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Abstract: In this exposition, we consider group theoretic arguments in order to obtain discrete structures on 

certain smooth manifolds. This review work essentially looks at group actions on homogeneous spaces which 

ultimately lead to tessellations on smooth manifolds. Apart from applications of such discretization’s, we also 

mention the pedagogical advantages while explaining Non-Euclidean geometry. 
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1. Introduction 

Smooth manifolds are generally studied in the continuous set-up. However with 

applications in mind one wishes to develop discrete structures on such manifolds. Our goal is 

to make an exposition of some important cases of discretizations on manifolds and mention 

the applications of such structures.  A discretization on a manifold is considered for various 

reasons. For instance the base manifold of a vector bundle needs to be discretized for 

quantum mechanical considerations. In problems concerning medical imaging (MRI/CT 

Scans) surface reconstruction is possible only with appropriate discrete structures. Similarly 
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in computer graphics, animations and architectural designs especially in the context of 

computerized algorithms, discrete structures are increasingly being utilized. The modern 

subject of discrete differential geometry encompasses several such discretization schemes.  

In this paper we delve into some algebraic properties associated with tessellations. 

Historically discretizations were required by numerical analysts, to break down the domain of 

the functions involved, into convenient frames. One defines a discrete structure on a smooth 

manifold as a discrete set of points, with additional algebraic/number theoretic/combinatorial 

structure like a group, groupoid, lattice, or a simplicial complex or similar other mathematical 

objects. 

2. Preliminaries 

2.1 Algebraic Quotients and Geometry: 

In this section we consider a discrete collection of points which can be viewed as either 

collection of cosets of a Lie group or a collection of orbits under a group action. We look at a 

fundamental fact in Riemannian geometry to obtain nice discrete structures on homogeneous 

manifolds. 

Definition 2.1.1:  (Group Action): 

Let G be a group and X be a non empty set. Then G is said to act on X through left action if 

there exist a map µ : G X → X satisfying the following conditions. 

(i) µ (e, x) = x,  xX whenever e is the identity of G  

(ii) If g1 and g2  in G,  then µ (g1 , (g2,x)) =µ (g1, g2, x),  xX. 

If G is a topological group, X is a topological space and μ  is a function satisfying the 

above said conditions then we call the triple (X,G, µ) as a transformation group. 

We can define the concept of an orbit of an element x   X. 

Given a set X and a left action of a group G and x   X , the orbit of x under the action of 

G is defined as Orb(x)= {g.x : gG}, that is the set of all images of x under the action of 

element of G. 
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Let M be a compact manifold and let G= Isom(M), the group of isometries of M. If   is 

a subgroup of G such that it acts properly discontinuously on M then the quotient        T= 

\ M  is a Riemannian manifold with M as a covering space and the projection map 

: M T    being an isometry. Moreover the space T acquires the geometry of the covering 

space M. 

2.2 Example: The Action of Projective Linear Groups  

The projective linear group PGL(2,C) acts on the Riemann sphere {C  ∞} by mobius 

transformations. The subgroup that maps the upper half plane onto itself is PSL(2,R). These 

transformations act transitively and isometrically on H the upper half plane. Thus H is 

endowed with the structure of a homogenous space a detailed description of which can be 

given after we consider some topological aspects. 

By Schwarz lemma one establishes the fact that any automorphism of the upper half plane is 

of the form 
az b

z
cz d





, a,b,c,dR. 

         This can be seen as a group action of SL(2,R) on H. Also we see that the 

transformation is invariant under rescaling. Hence the conformal automorphism group of H is 

identified with SL(2,R)/  Id. Under this action H has an invariant metric namely       

ds
2
= 

2 2

2 2(1 )

dx dy

r




 where r=

2 2x y . Thus any subgroup   of the projective linear group 

PSL(2,R) which acts properly discontinuously on H leads to smooth manifolds that have a 

discrete structure. 

2.3 Quotients of R
n 

Suppose M = R
n
. Consider the special kind of isometries of R

n
 namely translations of the 

form f(x) = x + a, i.e the vector (x1,x2...xn) (x1+a1, x2+a2, ....., xn+an) where x is any vector 

in R
n
 and a=(a1, a2, ....an) is a fixed vector in R

n
. The set of all such translations in R

n 
is a 

subgroup   of Isom(R
n
) and the quotient  R

n
/  = R

n
/ZxZ which gives rise to the n-fold 

torus -A smooth manifold which is flat (curvature zero). 

In general the kind of isometries we considered form a lattice . Then the quotient group 
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R
n
/   is a collection of cosets which is a Hausdorff space. This space is a flat Riemannian 

manifold. In particular if n=2 and if  is the lattice of a set of vectors of the form {mu + nv: 

m, nZ}, where u and v are two fixed linearly independent vectors, then the quotient R
2
/  

is diffeomorphic to the 2-torus. The lattice considered here leads to a fundamental 

parallelogram and the quotient structure is equivalent to identifying the opposite sides thus 

giving rise to the compact surface of genus-1. 

3.0 The Geometry of H and Fuchsian Groups: 

The geometry of H is understood by the recognition of PSL(2,R) as a group that acts on 

the topological space H by isometries and this action is transitive. Thus we consider H as a 

homogenous space as alluded to earlier. Also the above mentioned metric leads to a constant 

Gaussian curvature of H namely K= -1. Now one can classify the isometries of H under 

 .Since the fixed point equation for any transformation t in   is z= z, this implies cz
2 
+ 

(d – a)z – b = 0. 

Based on the roots (fixed points) of the above mentioned quadratic equation we can classify t 

as:  

    i)  Elliptic transformation, ii) Parabolic transformation and iii) Hyperbolic 

transformations.  

The matrix topology of PSL(2, R) is equivalent to the euclidean topology on R
4
. Now any 

discrete subgroup of PSL(2, R) w.r.t. the matrix topology is called a Fuchsian group.  

Let    PSL(2, R) be discrete. Then discreteness of   implies that   acts properly 

discontinuously on H. In other words each orbit   (z) is locally finite. One can easily show 

that any subgroup of PSL(2,R) that acts properly discontinuously on H is a Fuchsian group. 

The surfaces we are looking for are of the form \ H  whose points correspond to the 

disjoint orbits of   in H. This quotient is a smooth manifold if and only if   has no 

elliptic elements. 

3.1 Tessellations 

A fundamental region for   is a closed region   such that the translates of   under 

 tessellate H. Discreteness of   implies the local finiteness of the tessellation. This 



801                       DISCRETE STRUCTURES ON MANIFOLDS 

tessellation then transcends to the tessellation of the surface S= \ H  

Hence given any discrete subgroup   in PSL(2,R) such that   has no elliptic elements we 

get a tessellation of the surface S= \ H . 

  Note: Suppose we ignore the restriction that   should not have elliptic elements then 

the quotient in general is called an orbifold. It is a (not necessarily smooth) manifold that may 

have conical singularities. 

3.2 Riemann Surfaces 

  Since any hyperbolic isometry of H is also a conformal automorphism, the quotient space 

\ H inherits a natural complex structure thus rendering S= \ H , the structure of a complex 

manifold of dimension 1, which is also called as a Riemann surface. 

As a corollary to the Poincare-Koabe Uniformisation theorem we have the following fact: 

FACT: Any smooth surface with   0 is conformally related to a hyperbolic quotient of the 

form \ H  for some   in PSL(2, R). 

 

3.3 Some Concrete Examples: Triangle groups 

Example 3.3.1: Platonic tessellations: A tessellation of a Riemann surface is called platonic 

if the group action of symmetries is transitive on flags of faces, edges & vertices. 

Platonic Riemann surface are the ones on which one can put platonic tessellations. 

We now consider a Riemann surface S that is platonically tessellated, by regular k-genus with 

angle 2π/l. A (2,k,l ) triangle is a fundamental domain that is a hyperbolic triangle with angles 

π/2,π/k,π/l. 

This group generated by the reflections in edges of a (2, k, l) triangle in the hyperbolic 

plane is called triangle group. This group acts simply transitively on the set of all (2, k, l) 

triangles. One can show that for the covering map from H
2
 onto S, the deck transformation 

group is a normal subgroup of the triangle group such that it is fixed point free. 

Conversely one can recover the surface S by considering a fixed point free normal subgroup 

N of a (2, k, l) triangle group G.  

In general for genus-0 surfaces, the regular polyhedral provide several examples of 
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tessellations & hence lead to group actions, while for genus-1 Riemann surfaces, we have the 

well known description of tiling’s by fundamental parallelograms. For compact Riemann 

surfaces of genus g ≥ 2 techniques of hyperbolic geometry are used to find appropriate 

tessellations as explained in this paper. Having seen discretisations via tessellations and group 

actions, we now give a general set up in the case of hyperbolic manifolds. 

 

3.4  A General Setup  

  If X is an n-dimensional closed compact hyperbolic manifold then its universal cover is 

H
n
 the hyperbolic n-space. 

Theorem 3.4.1: Any hyperbolic n-manifold X is the quotient  \ nH  of 
nH by a discrete 

group Γ of orientation preserving isometries. 

4.0 Applications 

 

Applications of discrete structures on manifolds are abound. From the pedagogical point 

of view it is an easy method to illustrate the concepts of non-euclidean geometry by using the 

underlying discrete structure namely that of group actions. In fact some software 

implementations are available wherein choosing the group elements of certain discrete 

subgroups of Lie groups, one can visualise the orbits and hence parts of the hyperbolic 

structures can be understood by way of tessellations. 

In architectural and graphic designs tessellations are frequently used. In particular mesh 

descriptions of architectural designs adopt quadrilateral, triangular or hexagonal meshes, 

which can be mathematically viewed as tessellations.  In graphics a 3-d scene description is a 

discrete topological surface with associated geometric properties. Projective geometry 

provides appropriate projections to render scenes. Thus discrete fibres play an important role in 

graphic designing. In quantum mechanics and numerical schemes, the base manifold needs to 

be appropriately discretized. Quotient structures explained in this expository article are used to 

define the energy functional on the base manifold. 
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