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1. INTRODUCTION

Allen’s interval algebra, also known as Allen’s temporal logic or ATL [9], is a temporal

logic which is characterized by the relationship of events. Since it was first introduced in

1983 [1], it is frequently used in artificial intelligence, particularly in planning [9]. One

reason is because the syntax and semantics of ATL are both intuitively easy to understand.

Right propositional neighborhood logic (RPNL) is the future-time fragment of propo-

sitional neighborhood logic (PNL). It was first proposed by Goranko et al. in 2003 [8].

Satisfiability problems for RPNL and PNL over discrete and dense linearly ordered sets is

decidable [5, 6]. These results mean that RPNL and PNL are suitable for continuous-time

systems verification.

In 2006, Roşu and Bensalem [9] investigated the relationship between ALTL (Allen

linear temporal logic) and LTL (linear temporal logic). ALTL is a variant of ATL whose

models are interpreted over linear domains that are order isomorphic to natural numbers.

It is shown that any ALTL formula can be translated into an equisatisfiable1 LTL formula

using a linear-time algorithm. This translation enables LTL verification techniques on

a system whose specification is described using ALTL. Yet, since any ALTL model is

interpreted over a discrete domain, ALTL is not always appropriate for continuous-time

systems formalization.

In this paper we give a formal and systematic investigation of the relationship between

ATL over arbitrary (discrete or dense) linearly ordered domains and the temporal logic

RPNL. To have a semantic basis for such a relationship, we first define ATL+
B as a variant

of ATL whose models can be interpreted over arbitrary bounded below linearly ordered

sets. We adapt some of our definitions, lemmas, and theorems from [9].

1In logic, two formulas are equisatisfiable if both are satisfiable or both are not.



TRANSLATION OF AN ATL VARIANT TO RPNL 1407

2. PRELIMINARIES

2.1. Some Basic Notations. Readers are assumed to be familiar with linear order. We

recall here only some basics and introduce our notations.

Definition 2.1. Let (T,≤) be a linearly ordered set, i.e. every two elements of T are

comparable. Suppose A and B are two non-empty subsets of T . We define A≤ B iff a≤ b

for all a∈ A and b∈ B. Again by abuse of notation, for t ∈ T , we define t ≤ A (resp. t ≥ A)

iff t ≤ a (resp. t ≥ a) for all a ∈ A. The notations A < B, t < A, and t > A are defined

analogously. In addition, the boundedness, minimal element, maximal element, infimum

(greatest lower bound), and supremum (least upper bound) for any non-empty subset of

T are defined as usual.

A linearly ordered set (T,≤) is: discrete iff for all a,b ∈ T such that a < b there are

c,d ∈ T such that a < c ≤ b and a ≤ d < b, and there is no e ∈ T satisfying a < e < c or

d < e < b; dense iff for all a,b ∈ T such that a < b there is c ∈ T satisfying a < c < b; and

bounded below iff there is m ∈ T such that m ≤ T . The element m is called the minimal

element of T . The following definition gives the formal description of an interval over a

linearly ordered set.

Definition 2.2. Let (T,≤) be a linearly ordered set. An interval I over T is a non-empty

subset of T with a convex property, i.e. for all i1, i2 ∈ I and t ∈ T , we have i1 < t < i2

implies t ∈ I. We say I is closed iff inf(I) ,sup(I) ∈ I. A closed interval with inf(I) = a

and sup(I) = b is denoted by [a,b]. An interval is a strict interval iff a < b, while it is a

point interval if a = b.
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In this paper, the term interval refers to a closed interval unless otherwise specified. We

denote the set of all closed intervals over (T,≤) by I(T ) or simply I when T is understood

from the context.

2.2. RPNL: Syntax, Semantics, and Satisfiability Problem. We give a brief introduc-

tion to the syntax and semantics of right propositional neighborhood logic (RPNL) inter-

preted over arbitrary linearly ordered sets. More detailed explanation regarding RPNL’s

variants, syntaxes, semantics, proof systems, and satisfiability problems can be found in

[5, 6, 8] and the references therein. There are three common variants of RPNL, namely:

RPNL−, RPNL+, and RPNLπ+. Bresolin et al. show that RPNLπ+ is strictly more expres-

sive than RPNL− and RPNL+ [3, 4]. Due to this reason, we only use RPNLπ+ throughout

this paper. From now on, the term RPNL here refers to RPNLπ+.

The language of RPNL consists of a set P of atomic propositions; the propositional

connectives ¬ and ∨; the modal constant π; and the right neighborhood modality 3r. The

other propositional connectives, as well as the logical constants > (true) and ⊥ (false), are

defined as usual. The formulas of RPNL are defined recursively by the following grammar:

ϕ ::= p | π | ¬ϕ | ϕ ∨ϕ | 3rϕ ,

where p ∈P . We use the modality �r as a shorthand for ¬3r¬. Henceforth, we identify

¬3r¬ϕ with �rϕ . A formula of the form 3r (3rϕ), 3r (�rϕ), �r (3rϕ), or �r (�rϕ),

will be written without parentheses, i.e. 3r3rϕ , 3r�rϕ , �r3rϕ , or �r�rϕ , respectively.

We will sometimes write RPNLP to emphasize RPNL which relies exclusively on a

set P of atomic propositions. The set of all well-formed RPNLP formulas is denoted by

F(RPNLP) or simply F(RPNL) when P is understood from the context. The size of an

RPNL formula ϕ , denoted by |ϕ|, is the number of operators and modalities in ϕ .



TRANSLATION OF AN ATL VARIANT TO RPNL 1409

An RPNLP model is a tuple M = (I(T ) ,V ), where I(T ) is the set of all intervals over

(T,≤), and V : I(T )→ 2P is a valuation function that assigns to every interval the set of

atomic propositions true on it. Given a model M= (I(T ) ,V ) and an interval [a,b]∈ I(T ),

the semantics of RPNLP is defined recursively by the satisfiability relation  as follows:

for every p ∈P , M, [a,b]  p iff p ∈ V ([a,b]); M, [a,b]  π iff a = b; M, [a,b]  ¬ϕ iff

M, [a,b] 6 ϕ; M, [a,b]  ϕ1∨ϕ2 iff M, [a,b]  ϕ1 or M, [a,b]  ϕ2; and M, [a,b]  3rϕ

iff there is c≥ b such that M, [b,c]  ϕ .

An RPNL formula ϕ is satisfiable iff there is a model M = (I(T ) ,V ) and [a,b] ∈ I(T )

such that M, [a,b] ϕ . The satisfiability problem for RPNL is the problem of determining

whether an RPNL formula is satisfiable of not. The satisfiability problem for RPNL over

any dense linearly ordered set is decidable in NEXPTIME [6].

2.3. HRPNL: Syntax and Semantics. There is no constraint on the valuation function

in RPNL. In particular, given an interval [a,b], it may happen that p ∈ V ([a,b]) but

p 6∈ V ([c,d]) for some [c,d] ⊂ [a,b]. In other words, the truth of an atomic formula at

an interval does not necessarily imply the truth of that atomic formula at every subinter-

val of it. Due to this reason, we now construct a variant of RPNL that is imposed to a

homogeneity restriction for all atomic propositions.

The homogeneity restriction is applied in such a way that for any p ∈P , the satisfia-

bility of p at an interval [a,b] implies the satisfiability of p at every subinterval of [a,b].

We define HRPNL as a variant of RPNL whose syntax is exactly the same as RPNL’s,

but with slightly different semantics. A version of HRPNL which relies exclusively on a

set P of atomic propositions will sometimes denoted by HRPNLP . The set of all well-

formed HRPNLP formulas is denoted by F(HRPNLP) or simply F(HRPNL) when P

is understood from the context. The following two definitions formalize the semantics of

HRPNL.



1410 MUHAMMAD ARZAKI AND ANGGHA SATYA NUGRAHA

Definition 2.3. A model for an HRPNLP formula is a tuple M = (I(T ) ,V ), where I(T )

is the set of all intervals over (T,≤) and V : T → 2P is a valuation function that assigns

to every element of T the set of atomic propositions true on it.

Definition 2.4. Let M = (I(T ) ,V ) be an HRPNLP model and let [a,b] ∈ I(T ). Given

an HRPNLP formula ϕ , the satisfiability relation M, [a,b]  ϕ is defined recursively as

follows: for every p ∈P , M, [a,b]  p iff p ∈ V (t), for all t ∈ [a,b]; the satisfiability

relation definition for a formula of the form π , ¬ϕ , ϕ1 ∨ ϕ2, or 3rϕ , is equivalent to

satisfiability relation definition for corresponding formula in RPNL.

From Definition 2.3, for any HRPNL model M = (I(T ) ,V ), we can construct a corre-

sponding RPNL model M = (I(T ) ,V ) by defining V in such a way that for any [a,b] ∈

I(T ): p ∈ V ([a,b]) iff p ∈V (t) for all t ∈ [a,b]. Furthermore, Definition 2.4 implies that

for any p∈P and [a,b]∈ I(T ), whenever M, [a,b] p, then for all [c,d]⊆ [a,b], we have

M, [c,d]  p.

3. ALLEN’S TEMPORAL LOGIC (ATL), ATL+, AND ATL+
B

Allen’s temporal logic (ATL) is a formal framework for specifying relative temporal

information about two events as in “event 1 overlaps event 2” [1]. ATL formulas are

constructed from predicates that express binary relation between events based on their

temporal interpretations. The temporal interpretation of any event in ATL is an interval.

3.1. Intuitive Meaning of ATL Formulas. There are thirteen basic relations between

any two events in ATL: Equals, Before, After, Meets, MetBy, Overlaps, OverlappedBy,

Contains, During, Starts, StartedBy, Ends, and EndedBy2. The relations After, MetBy,

OverlappedBy, During, StartedBy, and EndedBy, are the inverses of Before, Meets, Overlaps,

2We adapt [9]’s choice of notation, which can differ from what is found in some other works.
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Contains, Starts, and Ends, respectively. Suppose e and f are two events. The intuitive

meaning of each relation is illustrated in Figure 1. From the illustration in Figure 1, we

FIGURE 1. Basic relations of two events.

know that, for example, Contains(e, f ) (or During (e, f )) holds iff f starts strictly after e

starts, and terminates strictly before e ends. Other intuitive descriptions in English can be

obtained similarly (see [9] for complete explanation).

In addition to the thirteen binary relations between events, ATL in this paper is also

endowed with predicates Holds and Occurs as in [2, 9]. These predicates are useful to state

that some propositions hold all the times or sometime during an event. The intuitive mean-

ings for Holds and Occurs are explained as follows. Suppose β is a propositional formula

and e is an event. The formula Holds(β ,e) is true iff the formula β is satisfied all the times

when event e happens. The formula Occurs(β ,e) is a shorthand of ¬Holds(¬β ,e), and

thus it is true iff there is a moment when formula β is satisfied and event e takes place.

An atomic ATL formula has one of the following forms: one of the thirteen predi-

cates that express binary relations between events, or a formula of the form Holds(β ,e) or
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Occurs(β ,e), where β is a propositional formula and e is an event. A well-formed ATL

formula is any boolean combination of the aforementioned atomic ATL formulas. We now

illustrate the formalization of a system using ATL.

Example 3.1. A system has to perform three sequential processes, namely P1, P2, and P3.

No two processes are performed simultaneously. For each 1≤ i≤ 2, the process Pi needs

to be completed before executing process Pi+1.

In addition to P1, P2, and P3, there is a main process, denoted by Pmain, that has to be

active whenever P1, P2, and P3 are performed. The process Pmain starts before or at the

same time as P1. Moreover, Pmain and P3 terminate together.

There is also a property denoted by Access. For each 1 ≤ i ≤ 3, when each Pi is

performed, there is a moment while property Access is satisfied.

We now show how to formalize the system in ATL. The description in the first paragraph

is specified as

(Meets(P1,P2)∨Before(P1,P2))∧ (Meets(P2,P3)∨Before(P2,P3)) .

The description in the second paragraph is specified as

(Starts(P1,Pmain)∨During (P1,Pmain))∧Ends(P3,Pmain) .

And finally, the description in the third paragraph is specified as

Occurs(Access,P1)∧Occurs(Access,P2)∧Occurs(Access,P3) .

3.2. Syntax and Semantics of ATL+ and ATL+
B . We now turn to formally presenting

the syntax and semantics of ATL+
B . In order to do this, a variant of ATL called ATL+

is first defined. It uses closed intervals for the temporal interpretation of events. ATL+
B

is a version of ATL+ with models limited to bounded below linearly ordered sets. The
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language of ATL+ relies on a countable set P of atomic propositions and a set E of events.

We will sometimes denote an ATL+ over P and E by ATL+ (P,E ). The formulas of

ATL+ (P,E ) are defined recursively by the following grammar:

φ ::= α | ¬φ | φ ∨φ

α ::= Equals(e, f ) | Before(e, f ) |Meets(e, f ) | Overlaps(e, f ) |

Contains(e, f ) | Starts(e, f ) | Ends(e, f ) | Holds(β ,e)

β ::= p | ¬β | β ∨β ,

where p ∈P and e, f ∈ E . The other propositional connectives, as well as logical con-

stants > and ⊥, are defined as usual. The reader should note that the syntaxes of ATL and

ATL+ are exactly the same (see [2, 9] for the syntax of ATL which includes Holds and

Occurs predicates).

We define a β -formula in ATL+ (P,E ) as a propositional formula over the set P . A

formula is an α-formula or an atomic ATL+ (P,E ) formula iff it consists exactly of one

formula which is a binary relation between events, or between a propositional formula and

an event. An atomic formula which considers the relation After, MetBy, OverlappedBy,

During, StartedBy, or EndedBy is defined using the relation Before, Meets, Overlaps,

Contains, Starts, or Ends, respectively. As mentioned previously, an atomic formula of

the form Occurs(β ,e) is considered as a shorthand for ¬Holds(¬β ,e).

The set of all well-formed ATL+ (P,E ) formulas is denoted by F
(
ATL+ (P,E )

)
or

simply F
(
ATL+

)
when P and E are understood from the context. The size of an ATL+

formula φ , denoted by |φ |, is the number of all boolean operators in φ . For example, we

have |¬Equals(e1,e2)∨¬Holds(¬p1,e1)|= 4 and

|¬Equals(e1,e2)∨¬Holds(¬p1∨¬p2,e1)| = 6. Assuming that all ATL+ formulas only

use ¬ or ∨ as logical operators, by structural induction on φ , it is not difficult to prove

that the number of α-formulas (counting multiplicity) within φ is always one more than
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the number of all conjunction operators in φ by ignoring all conjunction operators that

present in any β -formula within φ .

In order to formalize the semantics of ATL+, we first define an appropriate notion of

model. The following definition is adapted from Definition 3 in [9].

Definition 3.2. An ATL+ (P,E ) model is a 4-tuple M = (T,<,v,σ), where (T,<) is a

linearly ordered set, v : T → 2P is a valuation map that assigns to every t ∈ T the set of

atomic propositions true on it, and σ : E → I(T ) is a mapping from each event to a closed

interval over T .

The temporal interpretation of an event e ∈ E is the interval σ (e) which is closed

and bounded. This means every event in ATL+ happens within a limited time. Before

we define the semantics of ATL+ formula, we first define the satisfiability relation for

β -formulas in ATL+ (P,E ).

Definition 3.3. Let M = (T,<,v,σ) be an ATL+ (P,E ) model and let t ∈ T . For any

propositional formula β over the set P , the satisfiability relation M , t |= β is defined

recursively as follows: M , t |= p iff p∈ v(t), for all p∈P; M , t |=¬β iff M , t 6|= β ; and

M , t |= β1∨β2 iff M , t |= β1 or M , t |= β2.

We are now ready to give the formal semantics of ATL+ formulas. The following defi-

nition is adapted from Definition 4 in [9].

Definition 3.4. Let M = (T,<,v,σ) be an ATL+ (P,E ) model. The satisfiability relation

M |= φ for an ATL+ (P,E ) formula φ is defined recursively on the structure of φ as

follows:

If φ is an α-formula, and suppose e, f ∈ E and β is a propositional formula over the

set A P , then: M |= Equals(e, f ) iff σ (e) = σ ( f ); M |= Before(e, f ) iff σ (e)< σ ( f );
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M |= Meets(e, f ) iff there is t ∈ T such that σ (e)∩ σ ( f ) = {t} and (σ (e)r{t}) <

(σ ( f )r{t}); M |= Overlaps(e, f ) iff there is [a,b] ∈ I(T ) where a < b such that σ (e)∩

σ ( f ) = [a,b], there is te ∈ σ (e) satisfying te < σ ( f ), and there is t f ∈ σ ( f ) satisfying

t f > σ (e); M |= Contains(e, f ) iff there are se, te ∈ σ (e) such that se < σ ( f )< te; M |=

Starts(e, f ) iff σ (e) ⊂ σ ( f ), there is t f ∈ σ ( f ) such that t f > σ (e), but there is no

t f ∈ σ ( f ) such that t f < σ (e); M |= Ends(e, f ) iff σ (e) ⊂ σ ( f ), there is t f ∈ σ ( f )

such that t f < σ (e), but there is no t f ∈ σ ( f ) such that t f > σ (e); and M |= Holds(β ,e)

iff M , t |= β , for all t ∈ σ (e), where M , t |= β is the satisfiability relation in Definition

3.3;

If φ is of the form ¬φ1, then M |= ¬φ1 iff M 6|= φ1;

If φ is of the form φ1∨φ2, then M |= φ1∨φ2 iff M |= φ1 or M |= φ2.

The reader should verify that in Definition 3.4, the satisfiability relations for atomic

formulas with the predicates Meets, Before, and Overlaps for ATL+ are slightly different

to those for ATL in [9]. However, this difference does not affect the mutual exclusiveness

of the thirteen possible binary relations between events. This means that, for any pair

(e, f ) of event, there is exactly one relation R among {Equals,Before, . . . ,EndedBy} such

that M |= R(e, f ).

We define ATL+
B as a version of ATL+ whose models are limited to bounded below

linearly ordered sets. Thus, any 4-tuple M = (T,<,v,σ) in Definition 3.2 is an ATL+
B

model iff (T,≤) has a minimal element. The set of all well-formed ATL+
B formulas is

denoted by F
(
ATL+

B (P,E )
)

or simply F
(
ATL+

B
)

when P and E are understood from

the context.
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4. TRANSLATION FROM ATL+
B TO HRPNL

A translation between two temporal logics is a satisfiability-preserving mapping be-

tween them. Consider two temporal logics L1 and L2 whose sets of all well-formed

formulas are denoted by F(L1) and F(L2), respectively. In general, a translation from

L1 to L2 is a mapping τ : F(L1)→ F(L2) satisfying the following condition: a formula

ϕ ∈ F(L1) is satisfiable in L1 iff τ (ϕ) ∈ F(L2) is satisfiable in L2 [7].

To construct a translation from ATL+
B to HRPNL, first observe that HRPNL relies solely

on a set of atomic propositions, whereas ATL+
B relies on a set of propositional atoms and a

set of events. Hence, in order to establish a semantic relationship between them, we have to

add a syntactic representation of each event in ATL+
B to HRPNL. We adapt the techniques

from [9] and add an atomic propositions pe to the syntax of HRPNL for each event e in

ATL+
B . Every event e in ATL+

B is associated with precisely one atomic proposition pe.

We denote the set of all atomic propositions pe by PE . Given an ATL+
B which relies on

a set P of atomic propositions and a set E of events, the corresponding HRPNL relies

exclusively on the set P ∪PE of propositional atoms. From now on, we abbreviate

P ∪PE by PE .

4.1. Construction of HRPNL Models. Suppose M = (T,<,v,σ) is an ATL+
B (P,E )

model over (T,≤). The corresponding HRPNLPE model is a pair M = (I(T ) ,V ), for a

particular valuation function V . The function V must be able to represent the truth of each

p ∈P ⊂PE and the temporal interpretation of each e ∈ E . One way to do this is by

defining V such that for any t ∈ T we have: p ∈ V (t) iff p ∈ v(t), for all p ∈P; and

pe ∈V (t) iff t ∈ σ (e), for all e ∈ E and pe ∈PE .

Lemma 4.1. Let M =(T,<,v,σ) be an ATL+
B (P,E ) model over (T,≤) and M =(I(T ) ,V )

be an HRPNLPE model with valuation function V such that for each t ∈ T : p ∈ V (t) iff
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p ∈ v(t) for all p ∈P ⊂PE ; and pe ∈ V (t) iff t ∈ σ (e) for all e ∈ E and pe ∈PE ⊂

PE . Then for all t ∈ D and [t1, t2] ∈ I(T ), we have: M, [t, t]  p iff M , t |= p, for all

p ∈P; and M, [t1, t2]  pe iff [t1, t2]⊆ σ (e), for all pe ∈PE and e ∈ E .

Proof. The proof follows immediately from Definitions 2.4, 3.2, 3.3, and 3.4. Observe

that for any p ∈P ⊂PE and t ∈ T , and we have: M, [t, t]  p iff p ∈ V (t) iff p ∈ v(t)

iff M , t |= p. For any pe ∈PE ⊂PE and [t1, t2] ∈ I(T ) we have: M, [t1, t2]  pe iff

pe ∈ V (t) for all t ∈ [t1, t2], pe ∈ V (t) for all t ∈ [t1, t2] iff t ∈ σ (e) for all t ∈ [t1, t2], and

t ∈ σ (e) for all t ∈ [t1, t2] iff [t1, t2]⊆ σ (e). Thus, M. [t1, t2]  pe iff [t1, t2]⊆ σ (e). �

In any model M of ATL+
B (P,E ), the temporal interpretation of each event e ∈ E

is a closed interval over (T,≤). As a consequence, in the corresponding model M of

HRPNLPE , every atomic proposition pe has to be satisfied precisely in one interval. We

adapt following definition from Definition 5 in [9].

Definition 4.2. For every pe ∈PE , we define ψe as a formula

3r3r pe∧¬3r3r (pe∧3r (¬pe∧3r pe))∧¬3r�r pe

and ΨE as the set of all formulas of the form ψe where e ∈ E . In addition, for an

HRPNLPE model M, we write M, [t1, t2]  ΨE iff M, [t1, t2]  ψe for all ψe ∈ΨE .

Intuitively, the first conjunct of ψe, i.e. 3r3r pe, expresses that the temporal representa-

tion of event e in HRPNLPE is non-empty. The second conjunct of ψe, i.e.

¬3r3r (pe∧3r (¬pe∧3r pe)), ensures the convexity of the temporal representation of

event e in HRPNLPE . The third conjunct of ψe, i.e. ¬3r�r pe, describes that event e

happens within a limited time.
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Lemma 4.3. Let M = (I(T ) ,V ) be an HRPNLPE model over (T,≤) and let t0 be the

minimal element of T . Every atomic proposition pe ∈PE holds precisely in one interval

iff M, [t0, t0]  ΨE .

Proof. By Definition 4.2, M, [t0, t0]  ΨE iff the following satisfiability relations hold for

all pe ∈PE :

M, [t0, t0] 3r3r pe(1)

M, [t0, t0]  ¬3r3r (pe∧3r (¬pe∧3r pe))(2)

M, [t0, t0]  ¬3r�r pe.(3)

The satisfiability relation (1) holds iff there exists [t1, t2]∈ I(T ) such that M, [t1, t2] pe.

Consequently, (1) holds iff pe is at least satisfied in one interval.

The satisfiability relation M, [t0, t0]  3r3r (pe∧3r (¬pe∧3r pe)) holds iff there is

[t1, t2] ∈ I(T ) satisfying M, [t1, t2]  pe∧3r (¬pe∧3r pe), which holds iff there are

[t1, t2] , [t2, t3] , [t3, t4] ∈ I(T ) with t1 ≤ t2 ≤ t3 ≤ t4 such that M, [t1, t2]  pe and M, [t3, t4] 

pe, but M, [t2, t3] 6 pe. In other words, M, [t1, t2]  pe∧3r (¬pe∧3r pe) iff there are two

disjoint intervals [t1, t2] and [t3, t4] where pe holds. Thus (2) holds iff pe is never satisfied in

more than one interval. By Lemma 4.1, these conditions mean that the set σ (e) is convex.

The satisfiability relation M, [t0, t0]3r�r pe holds iff there is t1≥ t0 satisfying M, [t0, t1]

�r pe, which holds iff pe is satisfied in all intervals of the form [t1, t2] where t2 ≥ t1. In oth-

er words, M, [t0, t1]�r pe iff pe holds in an unbounded interval. Since (T,≤) is bounded

below by t0, any interval where pe holds is also bounded below. Therefore (3) holds iff pe

is never satisfied in an unbounded interval.

Based on explanation given, we conclude that any pe ∈PE holds exactly in one (closed)

interval iff M, [t0, t0]  ΨE . �
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In the following lemma, we show that there is a bijection between ATL+
B (P,E ) models

and HRPNLPE models that satisfy M, [t0, t0]  ΨE , where t0 is the minimal element of

the linearly ordered set.

Lemma 4.4. Given a bounded below linearly ordered set (T,≤) with minimal element

t0, a model M = (I(T ) ,V ) of HRPNLPE that satisfy M, [t0, t0]  ΨE can be constructed

uniquely from a model M = (T,<,v,σ) of ATL+
B (P,E ), and vice versa.

Proof. Consider a model M = (T,<,v,σ) of ATL+
B , where v : T → 2P and σ : E → I(T ).

We build a model M = (I(T ) ,V ) of HRPNLPE with valuation function V as explained

in Lemma 4.1. Since each e ∈ E holds precisely in one interval, by Lemma 4.3 we have

M, [t0, t0]  ΨE .

Conversely, suppose M = (I(T ) ,V ) is an HRPNLPE model that satisfy M, [t0, t0]ΨE .

We construct a 4-tuple (T,<,v,σ) where: v : T → 2P , with p ∈ v(t) iff p ∈ V (t) for all

t ∈ T and p ∈P ⊂PE ; and σ : E → 2T , with t ∈ σ (e) iff pe ∈ V (t), for all t ∈ v

and pe ∈PE ⊂PE . Since M, [t0, t0]  ΨE , by Lemma 4.3, each atomic proposition pe

holds precisely in one interval. Therefore, the map σ associates an event to an interval,

and thus σ (E ) ⊆ I(T ). We conclude that M = (T,<,v,σ) is a well-defined model of

ATL+
B (P,E ). �

Lemma 4.4 also ensures that any ATL+
B model has a unique corresponding HRPNLPE

model.

Definition 4.5. Given a model M =(T,<,v,σ) of ATL+
B (P,E ), the corresponding HRPNLPE

model for M , denoted by MM , is a pair (I(T ) ,V ) that satisfies M, [t0, t0]ΨE , where V is

the valuation function defined as in Lemma 4.1 and ΨE is the set of formulas in Definition

4.2.
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4.2. Translation Construction. We see that the truth of any ATL+
B formula is evaluated

in a model M , whereas the truth of an HRPNL formula is evaluated at an interval within a

model M. In order to represent the occurrences of all events over (T,≤), HRPNL formulas

are evaluated at [t0, t0], where t0 is the minimal element of T . The occurrence of each event

in any interval over (T,≤) is captured in HRPNL using the right neighborhood modality

3r. We can now define formally the notion of a translation from ATL+
B to HRPNL.

Definition 4.6. A translation from ATL+
B (P,E ) to HRPNLPE is a mapping

τ : F
(
ATL+

B (P,E )
)
→ F(HRPNLPE )

such that any formula φ ∈ F
(
ATL+

B (P,E )
)

satisfies M |= φ iff MM , [t0, t0]  τ (φ),

where MM is the corresponding HRPNLPE model for M in Definition 4.5.

We adapt the translation rule from ALTL for LTL in [9] in our translation from ATL+
B

to HRPNL. Recall that every ATL+
B formula is either an α-formula or a boolean combi-

nation of some α-formulas. Therefore, in order to construct a translation from ATL+
B to

HRPNL, we need to first translate each possible form of an α-formula into an equisatisfi-

able HRPNL formula.

FIGURE 2. Translation of Meets(e, f ).

For example, suppose M is an ATL+
B model over (T,≤) whose minimal element is

t0. In Figure 2, we give an illustration of how an α-formula of the form Meets(e, f ) is
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translated into an equisatisfiable HRPNL formula. In the corresponding model MM of

HRPNL, the events e and f are presented using propositional atoms pe and p f , respective-

ly. From Definition 3.4 and Lemma 4.1, we infer that there are [t1, t2] , [t2, t3] ∈ I(T ) such

that MM , [t1, t2]  pe and MM , [t2, t3]  p f . Moreover, since there is no nonpoint subin-

terval of [t1, t3] satisfying pe∧ p f , we have MM , [t0, t1]  ¬3r3r
(

pe∧ p f ∧¬π
)
. Conse-

quently, we obtain MM , [t0, t1]3r
(

pe∧3r p f
)
∧¬3r3r

(
pe∧ p f ∧¬π

)
. Since (by Defi-

nition 4.6) the resulting HRPNL formula has to be evaluated at interval [t0, t0], we conclude

that Meets(e, f ) is translated into 3r
(
3r
(

pe∧3r p f
)
∧¬3r3r

(
pe∧ p f ∧¬π

))
.

Definition 4.7. Let F
(
ATL+

B
)

and F(HRPNL) be two sets of all well-formed formulas of

ATL+
B (P,E ) and HRPNLPE , respectively. The function tr is a mapping from F

(
ATL+

B
)

to F(HRPNL) defined recursively on the structure of φ ∈ F
(
ATL+

B
)

as follows:

If φ is an α-formula, e, f ∈ E , and β is a propositional formula over P , then

tr [Equals(e, f )] := �r�r
(

pe↔ p f
)

,

tr [Before(e, f )] := 3r3r
(

pe∧3r
(
¬pe∧¬p f ∧3r p f

))
,

tr [Meets(e, f )] := 3r
(
3r
(

pe∧3r p f
)
∧¬3r3r

(
pe∧ p f ∧¬π

))
,

tr [Overlaps(e, f )] := 3r3r
(

pe∧¬p f ∧3r
(

pe∧ p f ∧¬π ∧3r
(
¬pe∧ p f

)))
,

tr [Contains(e, f )] := 3r3r
(

pe∧¬p f ∧3r
(

pe∧ p f ∧3r
(

pe∧¬p f
)))

,

tr [Starts(e, f )] := �r�r
(

pe→ p f
)
∧3r3r

(
¬pe∧ p f

)
∧¬3r3r

(
¬pe∧ p f ∧3r pe

)
,

tr [Ends(e, f )] := �r�r
(

pe→ p f
)
∧3r3r

(
¬pe∧ p f

)
∧¬3r3r

(
pe∧3r

(
¬pe∧ p f

))
,

tr [Holds(β ,e)] := �r�r (pe→ β ).

If φ is of the form ¬φ1, then tr [¬φ1] := ¬tr [φ1].

If φ is of the form φ1∨φ2, then tr [φ1∨φ2] := tr [φ1]∨ tr [φ2].
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We now illustrate how the function tr is applied to a particular ATL+
B formula.

Example 4.8. Let φ be the following ATL+
B (P,E ) formula

Equals(e, f )∨ (Meets( f ,g)∧Before( f ,g)) ,

for some e, f ,g ∈ E . Suppose pe, p f , and pg are the corresponding propositional atoms

for e, f , and g, respectively. The resulting HRPNLPE formula tr [φ ] is computed by first

using the following equalities: tr [¬φ1] = ¬tr [φ1], tr [φ1∨φ2] = tr [φ1]∨ tr [φ2], and

tr [φ1∧φ2] = tr [¬(¬φ1∨¬φ2)] = ¬tr [¬φ1∨¬φ2]

= ¬(tr [¬φ1]∨ tr [¬φ2]) = ¬(¬tr [φ1]∨¬tr [φ2])

= tr [φ1]∧ tr [φ2] .

Thus, we have

tr [Equals(e, f )∧ (Meets( f ,g)∨Before( f ,g))] =

tr [Equals(e, f )]∧ (tr [Meets( f ,g)]∨ tr [Before( f ,g)]) .

Finally, we translate each of the three α-formulas. Therefore, tr [φ ] is equivalent to

�r�r
(

pe↔ p f
)
∧

 3r
(
3r
(

pe∧ p f
)
∧¬3r3r

(
pe∧ p f ∧π

))
∨3r3r

(
pe∧3r

(
¬pe∧¬p f ∧3r p f

))
 .

We now prove that the function tr in Definition 4.7 is a translation from ATL+
B (P,E )

to HRPNLPE with respect to Definition 4.6.

Theorem 4.9. Let M be an ATL+
B (P,E ) model over (T,≤) whose minimal element is

t0. For any ATL+
B (P,E ) formula φ , the function tr in Definition 4.7 satisfies M |= φ iff

MM , [t0, t0]  tr [φ ], where MM is the corresponding HRPNLPE model for M .
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Proof. We prove the theorem by induction on the structure of φ ∈ F
(
ATL+

B
)
. Recall that

φ is expressible in one of the following forms: an α-formula, a formula of the form ¬φ1,

or a formula of the form φ1∨φ2, for some φ1,φ2 ∈ F
(
ATL+

B
)
.

Induction basis: Suppose φ is an α-formula, then there are eight different forms of φ .

We discuss only one of them, namely Before(e, f ), for some e, f ∈ E . We will show that

M |= Before(e, f ) iff MM , [t0, t0] 3r3r
(

pe∧3r
(
¬pe∧¬p f ∧3r p f

))
.

“Only if ”: By Definition 3.4, M |= Before(e, f ) iff σ (e) < σ ( f ). We deduce that

there are [t1, t2] , [t3, t4] ∈ I(T ) where t2 < t3 such that [t1, t2] ⊆ σ (e) and [t3, t4] ⊆ σ ( f ).

Moreover, we also have [t2, t3] 6⊆σ (e) and [t2, t3] 6⊆σ ( f ). Hence by Lemma 4.1, we obtain

MM , [t1, t2]  pe(4)

MM , [t2, t3]  ¬pe∧¬p f(5)

MM , [t3, t4]  pe.(6)

Observe that these satisfiability relations imply t2 < t3, since, if t2 = t3, then we get pe ∈

V (t2) from (4) and we get pe 6∈ V (t2) from (5), which is a contradiction. Thus we infer

that MM , [t1, t2]  pe∧3r
(
¬pe∧¬p f ∧3r p f

)
, and so the result follows.

“If ”: Observe that MM , [t0, t0]3r3r
(

pe∧3r
(
¬pe∧¬p f ∧3r p f

))
iff there is [t1, t2]∈

I(T ) such that MM , [t1, t2]  pe ∧3r
(
¬pe∧¬p f ∧3r p f

)
. This implies that there are

[t1, t2] , [t2, t3] , [t3, t4]∈ I(T ) such that MM , [t1, t2] pe, MM , [t2, t3]¬pe∧¬p f , and MM , [t3, t4]

p f . By using the same argument as before, we infer that t2 < t3. Moreover, by Lemma 4.1

and 4.3, we deduce that [t1, t2] ⊆ σ (e), [t3, t4] ⊆ σ ( f ), and [t2, t3] 6⊆ σ (e)∪σ ( f ). Since

t2 < t3, we conclude that σ (e)< σ ( f ), and thus M |= Before(e, f ).

The proof for other forms of α-formulas can be established analogously.

Induction step: As an induction hypothesis, we assume that the theorem holds for

φ1,φ2 ∈ F
(
ATL+

B
)
. Consider two following cases:
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Case 1. If φ has the form ¬φ1, for some φ1 ∈ F
(
ATL+

B
)
, then

M |= ¬φ1 iff M 6|= φ1 (by Definition 3.4)

iff MM , [t0, t0] 6 tr [φ1] (by induction hypothesis)

iff MM , [t0, t0]  ¬ tr [φ1] (by Definition 2.4)

Case 2. If φ has the form φ1∨φ2 for some φ1,φ2 ∈ F
(
ATL+

B
)
, then

M |= φ1∨φ2 iff M |= φ1 or M |= φ2 (by Definition 3.4)

iff MM , [t0, t0]  tr [φ1] or

MM , [t0, t0]  tr [φ2] (by induction hypothesis)

iff MM , [t0, t0]  tr [φ1]∨ tr [φ2] (by Definition 2.4)

This completes the proof. �

In Example 4.8, we see that tr [φ1∧φ2] = tr [φ1]∧ tr [φ2]. Moreover, it is easy to check

that tr [φ1→ φ2] = tr [φ1]→ tr [φ2] and tr [φ1↔ φ2] = tr [φ1]↔ tr [φ2].

4.3. Translation Algorithm. The translation algorithm from ATL+
B to HRPNL is con-

structed straightforwardly from the function tr in Definition 4.7. We restrict the inputs of

the algorithm to well-formed ATL+
B formulas that only use ¬ or ∨ as logical operators.

The logical connectives other that ¬ or ∨ are considered as abbreviations.

It is clear that Algorithm 4.1 terminates for any input since every well-formed ATL+
B

formula has finitely many operators. The running time of this algorithm on an input for-

mula φ depends on the number of invocations of tr on φ , which is related to the size of φ .

We define N¬ (φ) and N∨ (φ) as the number of all negation and disjunction operators in

φ , respectively. By assuming that all inputs only use ¬ or ∨ as logical operators, we have

|φ |= N¬ (φ)+N∨ (φ).
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Algorithm 4.1 function tr[φ ]

1: precondition: φ is a well-formed ATL+
B formula which is an α-formula, ¬φ1, or

φ1∨φ2, for some φ1,φ2 ∈ F
(
ATL+

B
)
.

2: postcondition: tr [φ ] computes an equisatisfiable HRPNL formula for φ .

3: begin function

4: case

5: φ is an α-formula: return tr[φ ] directly according to Definition 4.7

6: φ is ¬φ1: return ¬tr [φ1]

7: φ is φ1∨φ2: return tr[φ1]∨ tr [φ2]

8: end case

9: end function

For an ATL+
B formula φ , we define n¬ (φ) as the number of all negation operators in

φ by ignoring all negation operators that present in any β -formula within φ . The no-

tation n∨ (φ) is defined analogously for disjunction operator. It is obvious that n¬ (φ) ≤

N¬ (φ) and n∨ (φ)≤ N∨ (φ) with equalities hold iff φ contains no α-formula of the forms

Holds(β ,e) or Occurs(β ,e). For example, if φ is¬(¬Holds(¬p1,e1)∨¬(Holds(¬p1,e1)∨Holds(¬p1∨¬p2,e2))),

then n¬ (φ) = 3, N¬ (φ) = 7, n∨ (φ) = 2, and N∨ (φ) = 3.

The number of calls to tr performed by Algorithm 4.1 is given in the following lemma.

Lemma 4.10. The total number of invocations of tr on any input formula φ in Algorithm

4.1 is equal to 1+n¬ (φ)+2n∨ (φ).

Proof. We prove the lemma by structural induction on φ . Let ntr (φ) be the number of calls

to tr (including the recursive ones) performed by Algorithm 4.1 on φ . We will show that

ntr (φ) = 1+n¬ (φ)+2n∨ (φ).
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Induction basis: Suppose φ is an α-formula. It follows that ntr (φ) = 1, n¬ (φ) =

n∨ (φ) = 0, and thus the lemma holds.

Induction step: As an induction hypothesis, we assume that the lemma holds for

φ1,φ2 ∈ F
(
ATL+

B
)
. Consider two following cases:

Case 1. Suppose φ has the form¬φ1, for some φ1 ∈F
(
ATL+

B
)
. By inspecting Algorithm

4.1, we get ntr (¬φ1) = 1+ntr (φ1). Since n¬ (¬φ1) = 1+n¬ (φ1) and n∨ (¬φ1) = n∨ (φ1),

we have

ntr (¬φ1) = 1+ntr (φ1) = 1+(1+n¬ (φ1)+2n∨ (φ1))

= 1+n¬ (¬φ1)+2n∨ (¬φ1) .

Case 2. Suppose φ has the form φ1∨φ2, for some φ1,φ2 ∈ F
(
ATL+

B
)
. From Algorithm

4.1, we get ntr (φ1∨φ2) = 1+ntr (φ1)+ntr (φ2). Since n¬ (φ1∨φ2) = n¬ (φ1)+n¬ (φ2) and

n∨ (φ1∨φ2) = 1+n∨ (φ1)+n∨ (φ2), we obtain

ntr (φ1∨φ2) = 1+ntr (φ1)+ntr (φ2)

= 1+(1+n¬ (φ1)+2n∨ (φ1))+(1+n¬ (φ2)+2n∨ (φ2))

= 1+(n¬ (φ1)+n¬ (φ2))+2(1+n∨ (φ1)+n∨ (φ2))

= 1+n¬ (φ1∨φ2)+2n∨ (φ1∨φ2) .

This completes the proof. �

We can now measure the complexity of our translation algorithm with respect to the size

of the input formula.

Theorem 4.11. The complexity of Algorithm 4.1 is linear in terms of the size of an input

formula.
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Proof. Suppose each call to tr in Algorithm 4.1 takes time k, where k > 0. By Lemma

4.10, we deduce that the running time of Algorithm 4.1 satisfies k (1+n¬ (φ)+2n∨ (φ))≤

k (1+N¬ (φ)+2N∨ (φ))≤ 2k (N¬ (φ)+N∨ (φ)) = 2k |φ |, which is O (|φ |). �

4.4. Size Propagation of Translated Formula. From Example 4.8, we see that the trans-

lation makes the size of a resulting HRPNL formula is larger (i.e. contains more operators)

than its original size. Furthermore, by a straightforward induction on the structure of φ ,

we obtain |tr [φ ]|> |φ | for any φ ∈ F
(
ATL+

B
)
. The size propagation of an ATL+

B formula

is defined as the size of tr [φ ]. We will express |tr [φ ]| in terms of |φ |.

To simplify our analysis, we write α-formulas of the form Equals(e, f ), . . . , Ends(e, f ),

and Holds(β ,e) with R1 (e, f ), . . . , R7 (e, f ), and R8 (β ,e), respectively. It is clear that

the size propagation of any α-formula of the same form is always equal. For each 1 ≤

i ≤ 8, we denote the size propagation for α-formulas of the form Ri (. . . , . . .) by mi.

Given an ATL+
B formula φ , we define ni (φ) as the number of α-formulas of the form

Ri (. . . , . . .) within φ , where 1 ≤ i ≤ 8. For instance, if φ is (Meets(e, f )∧Holds(p,e))∨

(Meets( f ,g)∧Holds(q, f )), then n3 (φ) = 2, n8 (φ) = 2, and ni (φ) = 0 for i other than 2

or 8.

Theorem 4.12. Let φ be an ATL+
B formula. The size of tr [φ ] increases linearly in terms

of |φ |.

Proof. By structural induction on φ , we obtain |tr [φ ]| = |φ |+ ∑1≤i≤8 ni (φ) ·mi. Let

mmax = max1≤i≤8 mi, then |tr [φ ]| ≤ |φ |+ mmax ∑1≤i≤8 ni (φ). Since the number of α-

formulas within φ is not more than twice the size of φ , then ni (φ) ≤ 2 |φ | for 1 ≤ i ≤ 8,

and thus |tr [φ ]| ≤ (1+16mmax) |φ |. We conclude that |tr [φ ]| is O (|φ |) as required. �

Results from [5, 6] show that the satisfiability problems for HRPNL whose models are

interpreted over discrete or dense linearly ordered sets are decidable in NEXPTIME. This
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means that the satisfiability of an HRPNL formula ϕ can be checked by a nondeterministic

algorithm in O
(

2p(|ϕ|)
)

time, where p(|ϕ|) is a polynomial in |ϕ|. From this result and

Theorem 4.12, we can argue that the satisfiability of an ATL+
B formula φ can be checked

in O
(

2p(|φ |)
)

time.

5. CONCLUDING REMARKS

In this paper we show that every ATL+
B formula can be translated in linear time into

an equisatisfiable RPNL formula using Algorithm 4.1. The size of the resulting RPNL

formula increases linearly in terms of the size of the translated formula. These results

imply that RPNL verification technique can be used to verify a system whose specifications

are formalized using ATL+
B .
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