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1. Introduction 

The benchmark theory in mathematical finance is the Black-Scholes-Merton framework. 

Based on Gaussian asset return distributions the mathematics of option-pricing has many 

advantages and remains tractable even in complex situations (e.g. Hürlimann (2012a)). 

Unfortunately, this model assumes symmetric returns with very thin tails and is therefore not 
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consistent with real-world financial data. For example, observed sample logarithmic returns 

of equity market indices are often negatively skewed and have a much higher excess kurtosis 

than is allowed by a normal distribution. Many alternatives have been proposed, from stable 

models by Mandelbrot (1963) (see e.g. Mandelbrot (1997), part IV, Rachev and Mittnik 

(2000)) and generalized hyperbolic distributions (see e.g. Eberlein (2001)) to more recent 

tempered stable distribution (see e.g. Rachev et al. (2011)). A general model that 

encompasses many of the alternative proposals is the normal variance-mean (NVM) mixture 

model, which retains some of the convenience of the Gaussian model (see e.g. 

Barndorff-Nielsen et al. (1982), Bingham and Kiesel (2001), Hürlimann (2013a)). The NVM 

model includes important parametric families of distributions, namely the generalized 

hyperbolic (GH) distribution and the normal tempered stable (NTS) distribution. Analytically 

tractable members of the GH distribution are the normal-inverse Gaussian (NIG), the 

variance-gamma (VG) and the hyperbolic skew t (HST). The NTS family also includes the 

NIG distribution. The present contribution is devoted to statistical estimation of these 

multivariate models. Maximum likelihood estimation based on the EM-algorithm has been 

considered by many authors (e.g. Liu and Rubin (1995), Protassov (2004), Embrechts et al. 

(2005) and Hu (2005)). In particular, the latter author provides special algorithms for the 

multivariate normal inverse Gaussian (NIG), variance gamma (VG) and skew hyperbolic t 

(SHT). The EM-algorithm for the NIG has also been considered in Karlis and Papadimitriou 

(2003), Oeigard et al. (2005), and Chang et al. (2010) among others. Since computational 

implementation of the EM-algorithm is highly complex, it is justified to consider simpler 

alternative methods. We extend the multivariate moment method in Hürlimann (2013b) to the 

framework of the NVM mixture models and exemplify its statistical use for some of its most 

tractable members. Though moment methods are known to be statistically less efficient than 

the maximum likelihood method, there are numerous applications of them. A recent portfolio 

theoretical application of the moment method in the univariate NVM framework is 

Hürlimann (2013d). An application to bivariate option pricing is Hürlimann (2013c). A more 

detailed account of the content follows. 

   Section 2 recalls the multivariate NVM mixture model and briefly introduces the notions 

of coskewness and cokurtosis, or degree three and four central moments, which are often 
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used in the newer portfolio selection theory. Theorem 2.1 derives formulas for them for the 

multivariate NVM mixture model with fixed first four cumulants of the mixing distribution. 

Section 3 presents our general multivariate moment method in terms of coskewness and 

cokurtosis, which depends upon the solution of a sextic equation. It shows that the covariance 

matrix of the multivariate NVM mixture distribution is functionally dependent upon 

coskewness and cokurtosis. It enables simultaneous estimation of the parameters given 

sample estimates of the mean vector, coskewness vector and cokurtosis matrix. The obtained 

algorithm is a generalization of the moment method for the multivariate asymmetric Laplace 

distribution presented in Hürlimann (2013b) (see also Hürlimann (2013c) for the multivariate 

variance gamma distribution). This method is worked out in Section 4 for a selection of 

important mixing distributions, namely the inverse Gaussian, the gamma, the inverse gamma 

and the classical tempered stable distributions. These mixing distributions give rise 

respectively to the normal inverse Gaussian (NIG), the variance gamma (VG), the hyperbolic 

skew t (HST) and the normal tempered stable (NTS) multivariate distributions. A real-life 

application is studied in Section 5. It concerns the statistical estimation of the corresponding 

bivariate models for the Standard & Poors 500 and NASDAQ 100 stock market indices. The 

models are successfully fitted to seven bivariate daily data sets over different time periods. 

The goodness-of-fit of the margins are optimized and compared. The numerical evaluation of 

the goodness-of-fit statistics encountered in the data analysis are done with the fast Fourier 

transform (FFT) approximation of a distribution with known characteristic function (see the 

Appendix 1 for a summary of the method). For the NIG and VG a direct numerical evaluation 

is also possible using the analytical formulas for their densities derived in Appendix 2. 

 

2. Coskewness and cokurtosis of multivariate NVM mixtures 

A random vector  ),...,( 1 nXXX    is called a n -dimensional multivariate normal 

variance-mean (NVM) mixture if it satisfies a stochastic representation 

 

,ZWWX          (2.1) 
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where  ),0(~ NZ   is a multivariate normal random variable with positive semi-definite 

covariance matrix  njiij  ,1),( , W   is a non-negative mixing random variable with 

cumulant generating function (cgf)  )(tCW , WZ ,   are independent, and  

,,...,1),(),( niii    are real-valued parameter vectors. One knows that the cgf of the 

NVM model is given by 

 

)()(
2
1 uuuCuuC TT

W

T

X        (2.2) 

 

for all values of  ),...,( 1 nuuu    for which the expression (2.2) exists. The first four 

moments and cumulants of  W   are summarized into vectors  ),,,( 4321 mmmmm    and  

),,,( 4321     respectively. In terms of the latter parameters, a short hand notation for 

the random vector (2.1) is ),,,(~  NVMX . In a first step, we determine the mean vector  

),...,( 1 n    of X , and the matrix of k -th order central moments 2,3,4k],[ XM k . For  

2k   the  nxn   matrix njiVXDXM ij  ,1),(][][2 , is the covariance matrix with 

elements )].)([( ji   jiij XXEV  The 2nxn  matrix nkjiSXM ijk  ,,1),(][3 , 

consists of the coskewness elements )])()([( kji   kjiijk XXXES , and the  3nxn   

matrix  ,,,,1),(][4 nkjiKXM ijk    consists of the cokurtosis elements  

)])()()([( kji    XXXXEK kjiijk . In general, one has the relationships 
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The following result generalizes Proposition 2.1 in Hürlimann (2013a) for the multivariate 

asymmetric Laplace case with )1(~ ExpW  the exponential random variable with mean one. 
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Theorem 2.1. (Moments of the NVM model) The mean, covariance, coskewness and cokurtosis 

parameters of the multivariate NVM random vector  ),,,(~  NVMX   are given by 
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 (2.4) 

 

Proof.  In virtue of the representation (2.1) the expression for the mean vector is immediate. 

For the central moments it suffices to consider the case  0 . With (2.1) the vector 

components of  X   are  ,,...,1, niZWWX iii    where  W   is independent of  

),0(~ iii NZ  . The relationships between moments and cumulants 
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will be used repeatedly without further mention. One has 
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which implies the expression for the covariance. Similarly, one has 
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With the fact that  0][ kji ZZZE   (theorem of Isserlis) one sees that 
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).(][ 23 ijkikjjkikjikji mmXXXE    

 

Insert this and the fact that  ijjiijii Vm  121 ,    into the first relation of (2.3) 

to obtain the coskewness formula in (2.4). Proceeding in the same way, one shows that 
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Since  jkijikkijkji ZZZZE   ][  (theorem of Isserlis) one gets 
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Insert this, ijjiijii Vm  121 ,    and the coskewness relation in (2.4), into the 

second part of (2.3) to get 
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Taking into account the relationships between moments and cumulants one obtains after 

rearrangement the cokurtosis formula in (2.4).  ◊ 

 

3. A general moment method 

We are ready for the generalization of the moment method in Hürlimann (2013b), Section 3. 

For any fixed  ),,,( 4321     and given the mean parameters  )( i , the coskewness 
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and cokurtosis parameters )( ijkS  and  )( ijkK , we determine the remaining parameters 

)(),(),(),( iiijijV    in terms of them. In particular, it is shown that the covariance matrix  

)( ijV   of the NVM distribution functionally depends upon coskewness and cokurtosis. First 

of all, given the mean    and assuming     has been determined, it is clear that     is 

obtained from the mean vector equation as   1 . Similarly, once  )(),( iijV    

have been determined, the parameter matrix )( ij  is obtained from the covariance 

equation as  }.{ 2

1

1 jiijij V     Next let us examine the coskewness equations. For 

this, consider the coskewness vector  ),...,()( 1 nSSXS    derived from the star product  

[X]1)( 3MXS nxn    such that 
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The following short hand notation for sums of covariances and parameters is used: 
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The evaluation of (3.1) based on the coskewness formula in (2.4) yields the relationships 
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Set further  
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Consider now the cokurtosis equations and define the cokurtosis matrix  )()( ijKXK    
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using the star product  ][1)( 4 XMXK nxn    such that 
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A calculation of (3.5) based on the last equations in (2.4) yields 
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Multiplying with  2

1   and rearranging one obtains the equations 
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Further, summing (3.6) with the short hand notation  ,,...,1,
11
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gets 
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With  


n

i
iKK

1

  one obtains through addition of (3.7) a further equation in ),( VM , 

namely 
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The resulting system of non-linear equations (3.3), (3.4), (3.6), (3.7), (3.8) in the unknowns   

),,,,( VVVM iiji   is solved by applying a three-stage procedure. 

 

Step 1:  solve the equations (3.4) and (3.8) for the parameters  ),( VM  

 

From (3.4) one gets 
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Insert this expression into (3.8) and multiply with  22

29 M   to see that  M   satisfies 

the following sextic equation in the parameters ),( KS : 
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Step 2:  solve the equations (3.3) and (3.7) for the parameters  niVii ,...,1),,(   

 

From (3.3) one gets 
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Insert this into (3.7) to see that  iV   is function of the parameters  ),,,( ii KSVM , which 

are determined using the values from Step 1. One obtains 
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Step 3: the unknowns  )( ijV   are obtained from the equation (3.6), where one must verify 

that the covariance matrix  )( ijV   and its associated correlation matrix are positive 

semi-definite. The stated condition can be tested simply and efficiently (e.g. Kurowicka and 

Cooke (2006), Section 4.5.1, or Hürlimann (2012b), Lemma 2.1).  

 

The described general moment method is useful for parameter estimation. Given a sample  

),...,( 1 Nxx   of size  N , where each  ix   is an observation of the random vector  

),...,( 1 nXXX  , one considers the following sample estimates of the coskewness vector and 

cokurtosis matrix: 
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Samples estimates of the quantities  ,,, KKS i  are obtained through summation as 
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Inserting these estimates into the derived formulas, one obtains for any fixed   
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),,,( 4321     estimates of the NVM parameters in terms of the sample mean vector, 

coskewness vector and cokurtosis matrix. The final Section illustrates with a real-world 

application of this procedure for a selection of mixing distributions. 

 

4. Moment method for a selection of mixing distributions 

To illustrate the moment method for multivariate NVM mixture models, we consider the 

generalized hyperbolic (GH) distribution with a generalized inverse Gaussian (GIG) mixing 

distribution, and the normal tempered stable (NTS) distribution with a classical tempered 

stable (CTS) mixing distribution. There is a wide and continued interest in the GH family of 

distributions (e.g. Eberlein and Keller (1995), Prause (1999). Eberlein (2001), Eberlein and 

Prause (2002), Bibby and Sorensen (2003), Eberlein and Hammerstien (2004), Embrechts et 

al. (2005), etc.). The GH distribution contains three important subfamilies, namely the normal 

inverse Gaussian (NIG) with an inverse Gaussian (IG) mixing distribution, the 

variance-gamma (VG) with a gamma mixing distribution, and the skew hyperbolic t (SHT) 

with an inverse gamma mixing distribution. The NIG has been used for financial modelling 

by Eberlein and Keller (1995), Barndorff-Nielsen (1997/98) and Rydberg (1998) among 

others. The VG has been introduced by Madan and Seneta (1990) (see also Madan and Milne 

(1991), Madan et al. (1998), Madan (2001), Carr et al. (2002), Geman (2002), Fu et al. (2006), 

etc.). The univariate version of the SHT has been considered in Frecka and Hopwood (1983), 

Theodossiu (1998), Aas and Haff (2006), Scott et al. (2009), Hürlimann (2009) and Ghysels 

and Wang (2011) among others. The NTS has been initially studied as subordinated Gaussian 

process by Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen and Levendorskii 

(2001). More recent studies include Krause (2011) and Kim et al. (2012). The NTS also 

includes the NIG as special case. The presentation is divided into two parts. 

 

4.1. Generalized inverse Gaussian mixing distribution 

An important class of NVM models is the generalized hyperbolic (GH) distribution. It 

belongs to the generalized inverse Gaussian (GIG) mixing random variable  

),,(~ GIGW   with cgf 
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where  )(xK   is the modified Bessel function of the third kind. The domain of variation 

of the parameters depends upon three cases. 

 

Case 1:  generic GH distribution with  0,0,    

Case 2:  variance-gamma (VG) distribution with  0,0,0      

Case 3:  skew hyperbolic t (SHT) distribution with  0,0,0    

 

In the limiting Case 2 the mixing distribution reduces to a gamma distribution (VG 

distribution) and in Case 3 one has an inverse gamma distribution (SHT distribution). We 

begin with the NIG distribution as representative of the generic case. In Case 1 it is 

convenient to re-parameterize the GIG by setting  0  , so that the cgf reads 
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Case 1:  Multivariate normal inverse Gaussian (NIG) 

 

The normal inverse Gaussian (NIG) is obtained for  
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1   with cgf  
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cumulants are then given by 
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The multivariate moment method for the NIG can be summarized as follows. The 

straightforward details of the derivation are left to the interested reader. 

 

Step 1:  parameters  ),( VM   as function of  ),,( KS  
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where one must assume that  02)1( 2  MV . 

 

Step 3: parameters  )( ijV   as function of   ),,,,,( ijii KVVM   
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Case 2:  Multivariate variance-gamma (VG) 

 

The variance-gamma (VG) is obtained from a gamma mixing random variable  

)/1,/1(~ W   with cgf  )1ln()( 1 ttCW    . The first four cumulants are 
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A summary of the moment method follows. The special case  1   is the multivariate 
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asymmetric Laplace (AL) discussed in Hürlimann (2013b). For arbitrary  0   the 

method has first been applied in Hürlimann (2013c). 

 

Step 1:  parameters  ),( VM   as function of  ),,( KS  
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Step 2:  parameters  ),( ii V   as function of  ),,,,( ii KSVM  
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where one must assume that  0))1(()( 222  MVMV  . 

Step 3: parameters  )( ijV   as function of   ),,,,,( ijii KVVM   
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Case 3:  Multivariate skew hyperbolic t (SHT) 

 

The skew hyperbolic t (SHT) is obtained from an inverse gamma mixing random variable 
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The cumulants exist only for  4   and are given by 
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Setting  )1(22     to normalize the mean to one unit, one obtains 
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Omitting the calculations, the moment method summarizes as follows. 

 

Step 1:  parameters  ),( VM   as function of  ),,( KS  

 

.
)3)(2(3

)1()3()2(
,0)4()3()2)(1(

)4()3)(2(3)7)(4)(3)(2(2)5(

32
222

22362

M

MS
VS

KMSMM















 

Step 2:  parameters  ),( ii V   as function of  ),,,,( ii KSVM  
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Step 3: parameters  )( ijV   as function of   ),,,,,( ijii KVVM   
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4.2. Classical tempered stable mixing distribution 

The classical tempered stable (CTS) mixing random variable  ),,(~ CTSW   is 

determined by the cgf 

 

0,),2,0(},)2({)( 2221   


 ttCW . 

 

The corresponding NVM mixture is called normal tempered stable (NTS) model. A study and 

application of the univariate model is found in Hürlimann (2013e). A calculation shows that 
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where an empty product is one. It follows that  .1,)2(
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  22   to normalize the mean to one unit, one obtains 
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In the special case  1   one recovers the NIG distribution analyzed in Case 1 of Section 

4.1. In general, and in contrast to Section 4.1, the multivariate moment method offers more 

flexibility while depending upon two free parameters 0),2,0(   . The method 

summarizes as follows. 

 

Step 1:  parameters  ),( VM   as function of  ),,,( KS  
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Step 2:  parameters  ),( ii V   as function of  ),,,,,( ii KSVM  

 

The equations (3.3) and (3.7) are equivalent to the following linear system of equations 
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Step 3: parameters  )( ijV   as function of   ),,,,,,( ijii KVVM   
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5. Statistical estimation of bivariate NVM logarithmic returns 

We consider now two stock market indices for which all the mean, coskewness and 

cokurtosis quantities can be estimated. Return observations stem from the following seven 

different pairs of bivariate data from the Standard & Poors 500 (SP500) and the NASDAQ 

100 (NDX) data sets: 

 

SP500/NDX/3Y:   

754 daily closing prices over 3 years from 04.01.2010 to 31.12.2012  

SP500/NDX/5Y:   
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1259 daily closing prices over 5 years from 02.01.2008 to 31.12.2012  

SP500/NDX/10Y:   

2516 daily closing prices over 10 years from 02.01.2003 to 31.12.2012  

SP500/NDX/15Y:   

3773 daily closing prices over 15 years from 02.01.1998 to 31.12.2012  

SP500/NDX/20Y:   

5093 daily closing prices over 20 years from 04.01.1993 to 31.12.2012  

SP500/NDX/25Y:   

6302 daily closing prices over 25 years from 04.01.1988 to 31.12.2012 

SP500/NDX/27Y:   

6808 daily closing prices over 27 years from 02.01.1986 to 31.12.2012 

 

These data sets are typical as they contain short to medium high volatile periods (recent 3 and 

5 years), moderate long term periods (10 and 15 years), and long term periods (20,25 and 27 

years). The last data set has been included because it contains the highest and lowest daily 

changes observed so far (drop in 22.9% and 16.3% for SP500 respectively NDX on 

19.10.1987, increase of 17.2% for NDX on 03.01.2001). 

   The Table 5.1 below lists the required sample moment estimates for the bivariate 

logarithmic returns obtained from each of these combinations. Up to the 15Y and 20Y 

periods the coskewness vector has always negatively skewed components. The exception is 

the NDX. In the 15Y case one has also  021  SSS . Over the longest period of 27Y the 

coskewness components take the highest negative values. Up to the shortest 3Y period the 

overall cokurtosis coefficient  221211 2 KKKK    exceeds 5 and is highest for the 5Y 

and 27Y periods. For specific fixed values of  ),,,( 4321     the bivariate NVM 

mixtures are fitted to the data following the moment method in Section 4. 
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Table 5.1:  Sample moment estimates of bivariate log-returns  

unit

SP500/NDX μ1 μ2 S1 S2 S K11 K12=K21 K22 K

3Y 3.05639 4.56635 -2.53599 -2.38737 -4.92336 0.49211 0.49395 0.50763 1.98765

5Y -0.11603 2.07454 -3.14410 -2.33368 -5.47779 2.95173 2.94873 3.03195 11.8811

10Y 1.79008 3.78059 -1.88119 -1.36265 -3.24384 1.53194 1.54845 1.62493 6.25377

15Y 1.00817 2.57285 -0.55355 1.38095 0.82739 1.42779 1.85222 3.06706 8.19929

20Y 2.35612 4.00594 -0.87526 0.43794 -0.43732 1.11516 1.44658 2.39096 6.39928

25Y 2.72626 4.45475 -1.14828 -0.12651 -1.27479 0.93652 1.20443 1.97202 5.31740

27Y 2.81711 4.43105 -6.53485 -4.19231 -10.7272 2.18012 2.12053 2.63988 9.06107

10^-4 10^-6 10^-6

moment estimates

 

 

One can argue that linear correlation cannot be fitted once the margins are fixed. However, 

the proposed moment method does not fit the margins separately, but provides an overall 

parsimonious fit of all its parameters regardless of the margins and the dependence structure. 

For this reason, it is important to discuss its goodness-of-fit capabilities. In particular, an 

analysis of the goodness-of-fit of the estimated margins is undertaken. To do so our 

goodness-of-fit (GoF) measure is based on statistics, which measure the difference between 

the empirical distribution functions  )(xFn   and the estimated marginal distribution 

functions  )(xF . We use the Cramér-von Mises family of statistics defined by (e.g. 

D’Agostino and Stephens(1986), Cizek et al.(2005) and Burnecki et al.(2010)) 

  )()()()(
2

xFdxwxFxFnT n




 ,     (5.1) 

where  )(xw   is a suitable weighting function. If   )()(/1)( xFxFxw    one gets the  

2A   Anderson-Darling (1952) statistic. Consider the order statistics of the return data such 

that  nrrr  ...21   and let    ,,...,1,ˆ nirF i   be the estimated values of a marginal 

distribution function. Then one has 
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The values   irF̂   are obtained numerically by integration of the marginal densities 
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(Appendix 1) or their fast Fourier transform (FFT) approximations (Appendix 2). The 

Anderson-Darling statistic yields one of the most powerful test if the fitted distribution 

departs from the true distribution in the tails (e.g. D’Agostino and Stephens(1986)), and is 

recommended in this situation. Now, the observed sample return marginal data is skewed and 

has a much higher kurtosis than is allowed by a normal distribution, which indicates that the 

fit in the tails matters and justifies the use of (5.2). Needless to say, the proposed moment 

method is only a starting point for improved GoF estimation methods. However, a more 

complex data analysis is beyond the scope of the present study. To weight the influence of the 

margins, we use the Euclidean distance to define an overall GoF measure as  

22

2

22

1

2
)()( AAA  , with  ,2,1,2 iAi the Anderson-Darling statistics of the margins. 

   To calculate the FFT approximations of the marginal densities as specified in Appendix 2, 

one uses the following analytical expressions for their characteristic functions. Suppose that 

the marginal distributions are of the form  

2,1),,0(~, 2  kNZZWWX kkkkkk  . 

NIG distribution:  })2(exp{)( 222 izzizz kkkX k
   

 

VG distribution:  
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SHT distribution: 
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where  )(   is the gamma function and  )(xK   is the Macdonald function (also called 

modified Bessel function of the 2nd kind, hyperbolic Bessel function of the 3rd kind, Basset 

function, modified Hankel function) (see (Oldham et al. (2009), Section 51). 

 

NTS distribution:   }}))2(({exp{)( 222221


  izzizz kkkX k
 

 

 

The estimated parameters and GoF statistics of the different NVM mixtures are summarized 
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and compared in the Tables 5.2 to 5.6. Table 5.7 summarizes the GoF  A   ranking 

between these bivariate return distributions. Except for the 3Y period, best fitted by the 

bivariate VG, the best fit is always attained at the bivariate NTS and its NIG subfamily, 

followed by the bivariate VG (4 times) and the bivariate SHT (2 times). Let us attribute 

points to these rankings, say as much points as the rank is. Then, the NTS achieves 13 points, 

the NIG 25 points, the VG 39 points and the SHT 43 points. One can conclude that, in the 

present case study, the bivariate NTS and NIG perform best in terms of overall 

goodness-of-fit. A significant difference between the NTS and the NIG is only observed over 

the middle periods 5Y and 10Y, as seen in Table 5.5. One notes that the SHT moment method 

remains feasible over the range   3,4,2   , though the third and fourth order cumulant 

do not exist. An explanation for this analytical continuation remains to be formulated in 

mathematical terms. 

 

Table 5.2:  Parameter estimates and GoF statistics for the bivariate NIG family 

 

unit FFT method numerical integral

period α ξ1 ξ2 β1 β2 τ1 τ2 ρ A1² A2² ||A|| A1² A2² ||A||

3Y 0.775 1.63850 1.52567 -1.33286 -1.06903 1.1397 1.1654 0.96500 0.87 1.00 1.32 0.85 1.01 1.323

0.800 1.66909 1.55028 -1.36345 -1.09365 1.1449 1.1707 0.96500 0.96 0.87 1.29 0.96 0.87 1.289

0.825 1.69959 1.57482 -1.39395 -1.11818 1.1498 1.1757 0.96500 1.09 0.73 1.31 1.07 0.74 1.305

5Y 0.375 0.46976 0.38601 -0.48136 -0.17855 1.6138 1.6394 0.95867 1.23 2.07 2.40 1.40 2.26 2.656

0.400 0.49001 0.39354 -0.50162 -0.18608 1.6327 1.6586 0.95866 1.44 1.56 2.12 1.59 1.74 2.360

0.425 0.51002 0.40098 -0.52162 -0.19352 1.6504 1.6765 0.95864 1.82 1.29 2.23 1.96 1.46 2.445

10Y 0.375 0.58586 0.50977 -0.40686 -0.13171 1.3680 1.4119 0.94649 3.52 8.67 9.36 3.77 9.02 9.781

0.400 0.60298 0.51533 -0.42398 -0.13727 1.3841 1.4284 0.94647 5.17 6.24 8.10 5.39 6.57 8.497

0.425 0.61989 0.52082 -0.44089 -0.14276 1.3991 1.4438 0.94645 7.06 4.43 8.33 7.26 4.73 8.669

15Y 0.525 0.51993 -0.31111 -0.41911 0.56839 1.3982 1.9718 0.69932 2.71 6.82 7.34 2.86 7.31 7.850

0.550 0.53329 -0.32923 -0.43247 0.58651 1.4089 1.9868 0.69927 3.87 6.23 7.33 4.00 6.70 7.806

0.575 0.54656 -0.34723 -0.44574 0.60451 1.4190 2.0010 0.69922 5.33 6.38 7.89 5.33 6.38 8.317

20Y 0.450 0.65518 0.06165 -0.41957 0.33894 1.2793 1.8061 0.70063 3.76 11.5 12.1 3.92 12.2 12.82

0.475 0.67037 0.04938 -0.43476 0.35122 1.2912 1.8229 0.70057 5.91 9.00 10.8 6.04 9.66 11.39

0.500 0.68543 0.03721 -0.44982 0.36338 1.3024 1.8387 0.70051 8.40 7.18 11.1 8.51 7.82 11.55

25Y 0.450 0.76206 0.21393 -0.48944 0.23155 1.2253 1.7192 0.70166 4.02 10.6 11.3 4.01 11.5 12.20

0.475 0.77979 0.20555 -0.50716 0.23993 1.2368 1.7352 0.70159 6.54 8.30 10.6 6.50 9.18 11.25

0.500 0.79735 0.19724 -0.52472 0.24823 1.2475 1.7502 0.70153 9.52 6.82 11.7 9.46 7.66 12.18

27Y 0.300 1.43306 0.59002 -1.15135 -0.14691 1.4675 1.6391 0.69981 26.8 37.9 46.4 25.4 39.0 46.50

0.325 1.49079 0.59780 -1.20908 -0.15469 1.4909 1.6643 0.69951 37.1 26.6 45.6 35.6 27.6 45.07

0.350 1.54753 0.60543 -1.26582 -0.16233 1.5125 1.6875 0.69926 48.2 18.3 51.6 58.3 13.3 59.82

parameter estimates GoF statistics

10^-3 10^-2

GoF statistics
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Table 5.3:  Parameter estimates and GoF statistics for the bivariate VG family 

 

unit FFT method numerical integral

period ν ξ1 ξ2 β1 β2 τ1 τ2 ρ A1² A2² ||A|| A1² A2² ||A||

3Y 1.02 1.88232 1.72341 -1.57668 -1.26678 1.1819 1.2062 0.96505 0.80 0.56 0.98 0.75 0.56 0.9311

1.03 1.87088 1.71422 -1.56524 -1.25758 1.1804 1.2048 0.96505 0.76 0.61 0.97 0.70 0.61 0.9308

1.04 1.85966 1.70520 -1.55402 -1.24856 1.1810 1.2033 0.96505 0.72 0.66 0.98 0.67 0.66 0.9386

5Y 1.60 0.66333 0.45815 -0.67494 -0.25070 1.7604 1.7867 0.95832 1.86 1.75 2.55 1.99 1.93 2.776

1.65 0.64915 0.45288 -0.66075 -0.24543 1.7520 1.7782 0.95832 1.65 1.94 2.55 1.79 2.13 2.784

1.70 0.63575 0.44790 -0.64735 -0.24044 1.7438 1.7700 0.95832 1.52 2.20 2.67 1.67 2.40 2.925

10Y 1.60 0.74951 0.56303 -0.57050 -0.18497 1.4923 1.5387 0.94608 9.44 6.75 11.6 9.61 7.11 11.954

1.65 0.73752 0.55914 -0.55851 -0.18108 1.4852 1.5314 0.94608 8.45 7.84 11.5 8.64 8.22 11.925

1.70 0.72618 0.55546 -0.54718 -0.17740 1.4783 1.5243 0.94608 7.64 9.07 11.9 7.84 9.46 12.291

15Y 1.30 0.64722 -0.48374 -0.54640 0.74103 1.4832 2.0914 0.69738 7.40 7.62 10.6 7.49 8.28 11.162

1.35 0.63267 -0.46401 -0.53185 0.72129 1.4752 2.0802 0.69738 6.40 8.15 10.4 6.51 8.82 10.963

1.40 0.61910 -0.44561 -0.51828 0.70290 1.4675 2.0693 0.69738 5.70 8.92 10.6 5.82 9.63 11.247

20Y 1.40 0.81036 -0.06371 -0.57475 0.46430 1.3783 1.9447 0.69874 14.4 10.4 17.7 14.3 11.2 18.167

1.45 0.79629 -0.05234 -0.56068 0.45294 1.3712 1.9347 0.69875 12.6 11.8 17.3 12.5 12.7 17.816

1.50 0.78311 -0.04169 -0.54749 0.44228 1.3643 1.9249 0.69875 11.2 13.5 17.6 11.1 14.4 18.233

25Y 1.45 0.92655 0.13616 -0.65392 0.30931 1.3140 1.8413 0.69970 16.4 14.2 21.7 16.0 15.3 22.145

1.50 0.91117 0.14344 -0.63854 0.30204 1.3074 1.8321 0.69970 14.7 15.9 21.7 14.4 17.0 22.279

1.55 0.89672 0.15027 -0.62409 0.29521 1.3009 1.8230 0.69971 13.5 18.0 22.5 13.2 19.1 23.240

27Y 2.00 1.86615 0.65195 -1.58443 -0.20884 1.6244 1.7971 0.69520 70.5 38.4 80.3 67.6 39.6 78.313

2.05 1.84044 0.64850 -1.55873 -0.20539 1.6176 1.7897 0.69522 67.7 42.9 80.2 64.7 44.1 78.320

2.10 1.81586 0.64520 -1.53414 -0.20210 1.6109 1.7824 0.69525 65.3 47.6 80.8 62.3 48.9 79.165

GoF statistics

10^-3 10^-2

parameter estimates GoF statistics
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Table 5.4:  Parameter estimates and GoF statistics for the bivariate SHT family 

 

unit FFT method

period α ξ1 ξ2 β1 β2 τ1 τ2 ρ A1² A2² ||A||

3Y 2.52 1.27641 1.24598 -0.97077 -0.78934 1.1121 1.1211 0.96530 2.04 1.64 2.617

2.53 1.28831 1.25582 -0.98268 -0.79918 1.1163 1.1251 0.96531 2.10 1.56 2.615

2.54 1.30014 1.26560 -0.99450 -0.80897 1.1205 1.1290 0.96532 2.16 1.48 2.623

4.0314 2.49386 1.61861 -2.18822 -1.16198 1.0955 1.0851 0.99582 3.65 1.99 4.161

4.0315 2.50859 1.64138 -2.20295 -1.18475 1.0972 1.0901 0.99472 3.69 1.91 4.156

4.0316 2.52257 1.66304 -2.21693 -1.20640 1.0988 1.0947 0.99371 3.72 1.85 4.156

5Y 2.21 0.32517 0.33298 -0.33677 -0.12553 1.4469 1.4649 0.95731 4.64 3.97 6.10

2.22 0.33450 0.33647 -0.34611 -0.12901 1.4608 1.4790 0.95729 4.79 3.76 6.09

2.23 0.34372 0.33991 -0.35532 -0.13245 1.4742 1.4925 0.95728 4.97 3.61 6.15

4.0006599 1.64801 0.74354 -1.65961 -0.53608 1.9226 2.0054 1.00000 35.24 28.29 45.19

4.001 1.64178 0.77301 -1.65338 -0.56556 1.9558 2.0230 0.98300 37.55 29.38 47.68

10Y 2.20 0.45570 0.46811 -0.27669 -0.09005 1.2141 1.2488 0.94493 9.65 8.86 13.10

2.21 0.46370 0.47072 -0.28469 -0.09266 1.2265 1.2615 0.94492 10.61 7.68 13.09

2.22 0.47159 0.47329 -0.29259 -0.09523 1.2384 1.2736 0.94490 11.61 6.67 13.39

4.000546 1.58664 0.76117 -1.40763 -0.38311 1.6205 1.7243 1.00000 91.38 41.43 100.34

4.001 1.57711 0.79583 -1.39811 -0.41777 1.6623 1.7457 0.97148 99.32 44.36 108.77

15Y 2.31 0.39923 -0.14743 -0.29841 0.40472 1.2770 1.8003 0.68962 6.18 11.22 12.81

2.32 0.40516 -0.15548 -0.30434 0.41276 1.2847 1.8113 0.68949 6.73 10.79 12.71

2.33 0.41104 -0.16346 -0.31023 0.42074 1.2923 1.8219 0.68937 7.31 10.44 12.75

4.0000198 1.25319 -1.30337 -1.15237 1.56066 1.4856 2.1840 1.00000 57.45 42.62 71.54

4.001 1.24867 -1.29938 -1.14785 1.55667 1.6431 2.3191 0.71095 95.22 59.71 112.39

20Y 2.26 0.53288 0.16046 -0.29726 0.24014 1.1598 1.6330 0.69238 11.60 14.45 18.53

2.27 0.53974 0.15491 -0.30413 0.24568 1.1685 1.6453 0.69228 12.78 13.23 18.40

2.28 0.54653 0.14942 -0.31092 0.25117 1.1770 1.6571 0.69218 14.03 12.19 18.59

4.0000073 1.50981 -0.62921 -1.27419 1.02981 1.3707 2.0807 1.00000 97.13 61.39 114.91

4.001 1.50841 -0.62762 -1.27280 1.02822 1.5433 2.1839 0.70820 161.9 81.43 181.18

25Y 2.25 0.61102 0.28549 -0.33839 0.15999 1.1043 1.5414 0.69317 11.09 15.01 18.67

2.26 0.61910 0.28167 -0.34647 0.16380 1.1130 1.5535 0.69308 12.47 13.75 18.56

2.27 0.62709 0.27789 -0.35447 0.16758 1.1214 1.5651 0.69298 13.95 12.72 18.88

4.0000933 1.77519 -0.27843 -1.50256 0.72390 1.2877 1.9917 1.00000 107.5 92.46 141.82

4.001 1.75876 -0.25866 -1.48613 0.70414 1.4614 2.0728 0.72943 191.8 114.8 223.60

27Y 2.12 0.94133 0.53564 -0.65962 -0.09253 1.2486 1.3533 0.68436 36.81 56.72 67.62

2.13 0.97124 0.53990 -0.68953 -0.09679 1.2714 1.3776 0.68433 44.13 47.61 64.92

2.14 1.00033 0.54405 -0.71862 -0.10095 1.2926 1.4003 0.68427 51.54 40.12 65.32

4.012121 5.05933 0.42347 -4.77761 0.01963 1.5635 1.9740 1.00000 272.3 107.0 292.60

4.02 4.94132 0.75073 -4.65961 -0.30762 1.7188 2.0721 0.82040 357.6 137.6 383.18

parameter estimates GoF statistics

10^-3 10^-2
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Table 5.5:  Parameter estimates and GoF statistics for the NTS and NIG family 

unit FFT method

period α γ ξ1 ξ2 β1 β2 τ1 τ2 ρ A1² A2² ||A||

3Y 0.98 0.81 1.40834 1.34118 -1.10270 -0.88454 1.1518 1.1748 0.96508 0.93 0.86 1.27

1 0.80 1.66909 1.55028 -1.36345 -1.09365 1.1449 1.1707 0.96500 0.96 0.87 1.29

5Y 0.73 0.48 0.32663 0.33300 -0.33823 -0.12555 1.6769 1.7005 0.95797 1.42 1.38 1.97

1 0.40 0.49001 0.39354 -0.50162 -0.18608 1.6327 1.6586 0.95866 1.44 1.56 2.12

10Y 1 0.41 0.60977 0.51753 -0.43077 -0.13947 1.3902 1.4347 0.94646 5.90 5.44 8.03

1.17 0.38 1.94972 0.95107 -1.77071 -0.57301 1.2985 1.4131 0.97209 5.42 3.93 6.69

15Y 0.89 0.59 0.56619 -0.37384 -0.46537 0.63113 1.4141 1.9942 0.69962 3.18 6.40 7.15

1 0.54 0.52796 -0.32200 -0.42714 0.57928 1.4047 1.9809 0.69929 3.38 6.43 7.26

20Y 0.88 0.53 0.67288 0.04736 -0.43726 0.35324 1.3075 1.8454 0.69970 6.64 8.16 10.52

1 0.48 0.67340 0.04694 -0.43778 0.35366 1.2935 1.8261 0.70055 6.38 8.58 10.69

25Y 0.98 0.48 0.76717 0.21151 -0.49455 0.23396 1.2382 1.7368 0.70118 6.34 8.42 10.54

1 0.47 0.77625 0.20722 -0.50363 0.23826 1.2345 1.7320 0.70160 5.99 8.69 10.56

27Y 1 0.31 1.45628 0.59315 -1.17457 -0.15004 1.4771 1.6494 0.69968 30.79 32.95 45.10

1.01 0.31 1.59380 0.61062 -1.31208 -0.16752 1.4669 1.6488 0.70285 31.46 32.15 44.98

parameter estimates GoF statistics

10^-3 10^-2

 

 

Table 5.6:  minimum ||A||  GoF statistic on a grid for the NTS and NIG family 

period α γ ||A|| period α γ ||A|| period α γ ||A||

3Y 0.97 0.81 1.27192 5Y 0.72 0.48 1.97700 10Y 0.99 0.4 8.17594

0.97 0.82 1.26798 0.72 0.49 1.97522 0.99 0.41 8.04533

0.97 0.83 1.27131 0.72 0.50 1.99798 0.99 0.42 8.13940

0.98 0.80 1.27389 0.73 0.47 1.99341 1.00 0.40 8.10034

0.98 0.81 1.26767 0.73 0.48 1.97361 1.00 0.41 8.02945

0.98 0.82 1.26907 0.73 0.49 1.98078 1.00 0.42 8.18328

0.99 0.80 1.27545 0.74 0.47 1.98457 1.16 0.36 7.09262

0.99 0.81 1.27407 0.74 0.48 1.97372 1.16 0.37 6.73519

0.99 0.82 1.28020 0.74 0.49 1.99005 1.16 0.38 6.80486

1.00 0.79 1.29995 1.00 0.39 2.18379 1.17 0.37 6.77697

1.00 0.80 1.29445 1.00 0.40 2.12207 1.17 0.38 6.69209

1.00 0.81 1.29686 1.00 0.41 2.12355 1.17 0.39 7.06194

1.01 0.79 1.34766 1.01 0.39 2.16884 1.18 0.38 7.34736

1.01 0.80 1.34409 1.01 0.40 2.12238 1.18 0.39 7.15127

1.01 0.81 1.34833 1.01 0.41 2.13935 1.18 0.40 7.59654

period α γ ||A|| period α γ ||A|| period α γ ||A||

15Y 0.88 0.59 7.16142 20Y 0.87 0.52 10.67624 25Y 0.97 0.47 10.75328

0.88 0.60 7.15325 0.87 0.53 10.52789 0.97 0.48 10.53570

0.88 0.61 7.20876 0.87 0.54 10.55249 0.97 0.49 10.61594

0.89 0.58 7.18967 0.88 0.52 10.59404 0.98 0.47 10.65069

0.89 0.59 7.14939 0.88 0.53 10.51677 0.98 0.48 10.53517

0.89 0.60 7.17622 0.88 0.54 10.61423 0.98 0.49 10.72048

0.90 0.58 7.16248 0.89 0.52 10.54217 0.99 0.47 10.58464

0.90 0.59 7.15724 0.89 0.53 10.53861 0.99 0.48 10.57515

0.90 0.60 7.22030 0.89 0.54 10.71029 0.99 0.49 10.86695

1.00 0.53 7.28807 1.00 0.47 10.89829 1.00 0.46 10.78287

1.00 0.54 7.26230 1.00 0.48 10.69321 1.00 0.47 10.55718

1.00 0.55 7.33272 1.00 0.49 10.75092 1.00 0.48 10.65685

1.01 0.52 7.36767 1.01 0.47 10.82585 1.01 0.46 10.68721

1.01 0.53 7.28498 1.01 0.48 10.71449 1.01 0.47 10.57014

1.01 0.54 7.30336 1.01 0.49 10.86734 1.01 0.48 10.78116  
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Table 5.7:  Goodness-of-fit  ||A||  ranking between NTS, NIG, VG and SHT 

data set

period 1 2 3 4

3Y VG NTS NIG SHT

5Y NTS NIG VG SHT

10Y NTS NIG VG SHT

15Y NTS NIG VG SHT

20Y NTS NIG VG SHT

25Y NTS NIG SHT VG

27Y NTS NIG SHT VG

FFT  GoF statistics

 

 

Appendix 1:  FFT approximation of the marginal densities and distribution functions 

If no tractable expression for a probability density function is available, it is possible to 

approximate it using the fast Fourier transform (FFT) (e.g. Scherer et al. (2012)). We use the 

interpolation scheme by Jelonek (2012), Appendix B, which has been adapted here to the 

mid-point rule (MPR) for a higher accuracy. 

     Consider a finite interval   ba,   that is divided into  N   disjoints subintervals of 

equal length  1)(  Nabh   and assume that the random variable  X   with pdf  

)(xf X   has a known characteristic fnction  CzzX ),( . For  1,...,0  Nk   set  

hkaxk  . For  N   sufficiently large the constant  1 hc    is also large and one has 

the pdf approximation 
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Applying the MPR to the right-hand side integral one obtains the finite sum approximation 
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Since 1ie  one has further  .)1()1(
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Inserted into the above sum, one gets the desired representation 
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which one interprets as  k -th component of a Discrete Fourier Transform (DFT) 
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An efficient software implementation of the DFT is based on the Fast Fourier Transform 

(FFT) algorithm by Cooley and Tukey (1965). For numerical approximation of the 

distribution function   

x

xX dttfxF )()(   one derives a similar DFT approximation in 

terms of the chf (e.g. Kim et al. (2010), Proposition 1) or one uses the recursive formula 

,0)(,1,...,1),()()( 011   xFNkxhfxFxF XkXkXkX  

and a simple piecewise linear interpolation for intermediate values: 

 

  .1,...,1,,)},()(){()()( 111

1

1  



 NkxxxxFxFxxhxFxF kkkXkXkkXX  

 

Finally, we note that similar approximations can be obtained for the value-at-risk measure 

(VaR), the stop-loss transform and the related conditional value-at-risk measure (CVaR) (see 

Kim et al. (2010) for formulas in terms of the chf). They can be used for further important 

financial applications of the multivariate NVM mixtures in option pricing and risk 

management. 

Appendix 2:  Numerical integration of the NIG and VG marginal densities 

Alternatively to the FFT approximation method in Appendix 1, the NIG and VG marginal 

distributions have been calculated more accurately using their analytical density expressions. 
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NIG marginal density 

 

The probability density of the unit mean inverse Gaussian mixing random variable reads 
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The marginal random variables of the multivariate NIG distribution are of the form 
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where  WU  2   has the density 
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It follows that 
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where  )(1 xK   is the Macdonald function of order 1. 

 

VG marginal density 

 

A bilateral gamma (BG) random variable is defined by (e.g. Küchler and Tappe (2008)) 
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with independent  )1,(~),1,(~ 21   GG  (standardized gamma’s with scale parameter 1). 

It suffices to restrict the attention to the BG with vanishing location  0 . The BG pdf, 

denoted by    ,,,;)( xfxf  , is the convolution  ))(()( 21 xffxf    of the two 

gamma pdf’s: 
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xx    (A.1) 

 

The following “generalized gamma function” representation seems new. It is equivalent to 

the representation (A.6) below in terms of the confluent hyper-geometric function of the 2nd 

kind. 

 

Theorem A.1 (Generalized gamma function representation). The probability density function 

of the bilateral gamma    ,,,,0BG   is given by 
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with the generalized gamma function 
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Proof. Using the symmetry relation      ,,,;,,,; xfxf    it suffices to 

consider the case  ),0( x . Through elementary integration (change of variables txy  ) 

one obtains 
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The transformation  uxct 1)(    with  xxc )()(     yields further 
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Insert into the first integral expression for  )(xf   to get (A.2).  ◊ 

 

In virtue of the limiting property  )(),,(lim
0

1 adtetxba ta

x






  the naming of the 

integral (A.3) is justified. Furthermore, one has also trivially  )(),1,( axa  . Another 

justification arises from the fact that when     or     the pdf converges to a 

left- and right-tail gamma pdf respectively, as should be. Moreover, a close look at the 

confluent hyper-geometric function of the 2nd kind, introduced by Tricomi (1947) and also 

called Tricomi function, shows the relationship 

 

),,()(),,( xbaaUxaxba a  ,     (A.4) 

 

where the Tricomi function is defined by (e.g. Oldham et al. (2009), 48:3:6 and 48:3.7) 
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The generalized gamma function is a transformed Tricomi function and (A.2) rewrites 
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In the variance-gamma special case      ,,,,0,,  BGVG   the 

relevant Tricomi function reduces to a Macdonald function of the type (Oldham et al. (2009), 
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48:4:3 and 48:13:6) 
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Inserting these expressions into the Tricomi representation (A.6) one obtains the VG pdf 
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This closed-form expression has been first derived in Madan et al. (1998) for the 

parameterization 

   11112 ,)(2,)(,,    .     (A.9) 

 

However, in its original form the VG pdf takes the less symmetrical form 
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