odot K_{1}$ is difference cordial.
Proof. Let $V\left(L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} . \quad V\left(L_{n} \odot K_{1}\right)=V\left(L_{n}\right) \cup\left\{w_{i}, x_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n} \odot K_{1}\right)=E\left(L_{n}\right) \cup\left\{u_{i} w_{i}, v_{i} x_{i}: 1 \leq i \leq n\right\}$. Define a map $f: V\left(L_{n} \odot K_{1}\right) \rightarrow$ $\{1,2 \ldots 4 n\}$ as follows:

Case 1: n is odd.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =4 i-2 & & 1 \leq i \leq\left\lceil\frac{n-1}{2}\right\rceil \\
f\left(u_{2 i}\right) & =4 i-1 & & 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rceil \\
f\left(w_{2 i-1}\right) & =4 i-3 & & 1 \leq i \leq\left\lceil\frac{n-1}{2}\right\rceil \\
f\left(w_{2 i}\right) & =4 i & & 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rceil \\
f\left(v_{i}\right) & =2 n+2+i & & 1 \leq i \leq n-1 \\
f\left(x_{i}\right) & =3 n+1+i & & 1 \leq i \leq n-1
\end{aligned}
$$

$f\left(u_{n}\right)=2 n, f\left(w_{n}\right)=2 n-1, f\left(v_{n}\right)=2 n+1$ and $f\left(x_{n}\right)=2 n+2$.
Case 2: n is even.
Label the vertices u_{i} and $w_{i}(1 \leq i \leq n-1)$ as in case 1. Define $f\left(u_{n}\right)=2 n-1, f\left(w_{n}\right)=$ $2 n, f\left(v_{n}\right)=3 n, f\left(x_{n}\right)=4 n, f\left(v_{i}\right)=2 n+i, \quad 1 \leq i \leq n-1, f\left(x_{i}\right)=3 n+i, \quad 1 \leq i \leq n-1$. The following table 9 shows that f is a difference cordial labeling of $L_{n} \odot K_{1}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{5 n-2}{2}$	$\frac{5 n-2}{2}$
$n \equiv 1(\bmod 2)$	$\frac{5 n-3}{2}$	$\frac{5 n-1}{2}$
TABLE 9		

Theorem 3.17. $L_{n} \odot 2 K_{1}$ is difference cordial.
Proof. $V\left(L_{n} \odot 2 K_{1}\right)=V\left(L_{n}\right) \cup\left\{w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E\left(L_{n} \odot 2 K_{1}\right)=E\left(L_{n}\right) \cup$ $\left\{u_{i} w_{i}, u_{i} w_{i}^{\prime}, v_{i} x_{i}, v_{i} x_{i}^{\prime}: 1 \leq i \leq n\right\}$. Define a map $f: V\left(L_{n} \odot 2 K_{1}\right) \rightarrow\{1,2 \ldots 6 n\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & =3 i-1 & & 1 \leq i \leq n \\
f\left(w_{i}\right) & =3 i-2 & & 1 \leq i \leq n \\
f\left(w_{i}^{\prime}\right) & =3 i & & 1 \leq i \leq n
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{i}\right) & =3 n+3 i-1 & & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(v_{\left\lceil\frac{n-2}{2}\right\rceil+i}\right) & =3 n+3\left\lceil\frac{n-2}{2}\right\rceil+3 i-2 & & 1 \leq i \leq\left\lceil\frac{n+2}{2}\right\rceil \\
f\left(x_{i}\right) & =3 n+3 i-2 & & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(x_{\left\lceil\frac{n-2}{2}\right\rceil+i}\right) & =3 n+3\left\lceil\frac{n-2}{2}\right\rceil+3 i-1 & & 1 \leq i \leq\left\lfloor\frac{n+2}{2}\right\rceil \\
f\left(x_{i}^{\prime}\right) & =3 n+3 i & & 1 \leq i \leq\left\lceil\frac{n-2}{2}\right\rceil \\
f\left(x_{\left\lceil\frac{n-2}{2}\right\rceil+i}^{\prime}\right) & =3 n+3\left\lceil\frac{n-2}{2}\right\rceil+3 i & & 1 \leq i \leq\left\lfloor\frac{n+2}{2}\right\rceil .
\end{aligned}
$$

The following table 10 shows that f is a difference cordial labeling of $L_{n} \odot 2 K_{1}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{7 n-2}{2}$	$\frac{7 n-2}{2}$
$n \equiv 1(\bmod 2)$	$\frac{7 n-3}{2}$	$\frac{7 n-1}{2}$
TABLE 10		

Theorem 3.18. $L_{n} \odot K_{2}$ is difference cordial.
Proof. $V\left(L_{n} \odot K_{2}\right)=V\left(L_{n}\right) \cup\left\{w_{i}, w_{i}^{\prime}, x_{i}, x_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E\left(L_{n} \odot K_{2}\right)=E\left(L_{n}\right) \cup$ $\left\{u_{i} w_{i}, u_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime}, v_{i} x_{i}, v_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime}: 1 \leq i \leq n\right\}$. Define an injective map from the vertices of $L_{n} \odot K_{2}$ to the set $\{1,2 \ldots 6 n\}$ as follows:

Case 1: n is even.

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =6 i-3 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{2 i}\right) & =6 i-2 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(w_{2 i-1}\right) & =6 i-4 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(w_{2 i}\right) & =6 i & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(w_{2 i-1}^{\prime}\right) & =6 i-5 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
f\left(w_{2 i}^{\prime}\right) & =6 i-1 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(v_{i}\right) & =3 n+i & & 1 \leq i \leq n \\
f\left(x_{i}\right) & =4 n+2 i-1 & & 1 \leq i \leq n \\
f\left(x_{i}^{\prime}\right) & =4 n+2 i & & 1 \leq i \leq n .
\end{aligned}
$$

Case 2: n is odd.
Label the vertices u_{i}, w_{i} and $w_{i}^{\prime}(1 \leq i \leq n-1)$ and v_{i}, x_{i} and $x_{i}^{\prime}(1 \leq i \leq n)$ as in case 1. Define $f\left(u_{n}\right)=3 n-2, f\left(w_{n}\right)=3 n$ and $f\left(w_{n}^{\prime}\right)=3 n-1$. The following table 11 shows that f is a difference cordial labeling of $L_{n} \odot K_{2}$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{9 n-2}{2}$	$\frac{9 n-2}{2}$
$n \equiv 1(\bmod 2)$	$\frac{9 n-1}{2}$	$\frac{9 n-3}{2}$

TABLE 11

References

[1] J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18 (2012) \#Ds6.
[2] F. Harary, Graph theory, Addision wesley, New Delhi (1969).
[3] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs, Global Journal of Mathematical Sicences: Theory and Practical, 3 (2013), 193-202.
[4] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs obtained from double snakes, International Journal of Mathematics Research, 5(2013), 317-322.

[^0]: *Corresponding author
 Received July 9, 2013

