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Abstract. Edge detection in two and three-dimensional images is used to located points corresponding to

surfaces of three dimension (3D) structures. The next stage is to characterize the local geometry of these

surfaces in order to extract points or lines which may be used by registration and tracking procedures.

Typically one must calculate second-order differential characteristics of the surfaces such as the maximum,

mean, and Gaussian curvatures. Assuming that the surface is defined locally by a isointensity contour.

One can calculate directly the curvatures and characterize the local curvature extrema (ridge points)

from the first, second, and third derivatives of the vector valued function. These partial derivatives are

computed using the operators of the edge detection.
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1. Introduction

Edge detection in 2D and 3D images is used to located points corresponding to surfaces

of 3D structures [19, 20, 33]. The next stage is to characterize the local geometry of these

surfaces in order to extract points or lines which may be used by registration, tracking, and

matching procedures [6, 15, 25, 28]. Typically one must calculate second-order differential
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characteristics of the surfaces such as the maximum, mean, and Gaussian curvatures. The

classical scheme is to use local surface fitting on the adjacency graph defined by the edge

points [27]. One faces the problem of linking surface elements detected by 3D edge

operators and local surface approximation, which may be done taking uncertainty into

account [18].

In this paper we show how to compute the curvature of the surface defined by the

equation (or the edge points) from the second partial derivatives of the image. The

partial derivatives of the 3-dimension image can be computed using the same operators

as those used for edge detection [19]. We will propose two methods.

By assuming that the surface is defined by an isocontour (i.e., the 3D gradient at

an edge point corresponds to the normal to the surface), one can compute directly the

curvatures and characterize the local curvature extrema (ridge points will be discussed in

more detail in Section (3)) from the first, second, and third derivative of the vector valued

function.

The paper is organized as follows. In the second section we reviews concepts from

differential geometry utilized in this paper. In the third section we reviews concepts from

ridge and ravine. The fourth section deals with the direct computation of the curvatures

using the gradient and Hessian matrix (i.e. the first and second partial derivatives of

isosurface). In the fifth section deals with the direct computation of the ridge points

using the gradient, Hessian matrix and its derivatives (i.e. the first, second, third and

fourth partial derivatives) of isosurface. In the sixth section presents a practical algorithm

based on the previous development. In the seventh section gives experimental results in

the two- and three-dimensional images.

2. Differential geometry of surfaces

This section reviews concepts from differential geometry utilized in this paper. We

provide intuitive descriptions and refer the reader to O’Neill for formality [24].

The term ”surface” is often loosely used in the literature. The definitions in this paper

assume the surface to be isosurface in R3, i.e., the 3D gradient at a contour point (an
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edge point on 3D image) corresponds to the normal to the surface. Figure 1 shows surface

M and the neighborhood around a point p on the surface.

Figure 1. SurfaceM with tangent plane Tp(M) at point p. The coordinate

frame (u, v) at p locally parameterizes Tp(M).

Let p ∈M be a point on the surface M . One can intuitively understand what it means

for a vector to be tangent to a surface M . The formal definition is based on the idea

that a vector tangent to M at p must be a tangent vector of a curve lying in M passing

through p. The set of all tangent vectors to M at p is the tangent plane Tp(M), the

best linear approximation of the surface at p, as shown in Figure 1. The vector N(p)

is normal to M at p, i.e., it is orthogonal to the tangent plane Tp(M) and therefore to

every tangent vector to M at p.

To study how M bends at point p in tangent direction v, we intersect M with a plane

containing both v and N(p). This ”normal section” of M is a curve in M , as indicated

in Figure 2.

The curvature of this curve at p is called the normal curvature of M at p in the v

direction and is denoted by κ(v). where v is a unit tangent vector.

Let us fix p and imagine that the unit tangent vector v at p revolves about N(p) in the

tangent plane Tp(M). The normal section corresponding to the different tangent directions

give us a moving picture of the way M is bending in every tangent direction at p. Using

this scheme, it is easy to pick out the directions of maximum and minimum bending. The

maximum and minimum values of normal curvature κ over all possible tangent directions

at p are called the principal curvatures of M at p, denoted κ1 and κ2 respectively. The

directions in which these extreme values occur are called the principal directions of M
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Figure 2. Normal section (dotted curve) of surfaceM at point p in tangent

direction v, obtained by intersection of M with plane (shaded) containing

v and N(p).

at p. The unit vectors in these directions are called the principal vectors of M at p,

denoted t1 and t2, respectively.

The Gaussian curvature κg of M at p is defined as the product of the principal cur-

vatures,

κg = κ1κ2. (2.1)

The mean curvature κm of M at p is defined as the average of the principal curvatures,

κm =
κ1 + κ2

2
. (2.2)

3. Ridges and Ravines

Surface creases provide us with important information about the shapes of objects and

can be intuitively defined as curves on a surface along which the surface bends sharply.

mathematical description of surface creases is based on study of extrema of the principal

curvatures along their curvature lines. Besides the mathematical beauty of such surface

features [26], they have been studied in connection with applications in image and data

analysis [12, 31], face recognition [13], quality control of free-form surfaces [14], analysis

of medical images [5, 8, 18, 29] and satellite data [21]. See also references therein. Shape

description with curvature extrema has been a subject of research in [16, 17].

Assume that the maximal and minimal curvatures kmax = k1 and kmin = k2 of M at p.

The associated tangent directions tmax = t1 and tmin = t2 of M at p. The integral curves
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of the principal direction fields are called the curvature lines. A point at which one

of the principal curvatures vanishes is called parabolic. A point at which the principal

curvatures are equal to each other is called umbilic. The principal centers of curvature

are the points situated on the surface normal passing through p at distances κ−1
max and

κ−1
min from p. The loci of the principal centers form the caustic. The caustic consists of

two sheets corresponding to the maximal and minimal principal curvatures [2, 3, 4].

Definition 3.1. A non-umbilic point p ∈M is called a ridge point if κmax attains a local

positive maximum at p along the associated curvature line. A non-umbilic point q ∈M is

called a ravine point if κmin attains a local negative minimum at q along the associated

curvature line.

Remark 3.1. Although in this definition we deal with nonumbilic points the umbilics can

be treated by continuity.

Remark 3.2. The definitions of the ridges and ravines are dual: if we change the surface

orientation then the ridges turn into the ravines and vice versa. Without loss of generality

we can consider only the ridges.

Remark 3.3. In the mathematical part of our research we deal with generic phenomena.

Roughly speaking, a particular property of an object from a particular class of objects is

generic if in the space of all the objects of that class the objects exhibiting the property

form an open dense set.

4. Curvatures from partial derivative

In this section, we give the formulas for computing curvatures using only the information

from partial derivatives of the image.
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4.1. 2D Image

We first present the case in 2D in order to motivate the computations in 3D.

Let C be an isocontour on an image I = I(x, y) (I is differentiable function). the

gradient ∇I = (Ix, Iy)
T = g of I which will lie along the normal of the curve C, as shown

in Figure 3.

Figure 3. 2D isocontour.

We compute the curvature κ of C at point p. Let t be the curve unit tangent vector to

C at point p:

g · t = 0 (4.1)

Letting s be the arclength parameter, we have

d(g · t)
ds

=
dg

ds
· t+ g · dt

ds
= 0. (4.2)

The curvature κ is obtained by

dt

ds
= κn = κ

g

∥g∥
, (4.3)

where n is the curve unit normal vector (equal to g
∥g∥). We must suppose here that

the normal vector field is regular over the whole image to apply the chain rule. That is

an approximation because the contour is not defined everywhere. We also identify the

normal vector field to the gradient vector field, which is correct in the case of isocontours.

This field is regular because it is issued from a filtering technique. We note that this

interpretation problem does not arise in the local contour fitting algorithm where only
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the contour points ate taken into account. Further assuming that g is defined everywhere

and is a C2 mapping from R to R2, the chain rule gives

dg

ds
=
∂g

dx

dx

ds
+
∂g

dy

dy

ds
= Ht, (4.4)

where g is the gradient vector and H is the Hessian of the gray level function I(x, y):

g =


Ix

Iy

 , H =


Ixx Ixy

Ixy Iyy

 . (4.5)

By combining Eqs.(4.2)-(4.4) we obtain

κ =
−tTHt
∥g∥

. (4.6)

The tangent t can be computed simply as

t =


−Iy

Ix

 /∥g∥. (4.7)

4.2. 3D Image

We consider a surface M defined as an isosurface of I(x, y, z). Let t be any unit vector

in the tangent plane Tp at a point p and g the normal to M at p as shown in Figure 1.

we compute the curvature of M in direction t which we denote by κt.

Using Eq.(4.1), and taking a directional derivative in the direction t, we obtain as in

the 2D case

Lt(g · t) = tTHt+ κtg · n = 0,
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where Lt is the Lie derivation operator and H is the Hessian of the gray level function

I(x, y, z) [23]:

H =



Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz


, g =



Ix

Iy

Iz


. (4.8)

Since n = g
∥g∥ and using

dg

ds
= Ht, (4.9)

and

dt

ds
= κtn = κt

g

∥g∥
, (4.10)

we obtain

κt =
−tTHt
∥g∥

. (4.11)

The principal curvatures and the principal directions can be computed by searching the

directions t for which κt is an extremum using the vector calculus. Let a and b form an

orthonormal basis of tangent plane to the surface, thus

t = cos θa+ sin θb.

If we derive κt with respect to θ, we obtain

−∥g∥dκt
dθ

=
d(tTHt)

dθ
= (bTHb− aTHa) sin 2θ + 2aTHb cos 2θ.

Then if θ is a principal direction this derivative is equal to 0, i.e.,

∂κt
∂θ

= 0 ⇔ tan 2θ =
2aTHb

aTHa− bTHb
= E ⇔ (θ = θ1 =

arctanE

2
) ∨ (θ = θ2 = θ1 +

π

2
)

we note that the first equivalence requires that the denominator does not vanish. In fact,

the denominator is zero if and only if the point is an umbilic point (see section 3). The

two principal directions t1 and t2 are

t1 = cos θ1a+ sin θ1b, t2 = cos θ2a+ sin θ2b. (4.12)
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The two principal curvatures are

κt1 = −t
T
1Ht1
∥g∥

, κt2 = −t
T
2Ht2
∥g∥

(4.13)

Henceforth we will assume that |κt1 | > |κt2 |, i.e., t1 is the maximum curvature direction

and κt1 the maximum curvature.

In order to avoid the arctangent computation, we use the following method to find the

principal curvatures and the principal directions.

The principal curvatures may be characterized as the solution to the constrained opti-

mization problem:

Min < Ht, t >

s.c.

 < t, t >= 1

< t, g >= 0.

(4.14)

We define a rotation matrix P to change coordinates so that the first basis vector is

rotated to the direction g,

P =



Ix/δ Iy/γ IzIx/δγ

Iy/δ −Ix/γ IyIz/δγ

Iz/δ 0 −γ/δ


=

(
n h f

)
. (4.15)

with γ =
√
I2x + I2y , δ =

√
I2x + I2y + I2z=∥g∥ and n = g/δ.

After using the linear transformation, Pw = t the minimization problem (4.14) becomes

Min < HPw,Pw >

s.c.

 < w,w >= 1

w1 = 0, withw = (w1, w2, w3)
T .

(4.16)
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Introducing the notations

H′ = P THP =



· · ·

· H ′
e

·


, w =


·

we

 , (4.17)

we obtain the equivalent problem

Min < H ′
ewe, we >

s.c. < we, we >= 1.
(4.18)

Using the Lagrange multipliers technique, the problem (4.18) can be reduced to the diag-

onalization of the matrix H ′
e. The eigenvalues of matrix H ′

e correspond to the principal

curvatures. The principal curvature directions are obtained by applying the matrix P to

the eigenvectors of H ′
e. This scheme makes it possible to express principal curvatures κi

and principal directions ti using only first and second derivatives of the images:

κi =
hTHh+ fTHf ±

√
(hTHh+ fTHf)2 + 4((hTHf)2 − (hTHh)(fTHf))

2∥g∥
(4.19)

The eigenvectors of H ′
e are

vi =


λi

1

 , with λi = (κi∥g∥ − fTHf)/fTHh, i = 1, 2. (4.20)

by applying the matrix P to vi, we obtain

ti = f + λih, with i = 1, 2. (4.21)

Remark 4.1. If κ1 ̸= κ2, then, principal directions t1, t2 corresponding to κ1, κ2 respec-

tively are perpendicular.

Proof : ≺ t1, t2 ≻= 1 + λ1λ2 = 0.
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5. Characterizing ridge points from the partial derivatives

Ridge from the partial derivatives of the two principal curvature at a point, one has the

maximum curvature. The associated direction is the maximum curvature direction. We

will call a ridge point any point whose curvature in the maximum curvature direction is

locally maximal, and a valley (ravine) point a point where the curvature is minimum in

the maximum curvature direction. That is, the maximum curvature value along integrals

of the maximum curvature vector field has a local extremum at a ridge or valley point.

5.1. 2D Image

It is of interest to study first the 2D case which presents no ambiguity (see Figure 3).

The 2D contour can be represented by a curve (x(s), y(s)), where s the arclength

parameter. The curvature κ(s) is given by Eq.(4.6) as:

κ(s) =
−tTHt
∥g∥

, with ∥g∥t =


−Iy

Ix

 , and t =


x′(s)

y′(s)

 .

The curvature extrema are located where the derivative κ′(s) is zero, i.e.,

(d(tTHt)/ds)∥g∥ − (tTHt)(d∥g∥/ds)
∥g∥2

= 0.

From Eq.(4.4), one can obtain the following formula

d∥g∥
ds

=
gTHt

∥g∥
.

Routine calculation, we have

d(tTHt)

ds
=
dtT

ds
Ht+ tT

d(Ht)

ds

d(Ht)

ds
=


tTHxt

tTHyt

+H
dt

ds



EXTRACT RIDGES AND RAVINES USING HESSIAN MATRIX OF 3D IMAGE 1263

with Hx =


Ixxx Ixyx

Iyxx Iyyx

 , Hy =


Ixxy Ixyy

Iyxy Iyyy

 .

Thus, the curvature extrema are finally defined by the formula

3(tTHt)(gTHt)− ∥g∥2tT


tTHxt

tTHyt

 = 0. (5.1)

5.2. 3D Image

The 3D case is not exactly the extension of the 2D analysis because there is a differ-

ent curvature for each surface direction, i.e., for each curve of the surface M including a

given point p and such that the curve normal corresponds to the surface normal. A local

curvature extremum is a local extremum of the maximum curvature in the maximum

curvature direction (the maximum curvature is the principal curvature having the highest

magnitude; the maximum curvature direction is the corresponding principal curvature

direction). It is essential to remark that this definition is sound thanks to the continuity

and differentiability of the principal curvature field in a regular surface (see [11] p. 156).

Therefore when we calculate the derivative of the curvature κt in the direction t. the

curvature extrema are located where this derivative is zero in the maximum curvature

direction. We note finally that a very similar definition is presented by Yuille and Ley-

ton [32] who set the curvature extremum as the principal curvature extremum along a

curvature line.

Letting t1 be the maximum curvature direction, the directional derivative alonge t1 is

∇t1κt1(p) = lim
λ→0

κt1(p+ λt1)− κt1(p)

λ
= ∇κt1(p) · t1 =



(δκt1/δx)(p)

(δκt1/δy)(p)

(δκt1/δz)(p)


·



t1x

t1y

t1z


.
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From Eq.(4.13), we have

κt1(p) =
−tT1Ht1
∥g∥

=
−(Ixxt

2
1x + Iyyt

2
1y + Izzt

2
1z + 2Ixyt1xt1y + 2Ixzt1xt1z + 2Iyzt1yt1z)

∥g∥
.

As a result,

∇t1κt1(p) =
3(tT1Ht1)(t

T
1Hg)− ∥g∥2tT1 ψ
∥g∥3

(5.2)

with Hx, Hy and Hz are the partial derivatives of the Hessian matrix H and ψ as the

following:

Hx =
∂H

∂x
=



Ixxx Ixyx Ixzx

Iyxx Iyyx Iyzx

Izxx Izyx Izzx


, ψ =



tT1Hxt1

tT1Hyt1

tT1Hzt1


(5.3)

Henceforth we will call ∇t1κt1(p) the ”extremality” criterion and the necessary condi-

tion for the extrema is given as

3(tT1Ht1)(t
T
1Hg)− ∥g∥2tT1 ψ = 0. (5.4)

6. Summary of the algorithms

We summarize the algorithms implied by the formulas of the previous sections that find

curvatures and ridge points on surfaces in 3D equation or (3D data).

Let I(x, y, z) be a 3D isosurface equation (3D image data). When I is 3D image we

using 3D edge extractor, a collection of points are designated as ”surface points.” Since the

edge extractor may use differential information, the computations may be overlapped with

portions of the first step below. The following algorithm is used to compute curvatures

and ridge points directly from the isosurface equation or (the 3D image data).

(1) Compute the 19 first-, second-, and third-order partial derivatives of I, directly

from the isosurface equation I (in case 3-Dimension data we using the 3D separable

recursive filters given by [10, 19, 30]).

(2) If I 2D or 3D data, we will extracted the 3D edges using [1, 9, 19].
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(3) For each edge point:

1- Compute the two principal curvatures and the corresponding principal curvature

directions (see Section 4).

2- Compute the extremality criterion (see Section 5).

3- Using the maximum curvature and the maximum curvature direction select

the edge points where the maximum curvature is locally extremum along the

maximum curvature direction (in case 3D data, we use a method described in [18]

very similar to the extraction of the maximum of the gradient magnitude in the

gradient direction [7]).

7. Experimental results

We have applied the algorithm above in 2D Image and 3D Image as following

7.1. 2D image

Consider a contour defined as an isocontour represented by the equation

I(x, y) = y − x4 + 4x2 + 2x+ 5, x ∈ [−2, 2], y ∈ [0.5, 12] (7.1)

or in parametric equation representation

R(u) = (u,−u4 + 4u2 + 2u+ 5), u ∈ [−2, 2] (7.2)

as shown in Figure 4.

From Eqs. (4.5), (4.7) the tangent vector t and Hessian matrix H of (7.1) are respectively

H =


8− 12x2 0

0 0

 , t =
−1

µ


1

η


where µ = (η2 + 1)1/2, η = −4x3 + 8x+ 2.

From Eq.(4.6) the curvature κt of (7.1) is

κt =
12x2 − 8

µ3
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Figure 4. The ridge points on 2D isocontour (7.2)

From Eq.(5.1), the necessary condition for the curvature extrema is given as

−56x7 + 176x5 + 20x4 − 160x3 − 16x2 + 69x+ 16 = 0

The real roots of this equation are

R1=(1.527, 11.944), R2=(-0.253, 4.74594), R3=(-1.274, 6.30993), as shown in Figure 4,

R1 and R3 are ridge points and R2 is ravine point.

7.2. 3D image:

Consider a surface defined as an isosurface of I(x, y, z) represented by the equation

I(x, y, z) = z − x4 − y4 + x2 + y2, x, y ∈ [−1.2, 1.2] (7.3)

or in parametric equation representation

R(u1, u2) = (u1, u2,−(u1)4 − (u2)4 + (u1)2 + (u2)2), u1, u2 ∈ [−1.2, 1.2] (7.4)

as shown in Figure 5.
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Figure 5. The ridge points on 3D isosurface (7.4)

From Eqs. (4.8), (4.15) the gradient vector, Hessian matrix (H) and rotation matrix (P)

of (7.3) are respectively

g =



2x− 4x3

2y − 4y3

1


, H =



2− 12x2 0 0

0 2− 12y2 0

0 0 0


,

P =



2x−4x3

η1/2
2y−4y3

(η−1)1/2
2x−4x3

η1/2(η−1)1/2

2y−4y3

η1/2
−2x+4x3

(η−1)1/2
2y−4y3

η1/2(η−1)1/2

1
η1/2

0 −(η−1)1/2

η1/2


=

(
n h f

)

where η=(2x− 4x3)2 + (2y − 4y3)2 + 1.

From Eq.(4.19) the principal curvatures κ1, κ2 of (7.3) are

κ1 =
−2ζ + 2

√
ζ2 − (6x2 − 1)(6y2 − 1)ξ

ξ3/2
, κ2 =

−2ζ − 2
√
ζ2 − (6x2 − 1)(6y2 − 1)ξ

ξ3/2
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where ζ = 8(6y2−1)x6+(8−48y2)x4+(1+24y2−48y4+48y6)x2+(−8y6+8y4+y2−1),

ξ=16x6 − 16x4 + 4x2 + 16y6 − 16y4 + 4y2 + 1.

Compute the principal curvature directions t1, t2 from Eq.(4.21) and the extrema points

from Eq.(5.4) and using the Hessian matrix Hessκ1 of the principal curve function κ1 =

κ1(x, y), we have the ridge and ravine as in the following table which illustrate the Figure

5.

Table 1. Ridges and Ravines points on (7.3).

Extrema point x y κ1 Extrema type

R1 1/
√
2 1/

√
2 -4 ridge point

R2 -1/
√
2 -1/

√
2 -4 ridge point

R3 1/
√
2 -1/

√
2 -4 ridge point

R4 -1/
√
2 1/

√
2 -4 ridge point

R5 0 1/
√
2 2 ravine point

R6 1/
√
2 0 2 ravine point

R7 0 -1/
√
2 2 ravine point

R8 -1/
√
2 0 2 ravine point

R9 0 0 2 ravine point

8. Conclusion

We have presented a new approach to extract principal curvatures, principal directions,

ridges and ravines characteristics of isosurface in 2D and 3D images from the gradient,

Hessian matrix and its derivatives (i.e. the first, second, third and fourth partial deriva-

tives) of isosurface.
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