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Abstract. Let G be a (p, q) graph. Let f be a map from V (G) to {1, 2, . . . , p}. For each edge xy,

assign the label |f (x)− f (y)|. f is called a difference cordial labeling if f is a one to one map and

|ef (0)− ef (1)| ≤ 1 where ef (1) and ef (0) denote the number of edges labeled with 1 and not labeled

with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph. In this

paper, we investigate the difference cordial labeling behavior of G⊙Pn, G⊙mK1 (m = 1, 2, 3) where G

is either a unicycle or a tree and G1 ⊙G2 where G1 and G2 are some more standard graphs.
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1. Introduction Throughout this paper we have considered only simple and undi-

rected graphs. Let G = (V,E) be a (p, q) graph. The number |V | is called the order

of Gand the number |E| is called the size of G. The concept of difference cordial la-

beling has been introduced by R. Ponraj, S. Sathish Narayanan and R. Kala in [3]. In

[3, 4], difference cordial labeling behaviour of several graphs such as path, cycle, complete

graph, complete bipartite grpah, bistar, wheel, web and some more standard graphs have

been investigated. In this paper we investigate the difference cordial labeling behaviour
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of G⊙ Pn, G⊙mK1 (m = 1, 2, 3) where G is either a unicycle or a tree, crown Cn ⊙K1,

comb Pn ⊙K1, Pn⊙Cm, Cn⊙Cm, Wn ⊙K2, Wn⊙ 2K1, Ln ⊙K1, Ln ⊙ 2K1 and Ln⊙K2.

Let x be any real number. Then ⌊x⌋ stands for the largest integer less than or equal to x

and ⌈x⌉ stands for smallest integer greater than or equal to x. Terms and definitions not

defined here are follow from Harary [2].

2. Difference Cordial Graph

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , p} be a bijection. For each edge

uv, assign the label |f (u)− f (v)|. f is called a difference cordial labeling if f is 1 − 1

and |ef (0)− ef (1)| ≤ 1 where ef (1) and ef (0) denote the number of edges labeled with

1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called

a difference cordial graph.

3. Main results

Now we look into the corona of G with H . The corona of G with H , G⊙H is the graph

obtained by taking one copy of G and p copies of H and joining the ith vertex of G with

an edge to every vertex in the ith copy of H . Cn ⊙K1 is called the crown and Pn ⊙K1 is

called the comb. Now we have the following.

Theorem 3.1. Let G be a (p, q) graph. If G satisfies any one of the following then G⊙Pn

is difference cordial.

(1) G is a tree.

(2) G is a unicycle.

(3) q=p+1.

Proof. Let V (G) = {ui : 1 ≤ i ≤ p} and P i
n : vi1v

i
2 . . . v

i
n be the ith copy of the path.

V (G⊙ Pn) = V (G) ∪ V (P i
n) and E (G⊙ Pn) = E (G) ∪

p
⋃

i=1

{

uiv
i
j : 1 ≤ j ≤ n

}

∪ E (P i
n).

Clearly the order and size of G⊙ Pn are (n + 1) p and 2np− p + q respectively. We now

define an injective map from the vertex set of G ⊙ Pn to the set {1, 2 . . . (n+ 1) p} as
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follows:

f (ui) = (n+ 1) i 1 ≤ i ≤ p

f
(

v1j
)

= j 1 ≤ j ≤ n

f
(

vij
)

= f (ui−1) + j 2 ≤ i ≤ p, 1 ≤ j ≤ n.

Case 1: G is a tree.

In this case, ef (0) = np− 1 and ef (1) = np. Therefore, f is a difference cordial labeling.

Case 2: G is a unicycle.

Since ef (0) = np and ef (1) = np, f is a difference cordial labeling.

Case 3: q = p+ 1.

In this case, ef (0) = np+ 1 and ef (1) = np. Hence, f is a difference cordial labeling.

Theorem 3.2. Let G be a (p, q) graph. If G satisfies any one of the following then

G⊙mK1 (m = 1, 2, 3) is difference cordial.

(1) G is a tree.

(2) G is a unicycle.

(3) q=p+1.

Proof. Let V (G) = {ui : 1 ≤ i ≤ p}.

Case 1: m = 1.

The proof follows from theorem 3.1.

Case 2: m = 2.

Let V (G⊙ 2K1) = V (G) ∪ {vi, wi : 1 ≤ i ≤ p} and E (G⊙ 2K1) = E (G) ∪

{uivi, uiwi : 1 ≤ i ≤ p}. Note that G⊙ 2K1 has 3p vertices and 2p+ q edges.

Subcase 1: G is a tree.

Define a one to one map from the vertex set of G⊙2K1 to the set {1, 2, . . . 3p} as follows:

f (ui) = 3i− 2 1 ≤ i ≤
⌈p

2

⌉

f (vi) = 3i− 1 1 ≤ i ≤
⌈p

2

⌉

f (wi) = 3i 1 ≤ i ≤
⌈p

2

⌉

.
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f
(

u⌈ p

2⌉+i

)

= 3
⌈p

2

⌉

+ 3i− 1 1 ≤ i ≤
⌊p

2

⌋

f
(

v⌈ p

2⌉+i

)

= 3
⌈p

2

⌉

+ 3i− 2 1 ≤ i ≤
⌊p

2

⌋

f
(

w⌈ p

2⌉+i

)

= 3
⌈p

2

⌉

+ 3i 1 ≤ i ≤
⌊p

2

⌋

.

Here ef (0) = p− 1 +
⌈

p

2

⌉

and ef (1) = p+
⌊

p

2

⌋

. Hence, f is a difference cordial labeling.

Subcase 2: G is a unicycle.

Label the vertices of G⊙2K1 as in case 1. In this case, ef (0) = p+
⌈

p

2

⌉

. ef (1) = p+
⌊

p

2

⌋

.

It follows that f is a difference cordial labeling.

Subcase 3: q = p+ 1.

Label the vertices ui, vi and wi

(

1 ≤ i ≤
⌈

p

2

⌉

− 1,
⌈

p

2

⌉

+ 1 ≤ i ≤ p
)

as in case 1. Now

assign the labels 3
⌈

p

2

⌉

− 1, 3
⌈

p

2

⌉

− 2 and 3
⌈

p

2

⌉

to the vertices u⌈p

2⌉
, v⌈ p

2⌉
and w⌈p

2⌉
re-

spectively. Here ef (0) = p+
⌈

p

2

⌉

and ef (1) = p +
⌊

p

2

⌋

+ 1.

Case 3: m = 3.

Let V (G⊙ 3K1) = V (G) ∪ {vi, wi, zi : 1 ≤ i ≤ p} and E (G⊙ 3K1) = E (G) ∪

{uivi, uiwi, uizi : 1 ≤ i ≤ p}. The order and size of G⊙3K1 are 4p and 4p+q respectively.

Define a map f : V (G⊙ 3K1) → {1, 2, . . . 4p} by

f (ui) = 4i− 2 1 ≤ i ≤ p

f (vi) = 4i− 3 1 ≤ i ≤ p

f (wi) = 4i− 1 1 ≤ i ≤ p

f (zi) = 4i 1 ≤ i ≤ p.

Subcase 1: G is a tree.

Now ef (0) = 2p−1 and ef (1) = 2p. Therefore, f satisfies the edge condition of difference

cordial labeling.

Subcase 2: G is a unicycle.

In this case, ef (0) = 2p and ef (1) = 2p. Hence f is a difference cordial labeling.

Subcase 3: q = p+ 1.

Here ef (0) = 2p+ 1 and ef (1) = 2p. This implies, f is a difference cordial labeling.
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Corollary 3.3. The crown Cn ⊙K1 is difference cordial.

Corollary 3.4. The comb Pn ⊙K1 is difference cordial.

Next we look into the graph Pn ⊙ Cm.

Theorem 3.5. Pn ⊙ Cm is difference cordial.

Proof. Let Pn be the path u1u2 . . . un and let C i
m : vi1v

i
2 . . . v

i
nv

i
1 be the ith copy of the

cycle Cm. Therefore V (Pn ⊙ Cm) = V (Pn) ∪
n
⋃

i=1

V (C i
m) and E (Pn ⊙ Cm) = E (Pn) ∪

n
⋃

i=1

E (C i
m)∪

n
⋃

i=1

{

uiv
i
j : 1 ≤ j ≤ m

}

. Clearly, Pn⊙Cm has n (m+ 1) vertices and 2mn+n−1

edges. Define f : V (Pn ⊙ Cm) → {1, 2, 3 . . . n (m+ 1)} by f (u1) = m+1, f (u2) = m+2,

f
(

v1j
)

= j, 1 ≤ j ≤ m, f
(

v2j
)

= m+ 2 + j, 1 ≤ j ≤ m,

f (u2i+1) = f (u2i−1) + 2m+ 2 1 ≤ i ≤ n−1

2
if n ≡ 1 (mod 2)

1 ≤ i ≤ n−2

2
if n ≡ 0 (mod 2).

f (u2i+2) = f (u2i) + 2m+ 2 1 ≤ i ≤ n−3

2
if n ≡ 1 (mod 2)

1 ≤ i ≤ n−2

2
if n ≡ 0 (mod 2).

f
(

v2i+1

j

)

= f
(

v2i−1

j

)

+ 2m+ 2 1 ≤ i ≤ n−1

2
if n ≡ 1 (mod 2)

1 ≤ i ≤ n−2

2
if n ≡ 0 (mod 2).

f
(

v2i+2

j

)

= f
(

v2ij
)

+ 2m+ 2 1 ≤ i ≤ n−1

2
if n ≡ 1 (mod 2)

1 ≤ i ≤ n−2

2
if n ≡ 0 (mod 2).

The table 1 shows that f is a difference cordial labeling.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 2mn+n−2

2

2mn+n
2

n ≡ 1 (mod 2) 2mn+n−1

2

2mn+n−1

2

Table 1

Example 3.6. The difference cordial labeling of P4 ⊙ C3 is given in figure 1.

b

b

b

b b

b

b

b b b

b

b

b b

b

b

4 5 12 13

1 6 9 14

2 7 10 15

3 8 11 16

Figure 1
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Theorem 3.7. Cn ⊙ Cm is difference cordial.

Proof. The graph Cn ⊙ Cm is obtained from Pn ⊙ Cm by adding the edge u1un. Assign

the labels to the vertices of Cn ⊙ Cm as in theorem 3.5. In this graph, when n is odd,

ef (0) = 2mn+n+1

2
and ef (1) = 2mn+n−1

2
; When n is even, ef (0) = ef (1) = 2mn+n

2
.

Therefore f is a difference cordial labeling.

Now we investigate the difference cordiality of corona of Wn with K2 and 2K1.

Theorem 3.8. Wn ⊙K2 is difference cordial.

Proof. Let Wn = Cn + K1 where Cn is the cycle u1u2 . . . unu1 and V (K1) = {u}.

Let V (Wn ⊙K2) = V (Wn) ∪ {vi, wi : 1 ≤ i ≤ n+ 1} and E (Wn ⊙K2) = E (Wn) ∪

{uivi, uiwi, uvn+1, uwn+1, viwi, vn+1wn+1 : 1 ≤ i ≤ n}. Note that Wn ⊙ K2 has 3n + 3

vertices and 5n + 3 edges. Define a one-one function f from V (Wn ⊙K2) to the set

{1, 2 . . . 3n+ 3} as follows:

Case 1: n is even.

f (u2i−1) = 6i− 3 1 ≤ i ≤
n

2

f (u2i) = 6i− 2 1 ≤ i ≤
n

2

f (v2i−1) = 6i− 5 1 ≤ i ≤
n

2

f (v2i) = 6i− 1 1 ≤ i ≤
n

2

f (w2i−1) = 6i− 4 1 ≤ i ≤
n

2

f (w2i) = 6i 1 ≤ i ≤
n

2

f (u) = 3n+ 1, f (vn+1) = 3n+ 2 and f (wn+1) = 3n+ 3.

Case 2: n is odd.

Assign the labels to the vertices ui, vi and wi (1 ≤ i ≤ n− 1), u, vn+1 and wn+1 as in case

1. Then, label the vertices un, vn and wn by 3n − 2, 3n − 1 and 3n respectively. The

following table 2 proves that f is a difference cordial labeling.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 5n+2

2

5n+4

2

n ≡ 1 (mod 2) 5n+3

2

5n+3

2

Table 2
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Theorem 3.9. Wn ⊙ 2K1 is difference cordial.

Proof. Let Wn = Cn + K1 where Cn is the cycle u1u2 . . . unu1 and V (K1) = {u}.

Let V (Wn ⊙ 2K1) = V (Wn) ∪ {vi, wi : 1 ≤ i ≤ n+ 1} and E (Wn ⊙ 2K1) = E (Wn) ∪

{uivi, uiwi : 1 ≤ i ≤ n}∪{uvn+1, uwn+1}. Define f : V (Wn ⊙ 2K1) → {1, 2 . . . 3n+ 3} by

f (ui) = 3i− 1 1 ≤ i ≤ n

f (vi) = 3i− 2 1 ≤ i ≤ n

f (wi) = 3i 1 ≤ i ≤ n

f (u) = 3n + 1, f (vn+1) = 3n + 2 and f (wn+1) = 3n + 3. Since ef (0) = ef (1) = 2n+ 1,

f is a difference cordial labeling of Wn ⊙ 2K1.

The gear graph Gn is obtained from the wheel Wn by adding a vertex between every

pair of adjacent vertices of the cycle Cn. Let V (Gn) = V (Wn) ∪ {vi : 1 ≤ i ≤ n} and

E (Gn) = E (Wn) ∪ {uivi, vjuj+1 : 1 ≤ i ≤ n, 1 ≤ j ≤ n} − E (Cn).

Theorem 3.10. Gn ⊙K1 is difference cordial.

Proof. Let V (Gn ⊙K1) = V (Gn) ∪ {wi, xi : 1 ≤ i ≤ n} ∪ {w} and E (Gn ⊙K1) =

E (Gn) ∪ {uiwi, vixi : 1 ≤ i ≤ n} ∪ {uw}. The order and size of Gn ⊙K1 are 4n + 2 and

5n+1 respectively. Define a one-one map f : V (Gn ⊙K1) → {1, 2, . . . 4n+ 2} as follows:

f (vi) = 4i− 1 1 ≤ i ≤ n

f (xi) = 4i 1 ≤ i ≤ n

f (ui) = 4i− 2 1 ≤ i ≤
⌊n

2

⌋

f (wi) = 4i− 3 1 ≤ i ≤
⌊n

2

⌋

f
(

u⌊n

2 ⌋+i

)

= 4
⌊n

2

⌋

+ 4i− 3 1 ≤ i ≤
⌈n

2

⌉

f
(

w⌊n

2 ⌋+i

)

= 4
⌊n

2

⌋

+ 4i− 2 1 ≤ i ≤
⌈n

2

⌉

f (u) = 4n + 1 and f (w) = 4n + 2. The following table 3 proves that f is a difference

cordial labeling of Gn ⊙K1.
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Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 5n
2

5n+2

2

n ≡ 1 (mod 2) 5n+1

2

5n+1

2

Table 3

Theorem 3.11. Gn ⊙ 2K1 is difference cordial.

Proof. Let V (Gn ⊙ 2K1) = V (Gn) ∪
{

wi, w
′

i, xi, x
′

i : 1 ≤ i ≤ n
}

∪
{

w,w
′
}

and

E (Gn ⊙ 2K1) = E (Gn) ∪
{

uiwi, uiw
′

i, vixi, vix
′

i : 1 ≤ i ≤ n
}

∪
{

uw, uw
′
}

. The order and

size of Gn ⊙ 2K1 are 6n + 3 and 7n + 2 respectively. Define a map f : V (Gn ⊙ 2K1) →

{1, 2, . . . 6n+ 3} as follows:

f (ui) = 6i− 4 1 ≤ i ≤

⌈

3n

4

⌉

f (wi) = 6i− 5 1 ≤ i ≤

⌈

3n

4

⌉

f
(

w
′

i

)

= 6i− 3 1 ≤ i ≤

⌈

3n

4

⌉

f
(

u⌈3n

4 ⌉+i

)

= 6

⌈

3n

4

⌉

+ 6i− 5 1 ≤ i ≤
⌊n

4

⌋

f
(

w⌈ 3n

4 ⌉+i

)

= 6

⌈

3n

4

⌉

+ 6i− 4 1 ≤ i ≤
⌊n

4

⌋

f
(

w
′

⌈ 3n

4 ⌉+i

)

= 6

⌈

3n

4

⌉

+ 6i− 3 1 ≤ i ≤
⌊n

4

⌋

f (vi) = 6i− 1 1 ≤ i ≤
⌊

3n
4

⌋

if n ≡ 0, 2, 3 (mod 4)

1 ≤ i ≤ 3n+1

4
if n ≡ 1 (mod 4).

f (xi) = 6i− 2 1 ≤ i ≤
⌊

3n
4

⌋

if n ≡ 0, 2, 3 (mod 4)

1 ≤ i ≤ 3n+1

4
if n ≡ 1 (mod 4).

f
(

x
′

i

)

= 6i 1 ≤ i ≤
⌊

3n
4

⌋

if n ≡ 0, 2, 3 (mod 4)

1 ≤ i ≤ 3n+1

4
if n ≡ 1 (mod 4).

Case 1: n ≡ 0, 2, 3 (mod 4).

f
(

v⌊ 3n

4 ⌋+i

)

= 6

⌊

3n

4

⌋

+ 6i− 2 1 ≤ i ≤
⌈n

4

⌉

f
(

x⌊ 3n

4 ⌋+i

)

= 6

⌊

3n

4

⌋

+ 6i− 1 1 ≤ i ≤
⌈n

4

⌉
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f
(

x
′

⌊ 3n

4 ⌋+i

)

= 6

⌊

3n

4

⌋

+ 6i 1 ≤ i ≤
⌈n

4

⌉

.

Case 2: n ≡ 1 (mod 4).

f
(

v 3n+1

4
+i

)

=
9n− 1

2
+ 6i 1 ≤ i ≤

n− 1

4

f
(

x 3n+1

4
+i

)

=
9n+ 1

2
+ 6i 1 ≤ i ≤

n− 1

4

f
(

x
′

3n+1

4
+i

)

=
9n+ 3

2
+ 6i 1 ≤ i ≤

n− 1

4

f (u) = 6n+ 1, f (w) = 6n + 2 and f
(

w
′
)

= 6n+ 3. The following table 4 shows that f

is a difference cordial labeling of Gn ⊙ 2K1.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 7n+2

2

7n+2

2

n ≡ 1 (mod 2) 7n+1

2

7n+3

2

Table 4

Theorem 3.12. Gn ⊙K2 is difference cordial.

Proof. Let V (Gn ⊙K2) = V (Gn)∪
{

wi, w
′

i, xi, x
′

i : 1 ≤ i ≤ n
}

∪
{

w,w
′
}

and E (Gn ⊙K2)

= E (Gn)∪
{

uiwi, uiw
′

i, wiw
′

i, vixi, vix
′

i, xix
′

i : 1 ≤ i ≤ n
}

∪
{

uw, uw
′

, ww
′
}

. The order and

size of Gn ⊙ K2 are 6n + 3 and 9n + 3 respectively. Define a map f : V (Gn ⊙K2) →

{1, 2, . . . 6n+ 3} as follows:

f (ui) = 6i− 3 1 ≤ i ≤
⌊n

2

⌋

f (wi) = 6i− 4 1 ≤ i ≤
⌊n

2

⌋

f
(

w
′

i

)

= 6i− 5 1 ≤ i ≤
⌊n

2

⌋

f
(

u⌊n

2 ⌋+i

)

= 6
⌊n

2

⌋

+ 6i− 5 1 ≤ i ≤
⌈n

2

⌉

f
(

w⌊n

2 ⌋+i

)

= 6
⌊n

2

⌋

+ 6i− 4 1 ≤ i ≤
⌈n

2

⌉

f
(

w
′

⌊n

2 ⌋+i

)

= 6
⌊n

2

⌋

+ 6i− 3 1 ≤ i ≤
⌈n

2

⌉

f (vi) = 6i− 2 1 ≤ i ≤ n
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f (xi) = 6i 1 ≤ i ≤ n

f
(

x
′

i

)

= 6i− 1 1 ≤ i ≤ n

f (u) = 6n+ 1, f (w) = 6n + 2 and f
(

w
′
)

= 6n+ 3. The following table 5 shows that f

is a difference cordial labeling of Gn ⊙K2.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 9n+2

2

9n+4

2

n ≡ 1 (mod 2) 9n+3

2

9n+3

2

Table 5

Cn × P2 is called a prism. Let V (Cn × P2) = {ui, vi : 1 ≤ i ≤ n} and E (Cn × P2) =

{uiui+1, vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi : 1 ≤ i ≤ n} ∪ {u1un, v1vn}.

Theorem 3.13. (Cn × P2)⊙K1 is difference cordial.

Proof. Let V ((Cn × P2)⊙K1) = V (Cn × P2)∪ {xi, yi : 1 ≤ i ≤ n}, E ((Cn × P2)⊙K1)

= E (Cn × P2)∪{uixi, viyi : 1 ≤ i ≤ n}. Define f : V ((Cn × P2)⊙K1) → {1, 2 . . . 4n} by

f (u2i−1) = 4i− 2 1 ≤ i ≤
⌈n

2

⌉

f (x2i−1) = 4i− 3 1 ≤ i ≤
⌈n

2

⌉

f (u2i) = 4i− 1 1 ≤ i ≤
⌈n

2

⌉

f (x2i) = 4i 1 ≤ i ≤
⌈n

2

⌉

f (vi) = 2n + 2i− 1 1 ≤ i ≤ n

f (yi) = 2n + 2i 1 ≤ i ≤ n.

The following table 6 shows that f is a difference cordial labeling of (Cn × P2)⊙K1.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 5n
2

5n
2

n ≡ 1 (mod 2) 5n+1

2

5n−1

2

Table 6

Theorem 3.14. (Cn × P2)⊙ 2K1 is difference cordial.
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Proof. Let V ((Cn × P2)⊙ 2K1) = V (Cn × P2) ∪
{

xi, x
′

i, yi, y
′

i : 1 ≤ i ≤ n
}

and

E ((Cn × P2)⊙ 2K1) = E (Cn × P2) ∪
{

uixi, uix
′

i, viyi, viy
′

i : 1 ≤ i ≤ n
}

. Define a map

f : V ((Cn × P2)⊙ 2K1) → {1, 2 . . . 6n} by

f (ui) = 3i− 1 1 ≤ i ≤ n

f (xi) = 3i− 2 1 ≤ i ≤ n

f
(

x
′

i

)

= 3i 1 ≤ i ≤ n

f (vi) = 3n+ 3i− 1 1 ≤ i ≤
⌈n

2

⌉

f (yi) = 3n+ 3i− 2 1 ≤ i ≤
⌈n

2

⌉

f
(

y
′

i

)

= 3n+ 3i 1 ≤ i ≤
⌈n

2

⌉

f
(

v⌈n

2 ⌉+i

)

= 3
⌈n

2

⌉

+ 3n+ 3i− 2 1 ≤ i ≤
⌊n

2

⌋

f
(

y⌈n

2 ⌉+i

)

= 3
⌈n

2

⌉

+ 3n+ 3i− 1 1 ≤ i ≤
⌊n

2

⌋

f
(

y
′

⌈n

2 ⌉+i

)

= 3
⌈n

2

⌉

+ 3n+ 3i 1 ≤ i ≤
⌊n

2

⌋

.

The following table 7 shows that f is a difference cordial labeling of (Cn × P2)⊙ 2K1.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 7n
2

7n
2

n ≡ 1 (mod 2) 7n−1

2

7n+1

2

Table 7

Theorem 3.15. (Cn × P2)⊙K2 is difference cordial.

Proof. Let V ((Cn × P2)⊙K2) = V (Cn × P2) ∪
{

xi, x
′

i, yi, y
′

i : 1 ≤ i ≤ n
}

and

E ((Cn × P2)⊙K2) = E (Cn × P2) ∪
{

uixi, uix
′

i, xix
′

i, viyi, viy
′

i, yiy
′

i : 1 ≤ i ≤ n
}

. The or-

der and size of (Cn × P2) ⊙ K2 are 6n and 9n respectively. Define a map f :

V ((Cn × P2)⊙K2) → {1, 2 . . . 6n} by
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f (u2i−1) = 6i− 3 1 ≤ i ≤
⌈n

2

⌉

f (x2i−1) = 6i− 4 1 ≤ i ≤
⌈n

2

⌉

f
(

x
′

2i−1

)

= 6i− 5 1 ≤ i ≤
⌈n

2

⌉

f (u2i) = 6i− 2 1 ≤ i ≤
⌊n

2

⌋

f (x2i) = 6i 1 ≤ i ≤
⌊n

2

⌋

f
(

x
′

2i

)

= 6i− 1 1 ≤ i ≤
⌊n

2

⌋

f (vi) = 3n+ 3i− 2 1 ≤ i ≤ n

f (yi) = 3n+ 3i− 1 1 ≤ i ≤ n

f
(

y
′

i

)

= 3n+ 3i 1 ≤ i ≤ n.

The following table 8 shows that f is a difference cordial labeling of (Cn × P2)⊙K2.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 9n
2

9n
2

n ≡ 1 (mod 2) 9n+1

2

9n−1

2

Table 8

Ln = Pn × P2 is called a ladder. We now investigate the difference cordial labeling

behavior of the corona of Ln with Kn, 2K1 and K2.

Theorem 3.16. Ln ⊙K1 is difference cordial.

Proof. Let V (Ln) = {ui, vi : 1 ≤ i ≤ n} and E (Ln) = {uivi : 1 ≤ i ≤ n} ∪

{uiui+1, vivi+1 : 1 ≤ i ≤ n− 1}. V (Ln ⊙K1) = V (Ln) ∪ {wi, xi : 1 ≤ i ≤ n} and

E (Ln ⊙K1) = E (Ln) ∪ {uiwi, vixi : 1 ≤ i ≤ n}. Define a map f : V (Ln ⊙K1) →

{1, 2 . . . 4n} as follows:
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Case 1: n is odd.

f (u2i−1) = 4i− 2 1 ≤ i ≤

⌈

n− 1

2

⌉

f (u2i) = 4i− 1 1 ≤ i ≤

⌊

n− 1

2

⌋

f (w2i−1) = 4i− 3 1 ≤ i ≤

⌈

n− 1

2

⌉

f (w2i) = 4i 1 ≤ i ≤

⌊

n− 1

2

⌋

f (vi) = 2n+ 2 + i 1 ≤ i ≤ n− 1

f (xi) = 3n+ 1 + i 1 ≤ i ≤ n− 1.

f (un) = 2n, f (wn) = 2n− 1, f (vn) = 2n+ 1 and f (xn) = 2n+ 2.

Case 2: n is even.

Label the vertices ui and wi (1 ≤ i ≤ n− 1) as in case 1. Define f (un) = 2n−1, f (wn) =

2n, f (vn) = 3n, f (xn) = 4n, f (vi) = 2n+i, 1 ≤ i ≤ n−1, f (xi) = 3n+i, 1 ≤ i ≤ n−1.

The following table 9 shows that f is a difference cordial labeling of Ln ⊙K1.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 5n−2

2

5n−2

2

n ≡ 1 (mod 2) 5n−3

2

5n−1

2

Table 9

Theorem 3.17. Ln ⊙ 2K1 is difference cordial.

Proof. V (Ln ⊙ 2K1) = V (Ln)∪
{

wi, w
′

i, xi, x
′

i : 1 ≤ i ≤ n
}

and E (Ln ⊙ 2K1) = E (Ln)∪
{

uiwi, uiw
′

i, vixi, vix
′

i : 1 ≤ i ≤ n
}

. Define a map f : V (Ln ⊙ 2K1) → {1, 2 . . . 6n} as

follows:

f (ui) = 3i− 1 1 ≤ i ≤ n

f (wi) = 3i− 2 1 ≤ i ≤ n

f
(

w
′

i

)

= 3i 1 ≤ i ≤ n
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f (vi) = 3n+ 3i− 1 1 ≤ i ≤

⌈

n− 2

2

⌉

f
(

v⌈n−2

2 ⌉+i

)

= 3n+ 3

⌈

n− 2

2

⌉

+ 3i− 2 1 ≤ i ≤

⌊

n+ 2

2

⌋

f (xi) = 3n+ 3i− 2 1 ≤ i ≤

⌈

n− 2

2

⌉

f
(

x⌈n−2

2 ⌉+i

)

= 3n+ 3

⌈

n− 2

2

⌉

+ 3i− 1 1 ≤ i ≤

⌊

n + 2

2

⌋

f
(

x
′

i

)

= 3n+ 3i 1 ≤ i ≤

⌈

n− 2

2

⌉

f
(

x
′

⌈n−2

2 ⌉+i

)

= 3n+ 3

⌈

n− 2

2

⌉

+ 3i 1 ≤ i ≤

⌊

n+ 2

2

⌋

.

The following table 10 shows that f is a difference cordial labeling of Ln ⊙ 2K1.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 7n−2

2

7n−2

2

n ≡ 1 (mod 2) 7n−3

2

7n−1

2

Table 10

Theorem 3.18. Ln ⊙K2 is difference cordial.

Proof. V (Ln ⊙K2) = V (Ln) ∪
{

wi, w
′

i, xi, x
′

i : 1 ≤ i ≤ n
}

and E (Ln ⊙K2) = E (Ln) ∪
{

uiwi, uiw
′

i, wiw
′

i, vixi, vix
′

i, xix
′

i : 1 ≤ i ≤ n
}

. Define an injective map from the vertices of

Ln ⊙K2 to the set {1, 2 . . . 6n} as follows:

Case 1: n is even.

f (u2i−1) = 6i− 3 1 ≤ i ≤
⌊n

2

⌋

f (u2i) = 6i− 2 1 ≤ i ≤
⌊n

2

⌋

f (w2i−1) = 6i− 4 1 ≤ i ≤
⌊n

2

⌋

f (w2i) = 6i 1 ≤ i ≤
⌊n

2

⌋

f
(

w
′

2i−1

)

= 6i− 5 1 ≤ i ≤
⌊n

2

⌋
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f
(

w
′

2i

)

= 6i− 1 1 ≤ i ≤
⌊n

2

⌋

f (vi) = 3n+ i 1 ≤ i ≤ n

f (xi) = 4n+ 2i− 1 1 ≤ i ≤ n

f
(

x
′

i

)

= 4n+ 2i 1 ≤ i ≤ n.

Case 2: n is odd.

Label the vertices ui, wi and w
′

i (1 ≤ i ≤ n− 1) and vi, xi and x
′

i (1 ≤ i ≤ n) as in case

1. Define f (un) = 3n − 2, f (wn) = 3n and f
(

w
′

n

)

= 3n − 1. The following table 11

shows that f is a difference cordial labeling of Ln ⊙K2.

Nature of n ef (0) ef (1)

n ≡ 0 (mod 2) 9n−2

2

9n−2

2

n ≡ 1 (mod 2) 9n−1

2

9n−3

2

Table 11
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