Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 6, 1389-1404

ISSN: 1927-5307

PROPERTIES OF INTERVAL IMPLICATIONS

YONG CHAN KIM
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea

Copyright © 2013 Y.C. Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we construct pairs of interval negations and interval implications from pairs of negations and implications. Moreover, we investigate their properties and give examples.

Keywords: pairs of negations; pairs of implications; pairs of interval negations; pairs of interval implications

2000 AMS Subject Classification: 03E72; 03G10; 06A15; 06F07

1. Introduction

Bedregal and Takahashi [4] introduced interval fuzzy connectives as an extension for fuzzy connectives. This concept provides tools for approximate reasoning and decision making with a frame work to deal with uncertainty and incompleteness of information [1-3]. Georgescu and Popescue [5-7] introduced pseudo t-norms and generalized residuated lattices in a sense as non-commutative property. Kim [11] introduced pairs of (interval) negations and (interval) implications. which are induced by non-commutative property. Let $(L, \wedge, \vee, \odot, \rightarrow, \Rightarrow, \top, \perp)$ be a complete generalized residuated lattice with the law of double negation defined as $a=$ $n_{1}\left(n_{2}(a)\right)=n_{2}\left(n_{1}(a)\right)$ where $n_{1}(a)=a \Rightarrow \perp$ and $n_{2}(a)=a \rightarrow \perp$ (ref. [5-7,11]). We consider
a pair of two implications defined by $a \Rightarrow b=\bigvee\{c \mid a \odot c \leq b\}$ and $a \rightarrow b=\bigvee\{c \mid c \odot a \leq b\}$. Moreover, we consider a pair of two negations defined by $a \Rightarrow \perp$ and $a \rightarrow \perp$.

In this paper, we construct pairs of interval negations and interval implications from pairs of negations and implications. Moreover, we investigate their properties and give examples.

2. Preliminaries

In this paper, we assume that $(L, \vee, \wedge, \perp, \top)$ is a bounded lattice with a bottom element \perp and a top element T. Moreover, we define the following definitions in a sense as non-commutative [5-7] and interval property [1-4].
Definition 2.1.[11] A pair $\left(n_{1}, n_{2}\right)$ with maps $n_{i}: L \rightarrow L$ is called a pair of negations if it satisfies the following conditions:
(N1) $n_{i}(T)=\perp, n_{i}(\perp)=T$ for all $i \in\{1,2\}$.
(N2) $n_{i}(x) \geq n_{i}(y)$ for $x \leq y$ and $i \in\{1,2\}$.
(N3) $n_{1}\left(n_{2}(x)\right)=n_{2}\left(n_{1}(x)\right)=x$ for all $x \in X$.
Definition 2.2.[11] A pair $\left(I_{1}, I_{2}\right)$ with maps $I_{1}, I_{2}: L \times L \rightarrow L$ is called a pair of implications if it satisfies the following conditions:
(I1) $I_{i}(\top, \top)=I_{i}(\perp, \top)=I_{i}(\perp, \perp)=\top, I_{i}(\top, \perp)=\perp$ for all $i \in\{1,2\}$.
(I2) If $x \leq y$, then $I_{i}(x, z) \geq I_{i}(y, z)$ for all $i \in\{1,2\}$.
(I3) $I_{i}(\top, x)=x$ for all $x \in L$ and $i \in\{1,2\}$.
(I4) $I_{1}\left(x, I_{2}(y, z)\right)=I_{2}\left(y, I_{1}(x, z)\right)$ for all $x, y, z \in X$.
(I5) $I_{1}\left(I_{2}(x, \perp), \perp\right)=I_{2}\left(I_{1}(x, \perp), \perp\right)=x$.
Let $L^{[2]}=\left\{\left[x_{1}, x_{2}\right] \mid x_{1} \leq x_{2}, x_{1}, x_{2} \in L\right\}$ where $\left[x_{1}, x_{2}\right]=\left\{x \in L \mid x_{1} \leq x \leq x_{2}\right\}$. We define

$$
\begin{gathered}
{\left[x_{1}, x_{2}\right] \leq\left[y_{1}, y_{2}\right], \text { iff } x_{1} \leq y_{1}, x_{2} \leq y_{2}} \\
{\left[x_{1}, x_{2}\right] \subset\left[y_{1}, y_{2}\right], \text { iff } y_{1} \leq x_{1} \leq x_{2} \leq y_{2}} \\
l\left(\left[x_{1}, x_{2}\right]\right)=x_{1}, r\left(\left[x_{1}, x_{2}\right]\right)=x_{2} .
\end{gathered}
$$

Definition 2.3.[11] A pair $\left(\mathbf{N}_{1}, \mathbf{N}_{2}\right)$ with maps $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ is called a pair of interval negations if it satisfies the following conditions:
(IN1) $\mathbf{N}_{i}([\top, \top])=[\perp, \perp], \mathbf{N}_{i}([\perp, \perp])=[\top, \top]$ for all $i \in\{1,2\}$.
(IN2) If $\left[x_{1}, x_{2}\right] \leq\left[y_{1}, y_{2}\right]$, then $\mathbf{N}_{i}\left(\left[y_{1}, y_{2}\right]\right) \leq \mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)$ for all $i \in\{1,2\}$.
(IN3) If $\left[x_{1}, x_{2}\right] \subset\left[y_{1}, y_{2}\right]$, then $\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right) \subset \mathbf{N}_{i}\left(\left[y_{1}, y_{2}\right]\right)$ for all $i \in\{1,2\}$.
$(\operatorname{IN} 4) \mathbf{N}_{1}\left(\mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)\right)=\mathbf{N}_{2}\left(\mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)\right)=\left[x_{1}, x_{2}\right]$ for all $\left[x_{1}, x_{2}\right] \in L^{[2]}$.
Definition 2.4.[11] A pair $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ with maps $\mathbf{I}_{1}, \mathbf{I}_{2}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ is called a pair of interval implications if it satisfies the following conditions:
(II1) $\mathbf{I}_{i}([\top, \top],[\top, \top])=\mathbf{I}_{i}([\perp, \perp],[\top, \top])=\mathbf{I}_{i}([\perp, \perp],[\perp, \perp])=[\top, \top], \mathbf{I}_{i}([\top, \top],[\perp, \perp])=$ $[\perp, \perp]$ for all $i \in\{1,2\}$.
(II2) If $\left[x_{1}, x_{2}\right] \leq\left[y_{1}, y_{2}\right]$, then $\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right) \geq \mathbf{I}_{i}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right)$ for all $i \in\{1,2\}$.
(II3) If $\left[x_{1}, x_{2}\right] \subset\left[y_{1}, y_{2}\right]$, then $\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right) \subset \mathbf{I}_{i}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right)$ for all $i \in\{1,2\}$.
(II4) $\mathbf{I}_{i}\left([\top, \top],\left[x_{1}, x_{2}\right]\right)=\left[x_{1}, x_{2}\right]$ for all $i \in\{1,2\}$.
(II5) $\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right], \mathbf{I}_{2}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)=\mathbf{I}_{2}\left(\left[y_{1}, y_{2}\right], \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)$ for all $\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right] \in$ $L^{[2]}$.
(II6) $\mathbf{I}_{1}\left(\mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],[\perp, \perp]\right),[\perp, \perp]\right)=\mathbf{I}_{2}\left(\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],[\perp, \perp]\right),[\perp, \perp]\right)=\left[x_{1}, x_{2}\right]$.
Theorem 2.5.[11] Let $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ be a pair of interval negations. Then we have the following properties.
(1) Define maps $\underline{\mathbf{N}_{i}}, \overline{\mathbf{N}_{i}}: L \rightarrow L$ as

$$
\underline{\mathbf{N}_{i}}(x)=l\left(\mathbf{N}_{i}([x, x])\right), \overline{\mathbf{N}_{i}}(x)=r\left(\mathbf{N}_{i}([x, x])\right) .
$$

Then $\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)=\left[\underline{\mathbf{N}_{i}}\left(x_{2}\right), \overline{\mathbf{N}_{i}}\left(x_{1}\right)\right]$.
(2) $\left(\underline{\mathbf{N}_{1}}, \underline{\mathbf{N}_{2}}\right)$ is a pair of negations such that

$$
\underline{\mathbf{N}_{1}}=\overline{\mathbf{N}_{1}}, \underline{\mathbf{N}_{2}}=\overline{\mathbf{N}_{2}} .
$$

(3) We define maps $\mathbf{I}_{i}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right) \vee\left[y_{1}, y_{2}\right], \\
& \mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right) \vee\left[y_{1}, y_{2}\right] .
\end{aligned}
$$

Then $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is a pair of interval implications.

Theorem 2.6.[11] Let $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ be a pair of interval implications on $L^{[2]}$. We define

$$
\underline{\mathbf{I}_{i}}(x, y)=l\left(\mathbf{I}_{i}([x, x],[y, y])\right), \overline{\mathbf{I}}_{i}(x, y)=r\left(\mathbf{I}_{i}([x, x],[y, y])\right) .
$$

Then we have the following properties:
(1) If $\left[y_{1}, y_{2}\right] \leq\left[z_{1}, z_{2}\right]$, then

$$
\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right) \leq \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right) .
$$

(2) If $\left[y_{1}, y_{2}\right] \subset\left[z_{1}, z_{2}\right]$, then

$$
\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right) \subset \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right) .
$$

(3) $\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[\underline{\mathbf{I}_{i}}\left(x_{2}, y_{1}\right), \overline{\mathbf{I}_{i}}\left(x_{1}, y_{2}\right)\right]$.
(4) If, for each $x, y \in L$, there exists $z \in L$ such that $\mathbf{I}_{i}([x, x],[y, y])=[z, z], i=1,2$, then $\left(\underline{\mathbf{I}_{1}}, \underline{\mathbf{I}_{2}}\right)$ is a pair of implications such that

$$
\underline{\mathbf{I}_{1}}=\overline{\mathbf{I}_{1}}, \underline{\mathbf{I}_{2}}=\overline{\mathbf{I}_{2}} .
$$

(5) Define maps $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)=\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],[\perp, \perp]\right) \\
& \mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)=\mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],[\perp, \perp]\right)
\end{aligned}
$$

Then $\left(\mathbf{N}_{1}, \mathbf{N}_{2}\right)$ is a pair of interval negations.
(6)

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\mathbf{N}_{2}\left(\left[y_{1}, y_{2}\right]\right), \mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)\right)=\mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right), \\
& \mathbf{I}_{2}\left(\mathbf{N}_{1}\left(\left[y_{1}, y_{2}\right]\right), \mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)\right)=\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right) .
\end{aligned}
$$

3. Properties of interval implications

Theorem 3.1. Let $\left(n_{1}, n_{2}\right)$ be a pair of negations on L. Then we have the following properties.
(1) Define maps $I_{i}: L \times L \rightarrow L$ as

$$
I_{1}(x, y)=n_{1}(x) \vee y, I_{2}(x, y)=n_{2}(x) \vee y .
$$

Then $\left(I_{1}, I_{2}\right)$ is a pair of implications.
(2) Define maps $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ as

$$
\mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)=\left[n_{1}\left(x_{2}\right), n_{1}\left(x_{1}\right)\right], \mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)=\left[n_{2}\left(x_{2}\right), n_{2}\left(x_{1}\right)\right]
$$

Then $\left(\mathbf{N}_{1}, \mathbf{N}_{2}\right)$ is a pair of interval negations such that

$$
\begin{gathered}
\underline{\mathbf{N}_{i}}(x)=\overline{\mathbf{N}_{i}}(x)=n_{i}(x), \\
\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)=\left[\underline{\mathbf{N}_{i}}\left(x_{2}\right), \overline{\mathbf{N}_{i}}\left(x_{1}\right)\right] .
\end{gathered}
$$

(3) For maps I_{i} in (1), we define maps $\mathbf{I}_{i}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[n_{1}\left(x_{2}\right) \vee y_{1}, n_{1}\left(x_{1}\right) \vee y_{2}\right], \\
& \mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[n_{2}\left(x_{2}\right) \vee y_{1}, n_{2}\left(x_{1}\right) \vee y_{2}\right] .
\end{aligned}
$$

Then $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is a pair of interval implications such that $\underline{\mathbf{I}_{i}}(x, y)=n_{i}(x) \vee y=\overline{\mathbf{I}_{i}}(x, y)$ and

$$
\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[\underline{\mathbf{I}}_{i}\left(x_{2}, y_{1}\right), \overline{\mathbf{I}_{i}}\left(x_{1}, y_{2}\right)\right] .
$$

Proof. (1) (I1) $I_{i}(\top, \perp)=n_{i}(\top) \vee \perp=\perp, I_{i}(\perp, \perp)=n_{i}(\perp) \vee \perp=\perp=I_{i}(\perp, \top)=I_{i}(\top, \top)$.
(I2) If $x \leq y$, then $n_{1}(x) \geq n_{i}(y)$. Then $I_{i}(x, z) \geq I_{i}(y, z)$.
(I3) $I_{i}(T, x)=n_{i}(\top) \vee x=x$.
(I4) $I_{1}\left(x, I_{2}(y, z)\right)=n_{1}(x) \vee n_{2}(y) \vee z=I_{2}\left(y, I_{1}(x, z)\right)$.
(I5) $I_{1}\left(I_{2}(x, \perp), \perp\right)=n_{1}\left(n_{2}(x)\right)=x=n_{2}\left(n_{1}(x)\right)=I_{2}\left(I_{1}(x, \perp), \perp\right)$.
Hence $\left(I_{1}, I_{2}\right)$ is a pair of implications.
(2) $\left(\right.$ IN1) $\mathbf{N}_{i}([\perp, \perp])=[\top, \top]$ and $\mathbf{N}_{i}([\top, \top])=[\perp, \perp]$.
(IN2) If $\left[x_{1}, x_{2}\right] \leq\left[y_{1}, y_{2}\right]$, then $\mathbf{N}_{i}\left(\left[y_{1}, y_{2}\right]\right)=\left[n_{i}\left(y_{2}\right), n_{i}\left(y_{1}\right)\right] \leq\left[n_{i}\left(x_{2}\right), n_{i}\left(x_{1}\right)\right]=\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)$ for all $i \in\{1,2\}$.
(IN3) If $\left[x_{1}, x_{2}\right] \subset\left[y_{1}, y_{2}\right]$, then $y_{1} \leq x_{1} \leq x_{2} \leq y_{2}$. So, $n_{i}\left(y_{1}\right) \geq n_{i}\left(x_{1}\right) \geq n_{i}\left(x_{2}\right) \geq n_{i}\left(y_{2}\right)$. Thus, $\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right) \subset \mathbf{N}_{i}\left(\left[y_{1}, y_{2}\right]\right)$ for all $i \in\{1,2\}$,
(IN4)

$$
\begin{aligned}
\mathbf{N}_{1}\left(\mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)\right) & =\mathbf{N}_{1}\left(\left[\left(n_{2}\left(x_{2}\right), n_{2}\left(x_{1}\right)\right]\right)\right. \\
& =\left[n_{1}\left(n_{2}\left(x_{1}\right)\right), n_{1}\left(n_{2}\left(x_{2}\right)\right)\right]=\left[x_{1}, x_{2}\right]
\end{aligned}
$$

Similarly, $\mathbf{N}_{2}\left(\mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)\right)=\left[x_{1}, x_{2}\right]$. for all $\left[x_{1}, x_{2}\right] \in L^{[2]}$.

$$
\begin{aligned}
\underline{\mathbf{N}_{i}}(x) & =l\left(\mathbf{N}_{i}([x, x])=l\left(\left[n_{i}(x), n_{i}(x)\right]\right)\right. \\
& =r\left(\left[n_{i}(x), n_{i}(x)\right]\right)=\overline{\mathbf{N}_{i}}(x)=n_{i}(x) . \\
\mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right) & =\left[n_{1}\left(x_{2}\right), n_{1}\left(x_{1}\right)\right]=\left[\underline{\mathbf{N}_{i}}\left(x_{2}\right), \overline{\mathbf{N}_{i}}\left(x_{1}\right)\right] .
\end{aligned}
$$

(3) (II1)

$$
\begin{aligned}
& \mathbf{I}_{i}([\top, \top],[\perp, \perp])=\left[n_{i}(\top) \vee \perp, n_{i}(\top) \vee \perp\right]=[\perp, \perp], \\
& \mathbf{I}_{i}([\perp, \perp],[\top, \top])=\left[n_{i}(\perp) \vee \top, n_{i}(\perp) \vee \top\right]=[\top, \top], \\
& \mathbf{I}_{i}([\perp, \perp],[\perp, \perp])=[\top, \top]=\mathbf{I}_{i}([\top, \top],[\top, \top]) .
\end{aligned}
$$

(II2) If $\left[x_{1}, x_{2}\right] \leq\left[y_{1}, y_{2}\right]$, then $n_{i}\left(y_{1}\right) \leq n_{i}\left(x_{1}\right)$ and $n_{i}\left(y_{2}\right) \leq n_{i}\left(x_{2}\right)$. Thus,

$$
\begin{aligned}
& \mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)=\left[n_{i}\left(x_{2}\right) \vee z_{1}, n_{i}\left(x_{1}\right) \vee z_{2}\right] \\
& \geq\left[n_{i}\left(y_{2}\right) \vee z_{1}, n_{i}\left(y_{1}\right) \vee z_{2}\right]=\mathbf{I}_{1}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right) .
\end{aligned}
$$

(II3) If $\left[x_{1}, x_{2}\right] \subset\left[y_{1}, y_{2}\right]$, then $y_{1} \leq x_{1} \leq x_{2} \leq y_{2}$ and $n_{i}\left(y_{1}\right) \geq n_{i}\left(x_{1}\right) \geq n_{i}\left(x_{2}\right) \geq n_{i}\left(y_{2}\right)$. So,

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)=\left[n_{i}\left(x_{2}\right) \vee z_{1}, n_{i}\left(x_{1}\right) \vee z_{2}\right] \\
& \subset\left[n_{i}\left(y_{2}\right) \vee z_{1}, n_{i}\left(y_{1}\right) \vee z_{2}\right]=\mathbf{I}_{1}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right) .
\end{aligned}
$$

(II4)

$$
\mathbf{I}_{i}\left([\top, \top],\left[z_{1}, z_{2}\right]\right)=\left[n_{i}(\top) \vee z_{1}, n_{i}(\top) \vee z_{2}\right]=\left[z_{1}, z_{2}\right] .
$$

(II5)

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right], \mathbf{I}_{2}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right)\right) \\
& =\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[n_{2}\left(y_{2}\right) \vee z_{1}, n_{2}\left(y_{1}\right) \vee z_{2}\right]\right) \\
& =\left[n_{1}\left(x_{2}\right) \vee n_{2}\left(y_{2}\right) \vee z_{1}, n_{1}\left(x_{1}\right) \vee n_{2}\left(y_{1}\right) \vee z_{2}\right] \\
& =\left[n_{2}\left(y_{2}\right) \vee n_{1}\left(x_{2}\right) \vee z_{1}, n_{2}\left(y_{1}\right) \vee n_{1}\left(x_{1}\right) \vee z_{2}\right] \\
& =\mathbf{I}_{2}\left(\left[y_{1}, y_{2}\right], \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right) .
\end{aligned}
$$

(II6)

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],[\perp, \perp]\right),[\perp, \perp]\right) \\
& =\mathbf{I}_{1}\left(\left[n_{2}\left(x_{2}\right) \vee \perp, n_{2}\left(x_{1}\right) \vee \perp\right],[\perp, \perp]\right) \\
& =\left[n_{1}\left(n_{2}\left(x_{1}\right)\right) \vee \perp, n_{1}\left(n_{2}\left(x_{2}\right)\right) \vee \perp\right] \\
& =\left[x_{1}, x_{2}\right] .
\end{aligned}
$$

Thus $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is a pair of interval implications.

$$
\begin{aligned}
\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right) & =\left[n_{i}\left(x_{2}\right) \vee y_{1}, n_{i}\left(x_{1}\right) \vee y_{2}\right] \\
& =\left[n_{i}\left(x_{2}\right), n_{i}\left(x_{1}\right)\right] \vee\left[y_{1}, y_{2}\right] \\
& =\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right) \vee\left[y_{1}, y_{2}\right] .
\end{aligned}
$$

Moreover, $\underline{\mathbf{I}}_{i}(x, y)=n_{i}(x) \vee y=\overline{\mathbf{I}_{i}}(x, y)$ from

$$
\begin{aligned}
& \underline{\mathbf{I}_{i}(x, y)}=l\left(\mathbf{I}_{i}([x, x],[y, y])\right)=l\left(\left[n_{i}(x) \vee y, n_{i}(x) \vee y\right]\right) \\
&=r\left(\mathbf{I}_{i}([x, x],[y, y])\right)=n_{i}(x) \vee y=\overline{\mathbf{I}_{i}}(x, y), \\
& \mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[n_{i}(x) \vee y, n_{i}(x) \vee y\right] \\
&= {\left[\mathbf{I}_{i}\left(x_{2}, y_{1}\right), \overline{\mathbf{I}_{i}}\left(x_{1}, y_{2}\right)\right] . }
\end{aligned}
$$

Example 3.2. Let $(L, \wedge, \vee, \odot, \rightarrow, \Rightarrow, \top, \perp)$ be a complete generalized residuated lattice with the law of double negation defined as $a=n_{1}\left(n_{2}(a)\right)=n_{2}\left(n_{1}(a)\right)$ where $n_{1}(a)=a \Rightarrow \perp$ and $n_{2}(a)=a \rightarrow \perp$ (ref. [5,6]).
(1) A pair $\left(n_{1}, n_{2}\right)$ is a pair of negations.
(2) By Theorem 3.1, $\left(I_{1}, I_{2}\right)$ is a pair of implications such that

$$
\begin{aligned}
& I_{1}(x, y)=n_{1}(x) \vee y=(x \Rightarrow \perp) \vee y, \\
& I_{2}(x, y)=n_{2}(x) \vee y=(x \rightarrow \perp) \vee y .
\end{aligned}
$$

(3) Define maps $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ as

$$
\mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)=\left[x_{2} \Rightarrow \perp, x_{1} \Rightarrow \perp\right], \mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)=\left[x_{2} \rightarrow \perp, x_{1} \rightarrow \perp\right] .
$$

By Theorem 3.1, $\left(\mathbf{N}_{1}, \mathbf{N}_{2}\right)$ is a pair of interval negations such that

$$
\begin{aligned}
& \underline{\mathbf{N}_{1}}(x)=\overline{\mathbf{N}_{1}}(x)=n_{1}(x)=x \Rightarrow \perp, \\
& \underline{\mathbf{N}_{2}}(x)=\overline{\mathbf{N}_{2}}(x)=n_{2}(x)=x \rightarrow \perp .
\end{aligned}
$$

(4) For maps I_{i} in (2), we define maps $\mathbf{I}_{i}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[\left(x_{2} \Rightarrow \perp\right) \vee y_{1},\left(x_{1} \Rightarrow \perp\right) \vee y_{2}\right], \\
& \mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[\left(x_{2} \rightarrow \perp\right) \vee y_{1},\left(x_{1} \rightarrow \perp\right) \vee y_{2}\right] .
\end{aligned}
$$

By Theorem 3.1, $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is a pair of interval implications such that

$$
\begin{aligned}
& \underline{\mathbf{I}_{1}}(x, y)=(x \Rightarrow \perp) \vee y=\overline{\mathbf{I}_{1}}(x, y), \\
& \underline{\mathbf{I}_{2}}(x, y)=(x \rightarrow \perp) \vee y=\overline{\mathbf{I}_{2}}(x, y) .
\end{aligned}
$$

Example 3.3. Put $L=\left\{(x, y) \in R^{2} \left\lvert\,\left(\frac{1}{2}, 1\right) \leq(x, y) \leq(1,0)\right.\right\}$ with a bottom element $\left(\frac{1}{2}, 1\right)$ and a top element $(1,0)$ where

$$
\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}<x_{2} \text { or } x_{1}=x_{2}, y_{1} \leq y_{2}
$$

Put $n_{1}(x, y)=\left(\frac{1}{2 x}, \frac{1-y}{x}\right), n_{2}(x, y)=\left(\frac{1}{2 x}, 1-\frac{y}{2 x}\right)$. Then $\left(n_{1}, n_{2}\right)$ is a pair of negations from:

$$
n_{1}\left(n_{2}(x, y)\right)=(x, y), n_{2}\left(n_{1}(x, y)\right)=(x, y) .
$$

From Theorem 3.1, we obtain a pair of implications $\left(I_{1}, I_{2}\right)$ as follows:

$$
\begin{aligned}
I_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =n_{1}\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right) \\
& =\left(\frac{1}{2 x_{1}}, \frac{1-y_{1}}{x_{1}}\right) \vee\left(x_{2}, y_{2}\right) \\
I_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =n_{2}\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right) \\
& =\left(\frac{1}{2 x_{1}}, 1-\frac{y_{1}}{2 x_{1}}\right) \vee\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

From Theorem 3.1, a pair of interval negations $\left(\mathbf{N}_{1}, \mathbf{N}_{2}\right)$ is defined $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
\mathbf{N}_{1}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) & =\left[n_{1}\left(x_{2}, y_{2}\right), n_{1}\left(x_{1}, y_{1}\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, \frac{1-y_{2}}{x_{2}}\right),\left(\frac{1}{2 x_{1}}, \frac{1-y_{1}}{x_{1}}\right)\right] \\
\mathbf{N}_{2}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) & =\left[n_{2}\left(x_{2}, y_{2}\right), n_{2}\left(x_{1}, y_{1}\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, 1-\frac{y_{2}}{2 x_{2}}\right),\left(\frac{1}{2 x_{1}}, 1-\frac{y_{1}}{2 x_{1}}\right)\right] .
\end{aligned}
$$

From Theorem 3.1, a pair of interval implications $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is defined $\mathbf{I}_{i}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[n_{1}\left(x_{2}, y_{2}\right) \vee\left(z_{1}, w_{1}\right), n_{1}\left(x_{1}, y_{1}\right) \vee\left(z_{2}, w_{2}\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, \frac{1-y_{2}}{x_{2}}\right) \vee\left(z_{1}, w_{1}\right),\left(\frac{1}{2 x_{1}}, \frac{1-y_{1}}{x_{1}}\right) \vee\left(z_{2}, w_{2}\right)\right] \\
& =\mathbf{N}_{1}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) \vee\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{I}_{2}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[n_{2}\left(x_{2}, y_{2}\right) \vee\left(z_{1}, w_{1}\right), n_{2}\left(x_{1}, y_{1}\right) \vee\left(z_{2}, w_{2}\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, 1-\frac{y_{2}}{2 x_{2}}\right) \vee\left(z_{1}, w_{1}\right),\left(\frac{1}{2 x_{1}}, 1-\frac{y_{1}}{2 x_{1}}\right) \vee\left(z_{2}, w_{2}\right)\right] \\
& =\mathbf{N}_{2}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) \vee\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right] .
\end{aligned}
$$

Since $\mathbf{I}_{1}([(x, y),(x, y)],[(z, w),(z, w)])=\left[\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w),\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w)\right]$, it satisfies the condition of Theorem 2.6(4). Thus $\left(\underline{\mathbf{I}_{1}}, \underline{\mathbf{I}_{2}}\right)$ is a pair of implications such that

$$
\begin{aligned}
& \underline{\mathbf{I}_{1}}((x, y),(z, w))=l\left(\mathbf{I}_{1}([(x, y),(x, y)],[(z, w),(z, w)])\right. \\
& =l\left(\left[\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w),\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w)\right]\right) \\
& =r\left(\left[\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w),\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w)\right]\right) \\
& =\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w)=\overline{\mathbf{I}_{1}}((x, y),(z, w)) . \\
& \underline{\mathbf{I}_{2}}((x, y),(z, w))=l\left(\mathbf{I}_{2}([(x, y),(x, y)],[(z, w),(z, w)])\right. \\
& =l\left(\left[\left(\frac{1}{2 x}, 1-\frac{y}{2 x}\right) \vee(z, w),\left(\frac{1}{2 x}, 1-\frac{y}{2 x}\right) \vee(z, w)\right]\right) \\
& =r\left(\left[\left(\frac{1}{2 x}, 1-\frac{y}{2 x}\right) \vee(z, w),\left(\frac{1}{2 x}, 1-\frac{y}{2 x}\right) \vee(z, w)\right]\right) \\
& =\left(\frac{1}{2 x}, 1-\frac{y}{2 x}\right) \vee(z, w)=\underline{\mathbf{I}_{2}}((x, y),(z, w)) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \mathbf{I}_{i}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[\underline{\mathbf{I}}_{i}\left(\left(x_{2}, y_{2}\right),\left(z_{1}, w_{1}\right)\right), \overline{\mathbf{I}_{i}}\left(\left(x_{1}, y_{1}\right),\left(z_{2}, w_{2}\right)\right)\right] .
\end{aligned}
$$

Theorem 3.4. Let $(L, \vee, \wedge, \top, \perp)$ be a bounded lattice and $\left(I_{1}, I_{2}\right)$ an pair of implications on L. We define

$$
n_{1}(x)=I_{1}(x, \perp), n_{2}(x)=I_{2}(x, \perp)
$$

(1) $\left(n_{1}, n_{2}\right)$ is a pair of negations.
(2) $I_{1}\left(n_{2}(y), n_{2}(x)\right)=I_{2}(x, y)$ and $I_{2}\left(n_{1}(y), n_{1}(x)\right)=I_{1}(x, y)$.
(3)If $y \leq z$, then $I_{i}(x, y) \leq I_{i}(x, z)$.
(4) For maps I_{i} in (1), we define maps $\mathbf{I}_{i}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[I_{1}\left(x_{2}, y_{1}\right), I_{1}\left(x_{1}, y_{2}\right)\right], \\
& \mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[I_{2}\left(x_{2}, y_{1}\right), I_{2}\left(x_{1}, y_{2}\right)\right] .
\end{aligned}
$$

Then $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is a pair of interval implications such that $\underline{\mathbf{I}_{i}}(x, y)=I_{i}(x, y)=\overline{\mathbf{I}_{i}}(x, y)$ and

$$
\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[\underline{\mathbf{I}_{i}}\left(x_{2}, y_{1}\right), \overline{\mathbf{I}_{i}}\left(x_{1}, y_{2}\right)\right] .
$$

(5) Define maps $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)=\left[I_{1}\left(x_{2}, \perp\right), I_{1}\left(x_{1}, \perp\right)\right], \\
& \mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)=\left[I_{2}\left(x_{2}, \perp\right), I_{2}\left(x_{1}, \perp\right)\right] .
\end{aligned}
$$

Then $\left(\mathbf{N}_{1}, \mathbf{N}_{2}\right)$ is a pair of interval negations such that

$$
\begin{gathered}
\underline{\mathbf{N}_{i}}(x)=\overline{\mathbf{N}_{i}}(x)=I_{i}(x, \perp), \\
\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)=\left[\underline{\mathbf{N}_{i}}\left(x_{2}\right), \overline{\mathbf{N}_{i}}\left(x_{1}\right)\right] .
\end{gathered}
$$

Proof. (1) (N1) By (I1), $n_{i}(\perp)=I_{1}(\perp, \perp)=\top$ and $n_{i}(\top)=I_{i}(\top, \perp)=\perp$.
(N2) If $x \leq y$, by (I2), $n_{i}(x)=I_{i}(x, \perp) \geq I_{i}(y, \perp)=n_{i}(y)$.
(N3) $n_{1}\left(n_{2}(x)\right)=I_{1}\left(I_{2}(x, \perp), \perp\right)=x=I_{2}\left(I_{1}(x, \perp), \perp\right)=n_{2}\left(n_{1}(x)\right)$.

$$
\begin{align*}
I_{1}\left(n_{2}(y), n_{2}(x)\right) & =I_{1}\left(I_{2}(y, \perp), I_{2}(x, \perp)\right) \tag{2}\\
& =I_{2}\left(x, I_{1}\left(I_{2}(y, \perp), \perp\right)\right)(\text { by }(\mathrm{I} 3)) \\
& =I_{2}(x, y)
\end{align*}
$$

Similarly, $I_{2}\left(n_{1}(y), n_{1}(x)\right)=I_{1}(x, y)$.
(3) If $y \leq z$, then $n_{1}(z) \leq n_{1}(y)$ and $n_{2}(z) \leq n_{2}(y)$.

$$
\begin{aligned}
& I_{1}(x, y)=I_{2}\left(n_{1}(y), n_{1}(x)\right) \leq I_{2}\left(n_{1}(z), n_{1}(x)\right)=I_{1}(x, z) \\
& I_{2}(x, y)=I_{1}\left(n_{2}(y), n_{2}(x)\right) \leq I_{1}\left(n_{2}(z), n_{2}(x)\right)=I_{2}(x, z)
\end{aligned}
$$

(4) (II1)

$$
\begin{aligned}
& \mathbf{I}_{i}([\top, \top],[\perp, \perp])=\left[I_{i}(\top, \perp), I_{i}(\top, \perp)\right]=[\perp, \perp] \\
& \mathbf{I}_{i}([\perp, \perp],[\top, \top])=\left[I_{i}(\perp, \top), I_{i}(\perp, \top)\right]=[\top, \top] \\
& \mathbf{I}_{i}([\perp, \perp],[\perp, \perp])=[\top, \top]=\mathbf{I}_{i}([\top, \top],[\top, \top]) .
\end{aligned}
$$

(II2) If $\left[x_{1}, x_{2}\right] \leq\left[y_{1}, y_{2}\right]$, then $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$. For $i \in\{1,2\}$,

$$
\begin{aligned}
& \mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)=\left[I_{i}\left(x_{2}, z_{1}\right), I_{i}\left(x_{1}, z_{2}\right)\right] \\
& \geq\left[I_{i}\left(y_{2}, z_{1}\right), I_{i}\left(y_{1}, z_{2}\right)\right]=\mathbf{I}_{i}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right) .
\end{aligned}
$$

(II3) If $\left[x_{1}, x_{2}\right] \subset\left[z_{1}, z_{2}\right]$, then $z_{1} \leq x_{1} \leq x_{2} \leq z_{2}$. So, $I_{i}\left(z_{2}, y_{1}\right) \leq I_{i}\left(x_{2}, y_{1}\right)$ and $I_{i}\left(x_{1}, y_{2}\right) \leq$ $I_{i}\left(z_{1}, y_{2}\right)$ for $i \in\{1,2\}$. Hence

$$
\begin{aligned}
\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right) & =\left[I_{i}\left(x_{2}, y_{1}\right), I_{i}\left(x_{1}, y_{2}\right)\right] \\
& \subset\left[I_{i}\left(z_{2}, y_{1}\right), I_{i}\left(z_{1}, y_{2}\right)\right]=\mathbf{I}_{i}\left(\left[z_{1}, z_{2}\right],\left[y_{1}, y_{2}\right]\right) .
\end{aligned}
$$

(II4)

$$
\mathbf{I}_{i}\left([\top, \top],\left[z_{1}, z_{2}\right]\right)=\left[I_{i}\left(\top, z_{1}\right), I_{i}\left(\top, z_{2}\right)\right]=\left[z_{1}, z_{2}\right] .
$$

(II5)

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right], \mathbf{I}_{2}\left(\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right]\right)\right) \\
& =\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[I_{2}\left(y_{2}, z_{1}\right), I_{2}\left(y_{1}, z_{2}\right)\right]\right) \\
& =\left[I_{1}\left(x_{2}, I_{2}\left(y_{2}, z_{1}\right)\right), I_{1}\left(x_{1}, I_{2}\left(y_{1}, z_{2}\right)\right)\right] \\
& =\left[I_{2}\left(y_{2}, I_{1}\left(x_{2}, z_{1}\right)\right), I_{2}\left(y_{1}, I_{1}\left(x_{1}, z_{2}\right)\right)\right] \\
& =\mathbf{I}_{2}\left(\left[y_{1}, y_{2}\right], \mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right) .
\end{aligned}
$$

(II6)

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],[\perp, \perp]\right),[\perp, \perp]\right) \\
& =\mathbf{I}_{1}\left(\left[I_{2}\left(x_{2}, \perp\right), I_{2}\left(x_{1}, \perp\right)\right],[\perp, \perp]\right) \\
& =\left[I_{1}\left(I_{2}\left(x_{1}, \perp\right), \perp\right), I_{1}\left(I_{2}\left(x_{2}, \perp\right), \perp\right)\right] \\
& =\left[x_{1}, x_{2}\right] .
\end{aligned}
$$

Hence $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is a pair of interval implications. Moreover, $\mathbf{I}_{i}(x, y)=I_{i}(x, y)=\overline{\mathbf{I}_{i}}(x, y)$ from

$$
\begin{array}{r}
\underline{\mathbf{I}_{i}(x, y)}=l\left(\mathbf{I}_{i}([x, x],[y, y])\right)=l\left(\left[I_{i}(x, y), I_{i}(x, y)\right]\right) \\
=r\left(\mathbf{I}_{i}([x, x],[y, y])\right)=I_{i}(x, y)=\overline{\mathbf{I}_{i}}(x, y) \\
\quad \begin{aligned}
\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right) & =\left[I_{i}\left(x_{2}, y_{1}\right), I_{i}\left(x_{1}, y_{2}\right)\right] \\
& =\left[\underline{\mathbf{I}}_{i}\left(x_{2}, y_{1}\right), \overline{\mathbf{I}_{i}}\left(x_{1}, y_{2}\right)\right] .
\end{aligned}
\end{array}
$$

(5) (IN1)

$$
\begin{aligned}
& \mathbf{N}_{i}([\perp, \perp])=\left[I_{i}(\perp, \perp), I_{i}(\perp, \perp)\right]=[\top, \top] \\
& \mathbf{N}_{i}([\top, \top])=\left[I_{i}(\top, \perp), I_{i}(\top, \perp)\right]=[\perp, \perp] .
\end{aligned}
$$

(IN2) If $\left[x_{1}, x_{2}\right] \leq\left[y_{1}, y_{2}\right]$, then $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$. So, $I_{i}\left(x_{1}, \perp\right) \geq I_{i}\left(y_{1}, \perp\right)$ and $I_{i}\left(x_{2}, \perp\right) \geq$ $I_{i}\left(y_{2}, \perp\right)$. Thus, for all $i \in\{1,2\}$,

$$
\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)=\left[I_{i}\left(x_{2}, \perp\right), I_{i}\left(x_{1}, \perp\right)\right] \geq\left[I_{i}\left(y_{2}, \perp\right), I_{i}\left(y_{1}, \perp\right)\right]=\mathbf{N}_{i}\left(\left[y_{1}, y_{2}\right]\right) .
$$

(IN3) If $\left[x_{1}, x_{2}\right] \subset\left[y_{1}, y_{2}\right]$, then $y_{1} \leq x_{1} \leq x_{2} \leq y_{2}$. Since $I_{i}\left(y_{2}, \perp\right) \leq I_{i}\left(x_{2}, \perp\right) \leq I_{i}\left(x_{1}, \perp\right) \leq$ $I_{i}\left(y_{1}, \perp\right)$ for all $i \in\{1,2\}$, then

$$
\mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)=\left[I_{i}\left(x_{2}, \perp\right), I_{i}\left(x_{1}, \perp\right)\right] \subset\left[I_{i}\left(y_{2}, \perp\right), I_{i}\left(y_{1}, \perp\right)\right]=\mathbf{N}_{i}\left(\left[y_{1}, y_{2}\right]\right) .
$$

(IN4) $\mathbf{N}_{1}\left(\mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)\right)=\mathbf{N}_{2}\left(\mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)\right)=\left[x_{1}, x_{2}\right]$ for all $\left[x_{1}, x_{2}\right] \in L^{[2]}$.

$$
\begin{aligned}
& \begin{aligned}
\mathbf{N}_{1}\left(\mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)\right) & =\mathbf{N}_{1}\left(\left[I_{2}\left(x_{2}, \perp\right), I_{2}\left(x_{1}, \perp\right)\right]\right) \\
& =\left[I_{1}\left(I_{2}\left(x_{1}, \perp\right), \perp\right), I_{1}\left(I_{2}\left(x_{2}, \perp\right), \perp\right)\right] \\
& =\left[x_{1}, x_{2}\right]
\end{aligned} \\
& \begin{aligned}
\underline{\mathbf{N}_{i}}(x) & =l\left(\mathbf{N}_{i}([x, x])=l\left(\left[I_{i}(x, \perp), I_{i}(x, \perp)\right]\right)\right. \\
& =r\left(\left[I_{i}(x, \perp), I_{i}(x, \perp)\right]\right)=\overline{\mathbf{N}_{i}}(x)=I_{i}(x, \perp) .
\end{aligned} \\
& \\
& \mathbf{N}_{i}\left(\left[x_{1}, x_{2}\right]\right)=\left[I_{i}\left(x_{2}, \perp\right), I_{i}\left(x_{1}, \perp\right)\right]=\left[\underline{\mathbf{N}_{i}}\left(x_{2}\right), \overline{\mathbf{N}_{i}}\left(x_{1}\right)\right] .
\end{aligned}
$$

Example 3.5. Let $(L, \wedge, \vee, \odot, \rightarrow, \Rightarrow, \top, \perp), n_{1}$ and n_{2} be given in Example 3.2. We define

$$
I_{1}(a, b)=a \Rightarrow b, I_{1}(a, b)=a \rightarrow b
$$

(1) A pair $\left(I_{1}, I_{2}\right)$ is a pair of implications because $a \rightarrow(b \Rightarrow c)=b \Rightarrow(a \rightarrow c)$.
(2) A pair $\left(n_{1}, n_{2}\right)$ is a pair of negations.(ref. [5,6]).
(3) Define maps $\mathbf{I}_{i}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{gathered}
\mathbf{I}_{1}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[I_{1}\left(x_{2}, y_{1}\right), I_{1}\left(x_{1}, y_{2}\right)\right]=\left[x_{2} \Rightarrow y_{1}, x_{1} \Rightarrow y_{2}\right], \\
\mathbf{I}_{2}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[x_{2} \rightarrow y_{1}, x_{1} \rightarrow y_{2}\right] .
\end{gathered}
$$

Then $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ is a pair of interval implications such that $\underline{\mathbf{I}_{i}}(x, y)=I_{i}(x, y)=\overline{\mathbf{I}_{i}}(x, y)$ and

$$
\mathbf{I}_{i}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[\underline{\mathbf{I}_{i}}\left(x_{2}, y_{1}\right), \overline{\mathbf{I}_{i}}\left(x_{1}, y_{2}\right)\right] .
$$

(4) Define maps $\mathbf{N}_{i}: L^{[2]} \rightarrow L^{[2]}$ as

$$
\begin{aligned}
& \mathbf{N}_{1}\left(\left[x_{1}, x_{2}\right]\right)=\left[I_{1}\left(x_{2}, \perp\right), I_{1}\left(x_{1}, \perp\right)\right], \\
& \mathbf{N}_{2}\left(\left[x_{1}, x_{2}\right]\right)=\left[I_{2}\left(x_{2}, \perp\right), I_{2}\left(x_{1}, \perp\right)\right] .
\end{aligned}
$$

Then $\left(\mathbf{N}_{1}, \mathbf{N}_{2}\right)$ is a pair of interval negations such that

$$
\begin{aligned}
& \underline{\mathbf{N}_{1}}(x)=\overline{\mathbf{N}_{1}}(x)=x \Rightarrow \perp, \\
& \underline{\mathbf{N}_{2}}(x)=\overline{\mathbf{N}_{2}}(x)=x \rightarrow \perp .
\end{aligned}
$$

Example 3.6. Put $L=\left\{(x, y) \in R^{2} \left\lvert\,\left(\frac{1}{2}, 1\right) \leq(x, y) \leq(1,0)\right.\right\}$ with a bottom element $\left(\frac{1}{2}, 1\right)$ and a top element $(1,0)$ where

$$
\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}<x_{2} \text { or } x_{1}=x_{2}, y_{1} \leq y_{2}
$$

(1) Define $I_{1}, I_{2}: L \times L \rightarrow L$ as follows:

$$
\begin{aligned}
& I_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\frac{x_{2}}{x_{1}}, \frac{y_{2}-y_{1}}{x_{1}}\right) \wedge(1,0) \\
& I_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\frac{x_{2}}{x_{1}}, y_{2}-\frac{x_{2} y_{1}}{x_{1}}\right) \wedge(1,0) .
\end{aligned}
$$

Then it satisfies (I1)-(I3) and (I4) from:

$$
\begin{aligned}
I_{1}\left(\left(x_{1}, y_{1}\right), I_{2}\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)\right) & =I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{x_{3}}{x_{2}}, y_{3}-\frac{x_{3} y_{2}}{x_{2}}\right) \wedge(1,0)\right) \\
& =\left(\frac{x_{3}}{x_{1} x_{2}}, \frac{x_{2} y_{3}-x_{3} y_{2}-x_{2} y_{1}}{x_{1} x_{2}}\right) \wedge(1,0) \\
I_{2}\left(\left(x_{2}, y_{2}\right), I_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)\right) & =I_{2}\left(\left(x_{2}, y_{2}\right),\left(\frac{x_{3}}{x_{3}}, \frac{y_{3}-y_{1}}{x_{1}}\right) \wedge(1,0)\right) \\
& =\left(\frac{x_{3}}{x_{1} x_{2}}, \frac{x_{2} y_{3}-x_{3} y_{2}-x_{2} y_{1}}{x_{1} x_{2}}\right) \wedge(1,0) \\
\text { (I5) } I_{2}\left(I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right),\left(\frac{1}{2}, 1\right)\right)=\left(x_{1}, y_{1}\right) & =I_{1}\left(I_{2}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right),\left(\frac{1}{2}, 1\right)\right) \text { from } \\
I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right) & =\left(\frac{1}{2 x_{1}}, \frac{1-y_{1}}{x_{1}}\right)=n_{1}\left(x_{1}, y_{1}\right) \\
I_{2}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right) & =\left(\frac{1}{2 x_{1}}, 1-\frac{y_{1}}{2 x_{1}}\right)=n_{2}\left(x_{1}, y_{1}\right)
\end{aligned}
$$

Hence $\left(I_{1}, I_{2}\right)$ is a pair of implications. Moreover, $\left(n_{1}, n_{2}\right)$ is a pair of implications. By Theorem 3.4 (4), we obtain a pair $\left(\mathbf{I}_{1}, \mathbf{I}_{2}\right)$ of interval implications defined as $\mathbf{I}_{1}, \mathbf{I}_{2}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as follows:

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[I_{1}\left(\left(x_{2}, y_{2}\right),\left(z_{1}, w_{1}\right), I_{1}\left(\left(x_{1}, y_{1}\right),\left(z_{2}, w_{2}\right)\right)\right]\right. \\
& =\left[\left(\left(\frac{z_{1}}{x_{2}}, \frac{w_{1}-y_{2}}{x_{2}}\right) \wedge(1,0),\left(\frac{z_{2}}{x_{1}}, \frac{w_{2}-y_{1}}{x_{1}}\right) \wedge(1,0)\right]\right. \\
& \mathbf{I}_{2}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[I_{2}\left(\left(x_{2}, y_{2}\right),\left(z_{1}, w_{1}\right), I_{2}\left(\left(x_{1}, y_{1}\right),\left(z_{2}, w_{2}\right)\right)\right]\right. \\
& =\left[\left(\frac{z_{1}}{x_{2}}, w_{1}-\frac{z_{1} y_{2}}{x_{2}}\right) \wedge(1,0),\left(\frac{z_{2}}{x_{1}}, w_{2}-\frac{z_{2} y_{1}}{x_{1}}\right) \wedge(1,0)\right]
\end{aligned}
$$

Since $\mathbf{I}_{1}([(x, y),(x, y)],[(z, w),(z, w)])=\left[\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w),\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \vee(z, w)\right]$, it satisfies the condition of Theorem 2.6(4). Thus $\left(\underline{\mathbf{I}_{1}}, \underline{\mathbf{I}_{2}}\right)$ is a pair of implications such that

$$
\begin{aligned}
& \underline{\mathbf{I}_{1}}((x, y),(z, w))=l\left(\mathbf{I}_{1}([(x, y),(x, y)],[(z, w),(z, w)])\right. \\
& =l\left(\left[\left(\frac{z}{x}, \frac{w-y}{x}\right) \wedge(1,0),\left(\frac{z}{x}, \frac{w-y}{x}\right) \wedge(1,0)\right]\right) \\
& =r\left(\left[\left(\frac{z}{x}, \frac{w-y}{x}\right) \wedge(1,0),\left(\frac{z}{x}, \frac{w-y}{x}\right) \wedge(1,0)\right]\right) \\
& =\left(\frac{z}{x}, \frac{w-y}{x}\right) \wedge(1,0)=\overline{\mathbf{I}_{1}}((x, y),(z, w)) . \\
& \underline{\mathbf{I}_{2}}((x, y),(z, w))=l\left(\mathbf{I}_{2}([(x, y),(x, y)],[(z, w),(z, w)])\right. \\
& =l\left(\left[\left(\frac{z}{x}, w-\frac{z y}{x}\right) \wedge(1,0),\left(\frac{z}{x}, w-\frac{z y}{x}\right) \wedge(1,0)\right]\right) \\
& =r\left(\left[\left(\frac{z}{x}, w-\frac{z y}{x}\right) \wedge(1,0),\left(\frac{z}{x}, w-\frac{z y}{x}\right) \wedge(1,0)\right]\right) \\
& =\left(\frac{z}{x}, w-\frac{z y}{x}\right) \wedge(1,0)=\underline{\mathbf{I}_{2}}((x, y),(z, w)) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \mathbf{I}_{i}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[\underline{\mathbf{I}_{i}}\left(\left(x_{2}, y_{2}\right),\left(z_{1}, w_{1}\right)\right), \overline{\mathbf{I}}_{i}\left(\left(x_{1}, y_{1}\right),\left(z_{2}, w_{2}\right)\right)\right] .
\end{aligned}
$$

$\mathbf{N}_{1}, \mathbf{N}_{2}: L^{[2]} \rightarrow L^{[2]}$ as follows:

$$
\begin{aligned}
\mathbf{N}_{1}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) & =\left[I_{1}\left(\left(x_{2}, y_{2}\right),\left(\frac{1}{2}, 1\right)\right), I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, \frac{1-y_{2}}{x_{2}}\right),\left(\frac{1}{2 x_{1}}, \frac{1-y_{1}}{x_{1}}\right)\right] \\
\mathbf{N}_{2}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) & =\left[I_{2}\left(\left(x_{2}, y_{2}\right),\left(\frac{1}{2}, 1\right)\right), I_{2}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, 1-\frac{y_{2}}{2 x_{2}}\right),\left(\frac{1}{2 x_{1}}, 1-\frac{y_{1}}{2 x_{1}}\right)\right] .
\end{aligned}
$$

(2) Define $I_{1}, I_{2}: L \times L \rightarrow L$ as follows:

$$
\begin{aligned}
& I_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\frac{x_{2}}{x_{1}}, y_{2}-2 x_{2}+\frac{2 x_{2}-2 x_{2} y_{1}}{x_{1}}\right) \wedge(1,0) \\
& I_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\frac{x_{2}}{x_{1}}, 1-\frac{y_{1}+2-2 y_{2}}{2 x_{1}}\right) \wedge(1,0) .
\end{aligned}
$$

Then it satisfies (I1)-(I4) and (I5) from:

$$
\begin{aligned}
& I_{1}\left(\left(x_{1}, y_{1}\right), I_{2}\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)\right)=I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{x_{3}}{x_{2}}, 1-\frac{y_{2}+2-2 y_{3}}{2 x_{2}}\right) \wedge(1,0)\right) \\
& =\left(\frac{x_{3}}{x_{1} x_{2}}, \frac{2 x_{1} x_{2}-x_{1} y_{2}-2 x_{1}+2 x_{1} y_{3}-4 x_{3} x_{1}+4 x_{3}-4 x_{3} y_{1}}{2 x_{1} x_{2}}\right) \wedge(1,0) \\
& I_{2}\left(\left(x_{2}, y_{2}\right), I_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)\right)=I_{2}\left(\left(x_{2}, y_{2}\right),\left(\frac{x_{3}}{x_{1}}, y_{3}-2 x_{3}+\frac{2 x_{3}-2 x_{3} y_{1}}{x_{1}}\right) \wedge(1,0)\right) \\
& =\left(\frac{x_{3}}{x_{1} x_{2}}, \frac{2 x_{1} x_{2}-x_{1} y_{2}-2 x_{1}+2 x_{1} y_{3}-4 x_{3} x_{1}+4 x_{3}-4 x_{3} y_{1}}{2 x_{1} x_{2}}\right) \wedge(1,0)
\end{aligned}
$$

(I5) $I_{2}\left(I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right),\left(\frac{1}{2}, 1\right)\right)=\left(x_{1}, y_{1}\right)=I_{1}\left(I_{2}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right),\left(\frac{1}{2}, 1\right)\right)$ from

$$
\begin{aligned}
& I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right)=\left(\frac{1}{2 x_{1}}, \frac{1-y_{1}}{x_{1}}\right)=n_{1}\left(x_{1}, y_{1}\right) \\
& I_{2}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right)=\left(\frac{1}{2 x_{1}}, 1-\frac{y_{1}}{2 x_{1}}\right)=n_{2}\left(x_{1}, y_{1}\right)
\end{aligned}
$$

Hence $\left(I_{1}, I_{2}\right)$ is a pair of implications and $\left(n_{1}, n_{2}\right)$ is a pair of negations. By Theorem 3.4 (4), we obtain: $\mathbf{I}_{1}, \mathbf{I}_{2}: L^{[2]} \times L^{[2]} \rightarrow L^{[2]}$ as follows:

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[I_{1}\left(\left(x_{2}, y_{2}\right),\left(z_{1}, w_{1}\right), I_{1}\left(\left(x_{1}, y_{1}\right),\left(z_{2}, w_{2}\right)\right)\right]\right. \\
& =\left[\left(\frac{z_{1}}{x_{2}}, w_{1}-2 z_{1}+\frac{2 z_{1}-2 z_{1} y_{2}}{x_{2}}\right) \wedge(1,0),\left(\frac{x_{2}}{z_{1}}, y_{2}-2 x_{2}+\frac{2 x_{2}-2 x_{2} w_{1}}{z_{1}}\right) \wedge(1,0)\right] \\
& \mathbf{I}_{2}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[I_{2}\left(\left(x_{2}, y_{2}\right),\left(z_{1}, w_{1}\right), I_{2}\left(\left(x_{1}, y_{1}\right),\left(z_{2}, w_{2}\right)\right)\right]\right. \\
& =\left[\left(\frac{z_{1}}{x_{2}}, 1-\frac{w_{1}+2-2 y_{2}}{2 z_{1}}\right) \wedge(1,0),\left(\frac{z_{2}}{x_{1}}, 1-\frac{y_{1}+2-2 w_{2}}{2 x_{1}}\right) \wedge(1,0)\right]
\end{aligned}
$$

Since $\mathbf{I}_{1}([(x, y),(x, y)],[(z, w),(z, w)])=\left[\left(\frac{z}{x}, w-2 z+\frac{2 z-2 z y}{x}\right) \wedge(1,0),\left(\frac{z}{x}, w-2 z+\frac{2 z-2 z y}{x}\right) \wedge\right.$ $(1,0)]$ and $\mathbf{I}_{2}([(x, y),(x, y)],[(z, w),(z, w)])=\left[\left(\frac{z}{x}, 1-\frac{w+2-2 y}{2 z}\right) \wedge(1,0),\left(\frac{z}{x}, 1-\frac{w+2-2 y}{2 z}\right) \wedge(1,0)\right]$, \mathbf{I}_{1} and \mathbf{I}_{2} satisfy the condition of Theorem 2.6(4). Thus $\left(\underline{\mathbf{I}_{1}}, \underline{\mathbf{I}_{2}}\right)$ is a pair of implications such that

$$
\begin{aligned}
& \underline{\mathbf{I}_{1}}((x, y),(z, w))=l\left(\mathbf{I}_{1}([(x, y),(x, y)],[(z, w),(z, w)])\right. \\
& =l\left(\left[\left(\frac{z}{x}, w-2 z+\frac{2 z-2 z y}{x}\right) \wedge(1,0),\left(\frac{z}{x}, w-2 z+\frac{2 z-2 z y}{x}\right) \wedge(1,0)\right]\right) \\
& =r\left(\left[\left(\frac{z}{x}, w-2 z+\frac{2 z-2 z y}{x}\right) \wedge(1,0),\left(\frac{z}{x}, w-2 z+\frac{2 z-2 z y}{x}\right) \wedge(1,0)\right]\right) \\
& =\left(\frac{z}{x}, w-2 z+\frac{2 z-2 z y}{x}\right) \wedge(1,0)=\overline{\mathbf{I}_{1}}((x, y),(z, w)) . \\
& \quad \underline{\mathbf{I}_{2}}((x, y),(z, w))=l\left(\mathbf{I}_{2}([(x, y),(x, y)],[(z, w),(z, w)])\right. \\
& \quad=l\left(\left[\left(\frac{z}{x}, 1-\frac{w+2-2 y}{2 z}\right) \wedge(1,0),\left(\frac{z}{x}, 1-\frac{w+2-2 y}{2 z}\right) \wedge(1,0)\right]\right) \\
& \quad=r\left(\left[\left(\frac{z}{x}, 1-\frac{w+2-2 y}{2 z}\right) \wedge(1,0),\left(\frac{z}{x}, 1-\frac{w+2-2 y}{2 z}\right) \wedge(1,0)\right]\right) \\
& \quad=\left(\frac{z}{x}, 1-\frac{w+2-2 y}{2 z}\right) \wedge(1,0)=\underline{\mathbf{I}_{2}}((x, y),(z, w)) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \mathbf{I}_{i}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right],\left[\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right]\right) \\
& =\left[\underline{\mathbf{I}_{i}}\left(\left(x_{2}, y_{2}\right),\left(z_{1}, w_{1}\right)\right), \overline{\mathbf{I}_{i}}\left(\left(x_{1}, y_{1}\right),\left(z_{2}, w_{2}\right)\right)\right] .
\end{aligned}
$$

$\mathbf{N}_{1}, \mathbf{N}_{2}: L^{[2]} \rightarrow L^{[2]}$ as follows:

$$
\begin{aligned}
\mathbf{N}_{1}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) & =\left[I_{1}\left(\left(x_{2}, y_{2}\right),\left(\frac{1}{2}, 1\right)\right), I_{1}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, \frac{1-y_{2}}{x_{2}}\right),\left(\frac{1}{2 x_{1}}, \frac{1-y_{1}}{x_{1}}\right)\right] \\
\mathbf{N}_{2}\left(\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]\right) & =\left[I_{2}\left(\left(x_{2}, y_{2}\right),\left(\frac{1}{2}, 1\right)\right), I_{2}\left(\left(x_{1}, y_{1}\right),\left(\frac{1}{2}, 1\right)\right)\right] \\
& =\left[\left(\frac{1}{2 x_{2}}, 1-\frac{y_{2}}{2 x_{2}}\right),\left(\frac{1}{2 x_{1}}, 1-\frac{y_{1}}{2 x_{1}}\right)\right] .
\end{aligned}
$$

Conflict of Interests

The author declares that there is no conflict of interests.

REFERENCES

[1] B.C. Bedregal, On interval fuzzy negations, Fuzzy Sets and Systems, 161 (2010), 2290-2313.
[2] B.C. Bedregal, On interval fuzzy S-implications, Information Sciences, 180 (2010), 1373-1389.
[3] B.C. Bedregal, R.H.N. Santiago, Interval representations, Lukasiewicz implicators and Smetz-Magrez axioms, Inform. Sci. 221 (2013), 192-200.
[4] B.C. Bedregal, A. Takahashi, The best interval representations of t-norms and automorphisms, Fuzzy Sets and Systems, 161 (2006), 3220-3230.
[5] P. Flonder, G. Georgescu, A. lorgulescu, Pseudo t-norms and pseudo-BL algebras, Soft Comput. 5 (2001), 355-371.
[6] G. Georgescu, A. Popescue, Non-commutative Galois connections, Soft Comput. 7 (2003), 458-467.
[7] G. Georgescu, A. Popescue, Non-commutative fuzzy structures and pairs of weak negations, Fuzzy Sets and Systems, 143 (2004), 129-155.
[8] G. Georgescu, A. Popescue, Non-dual fuzzy connections, Arch. Math. Log. 43 (2004), 1009-1039.
[9] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995.
[10] D. Li, Y. Li, Algebraic structures of interval-valued fuzzy (S, N)-implications, Int. J. Approx. Reason. 53 (2012), 892-900.
[11] Y.C. Kim, Pairs of interval negations and interval implications, Int. J. Pure Appl. Math. 88 (2013), 305-319.
[12] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.

