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1. Introduction: 

Many problems in engineering and physics can be modeled in the form of partial differential 

equations. Most of the partial differential equations that arise in mathematical models of 

physical phenomena are difficult to solve analytically. So we have to use numerical methods 

to approximate the solution of such problems. There are numerous ways by which an 

approximate solution to these particular differential equations can be constructed. One of the 

methods is finite difference, the oldest and popular techniques for numerical solution of 

differential equations. 

Consider the second order elliptic partial differential equation 

   

   
 

   

   
  (   )                                                 (   ) 
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in square region    {(   )             } with the boundary conditions 

 (   )   (   )                                                   (   ) 

where     is boundary of   . 

 

In past several years various authors such as Lynch etc. [1], Biosvert [2], Wilkinson [3] and 

many more have been used finite difference method for the numerical solution of problems 

(1.1) and have reported accurate and high order discretization methods. So much research has 

been reported on numerical solution of elliptic partial differential equations, many of them 

are excellent work. But a concept to develop a new approach to solve (1.1) cannot be 

overemphasized. 

 

In this article, we develop a new algorithm capable of solving equation of form (1.1). To best 

of our knowledge, no similar method for the solution of (1.1) has been discussed in literature 

so for. In this paper using nine point compact cell, we discuss exponential finite difference, a 

new method of order four based on local assumption. Its development and analysis is based 

on Taylor series, Mac Lauren series and exponential expansion. 

    

In the next section we discuss the derivation of the exponential finite difference method. A 

local truncation error estimated in Section 3 and finally the application of the developed 

method to the problem (1.1) has been presented and illustrative numerical results have been 

produced to show the efficiency of the new method in Section 4. We compare the computed 

results with the results obtained by the nine point fourth order method for problems. A 

discussion and conclusion on the performance of the method are presented in section 5. 

 

2. Derivation of the method: 

 For the solution of problem (1.1), we consider square domain   [   ]  [   ] .First we 

generate a mesh (      )                                                                 

              , where    (   )

 
  is the mesh size in the x and y directions of Cartesian 

coordinate system parallel to coordinate axes. Let denote the central mesh point (      ) by 

(   ) and numerical solution of the problem (1.1) at this mesh point by      . Similarly we can 

define other notations to in this article. Consider other eight mesh points (     ) (    

 )    (       ) neighboring to central mesh point (   ) . Assuming the local assumption 
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that no previous truncation errors have been made in computation of solution at mesh point 

(   ) i.e.          (        ) ,                                                                                                 

          (        )                (          ). Following the ideas in [4,5] , we 

propose an approximation to the theoretical solution  (      ) of the problem (1.1) nine point 

exponential finite difference scheme as                                                                                        

   (                               )     (                                       ) 

            
      

 ( )                                        (   ) 

where                       are unknown constants and  ( )  ,an unknown sufficiently 

differentiable function of mesh size h.                                                                                          

Let su define a function    (   ) and associate it with (2.3) as,                                                  

   (   )     ( (        )   (        )   (        )   (        )) 

    ( (          )   (          )   (          )   (          )) 

      (      )       
   (      )  

 ( )                     (   ) 

We assume that the  ( ) can be expand in Mac Lauren's series. So we write Mac Lauren 

series expansion for the function  ( )                                                                                         

 ( )   ( )     ( )  
  

 
   ( )   (  )                   (   ) 

Thus the application of ( 2.5) in expansion of    ( ) will provide an  (  )  approximation of 

the form of                                                                                                                                     

  ( )     ( )  
 

 
  ( )   (   ( ))  ( )  

 
  

 
{(  ( ))

 
 (   ( ))   ( )}   (  )                  (   ) 

Expand     (   ) in Taylor series about mesh point (      ) and using (2.6) in it, we have 

   (   )  {(             )    (        ) 
      

  

  
(        ) 

     
  

 
(        )( 

   

      
 )(   )}  

      
    {    ( )  

 

 
  ( )   (    ( ) )  ( ) 

 
  

 
( (  ( ))  (    ( ) )    ( ) ) }                               (   ) 
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where    (
  

    
  

   )   and  we have used  following relations as defined in [6,7], to 

simplify expressions (2.6). 

 

  (
   

   
 

   

   
)
(   )

             {(
   

   
 

   

   
)  (

   

   
 

   

   
)}

(   )
                                       (   )       

 

Comparing the coefficients of                  in (2.6) ,we will get following system of 

nonlinear equations  

               

(        )     (   ( )  
 

 
  ( ))    

       (   ( ))  ( )    

 

  
(        ) 

      
 

 
(        ) (

   

      
) (    )   

         {( 
 ( ))

 
 (   ( ))   ( )}                     (   )  

To determine unknown constants in (2.8), we have to assign arbitrary values to some 

constants . So to simplify above system of equations, we have considered following  

                ( )    

               ( )    

                                                                         (   ) 

So using (2.9) in (2.8) and solving the reduced system of equations, we obtained 

              

              

                

   ( )  
     

    
                                                                (    ) 
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Substituting the values of  ( )   ( )        ( )   etc. from (2.9) and (2.10) in (2.5), we 

have  

 ( )  
        

      
                                                                (    ) 

Finally substitute the values of      ,     ,    and  ( )  from (2.10) and (2.11) in  (2.3),we will 

obtain our proposed exponential finite difference method as  

 (                               )  (                                       ) 

                 
(
        

      
 )
                       (    ) 

If we write system equations given by (2.12) for each mesh point, we can obtain the final 

linear system of equations and nonlinear system of equations in the case where   (     ). 

For computations reported in Section 4, we have used second order finite difference 

approximation in place of          We have made following substitution 

                                             

3. Local Truncation Error : 

The truncation error     at the mesh point(   ) may be written as  

     (                               )         

(                                       )           
(
        

      
 )
     (    ) 

Substituting Taylor series expansion of each term about mesh point (   ) on the right side of 

(3.13) and simplify, we have  

    [   ( 
   

   
 

   

   
 )  

  

 
( 
   

   
  

   

      
 

   

   
 ) 

 
  

  
 ( 

   

   
  

   

      
  

   

      
  

   

   
 ) ](    )           

(
        

      
 )
       (    )  

Substituting second order approximation for the term   
(
        

      
 )

 on the right side of (3.14) 

and using (2.8), we have  
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{ ( 

   

   
  

   

      
  

   

      
  

   

   
 )   

 (
   

   
 

   

   
 )  ( 

   

   
  

   

      
 

   

   
 )  }(   )     (    ) 

Thus from (3.15) ,we conclude that the method (3.12) is of   (  ) . 

 

4. Numerical Results: 

 To illustrate our method and demonstrate computationally its efficiency, we consider linear 

and nonlinear examples, in which one is highly nonlinear elliptic problem. In each case we 

took the square as region of integration and covered it with a uniform mesh of size width h. 

In tables, we have shown maximum absolute error MAU, computed for different values of N, 

using the following formula 

          
           

| (     )      | 

For shake of comparison we also solved examples by nine point finite difference method and 

computed results presented in tables. We have used iterative method Gauss-Seidel, Newton-

Raphson to solve the system of linear  and nonlinear equations respectively. The results 

obtained by our method compare favourably with those obtained by nine points method.  The 

computations were performed on a  MS Window 2007 professional operating system in the 

GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Duo Core 2.20 Ghz 

PC . The stopping condition for iteration was either error of order        or number of  

iteration     . Thus we have also shown elapsed time in second and no. of iterations 

performed to achieve desired accuracy. 

Example1.  Consider the problem 

   

   
 

   

   
 

 

 
(    )   (   )                    

with the boundary condition   (   ) on all sides of a square. The exact solution of the 

problem is   (   )     (     )  In table 1 ,we present the maximum absolute error 

MAU ,elapsed time in seconds  and  no. of iteration performed during the integration for 

various choices of mesh size h. 
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Example2.  Consider  the problem as  in [8], 

   

   
 

   

   
   (     )                  

with the boundary condition   (   ) on all sides of a unit square. The exact solution of the 

problem is   (   )  (    )    (
 

 
  )  In table 2 ,we present the maximum absolute error 

MAU  and  no. of iteration performed during the integration for various choices of mesh size 

h. 

Example 3.  Consider  the problem 

   

   
 

   

   
                        

with the boundary condition   (   ) on all sides of a unit square. The exact solution of the 

problem is   (   )  
 

 
      In table 3 ,we present the maximum absolute error MAU  and  

no. of iteration performed during the integration for various choices of mesh size h. 

Example 4.  Consider  the problem 

   

   
 

   

   
      (   )                  

with the boundary condition   (   ) on all sides of a unit square. The exact solution of the 

problem is   (   )     (   )    (   )   In table 4 ,we present the maximum absolute 

error MAU  and  no. of iteration performed during the integration for various choices of mesh 

size h ,    and   . 

 

Table1. 

Nine points Method Method (2.12) N 

Iterations Etime
* 

MAU Iterations Etime
* 

MAU 

17 0 .57487725(-

2) 

18 0 .12771636(-1) 4 

41 0 .26421397(-55 0 .25004745(-2) 8 
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3) 

70 0 .14724583(-

4) 

146 .1 .93191862(-4) 16 

90 .3 .86985528(-

6) 

212 .8 .24914742(-4) 32 

8 .1 .59604645(-

7) 

31 .6 .11920929(-6) 64 

12 .7 .11920929(-

6) 

54 4.1 .59604647(-7) 128 

* Seconds 

 

 

Table2. 

Nine points Method Method (2.12) N 

Iterations MAU Iterations MAU  

11 .76889992(-5) 11 .28192997(-4) 4 

16 .47683716(-6) 22 .17285347(-5) 8 

9 .59604645(-7) 2 .59604645(-7) 16 

 

 

Table3. 

Nine points Method Method (2.12) N 

Iterations MAU Iterations MAU 

 **Exact 15 .51761977(-4) 4 

 * 40 .35460107(-5) 8 

 * 73 .23737084(-6) 16 

 * 84 .14849320(-7) 32 

 * 89 .92813934(-9) 64 
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Table4. 

 

  
 

 
    

 

  
   

Nine points Method Method (2.12) N 

Iterations MAU Iterations MAU 

6 .14901161(-7) 6 .44703484(-7) 4 

5 .29802322(-7) 5 .29802322(-7) 8 

 No change  No change 16 

 

  
 

 
     

 

 
   

8 .46193600(-6) 8 .17583370(-5) 4 

4 .59604645(-7) 10 .59604645(-7) 8 

 No change  No change 16 

 

 

5. Conclusion: 

  In this article we have outlined a procedure for obtaining high order exponential difference 

method for the elliptic equations. The drawback to this method is that to obtain solutions to 

the resulting nonlinear system of equations. Numerical solution for model problems has been 

presented in this article. For shake of comparison, we have done with nine point method and 

find that present method compare favourably. Numerical results show that our method has the 

expected accuracy and is many times faster than the nine point fourth order method for 

nonlinear problems. But in case of linear problems there is some drawback. Method may be 

more competitive, if suitable solution techniques used to solve resulting system of nonlinear 

equations. The present technique may be open up new avenue of research in development of 

discretization method for other problems. 
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