

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 2, 394-412

ISSN: 1927-5307

ON THE RANK 1 DECOMPOSITIONS OF SYMMETRIC TENSORS

E. BALLICO*
Department of Mathematics, University of Trento, 38123 Trento (TN), Italy

Abstract

Here we study the uniqueness of a representation of a homogeneous polynomial as a sum of a small number of powers of linear forms (equivalently, a representation of a symmetric tensor as a sum of powers) or (when it is not unique) describe all such additive decompositions. We require a linear upper bound for the number of addenda with respect to the degree of the polynomial and, for some results, assumptions like linearly general position.

Keywords: Waring problem; Polynomial decomposition; Symmetric tensor rank; Symmetric rank; Symmetric tensors.

2010 AMS Subject Classification: 15A21, 15A69, 14N15

1. Introduction

Let \mathbb{K} be an algebraically closed base field with characteristic zero. For any finite subset A of a projective space let $\langle A\rangle$ denote its linear span. Fix an integer $m \geq 1$. For any integer $d \geq 1$ let $\nu_{d}: \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}, N:=\binom{m+d}{m}-1$, denote the order d Veronese embedding of \mathbb{P}^{m}. Set $X_{m, d}:=\nu_{d}\left(\mathbb{P}^{m}\right)$. For any $P \in \mathbb{P}^{N}$ the symmetric rank $\operatorname{sr}(P)$ of P is the minimal cardinality of a finite set $S \subset X_{m, d}$ such that $P \in\langle S\rangle$. Up to a scalar the point P represents a homogeneous degree d polynomial $f \in \mathbb{K}\left[x_{0}, \ldots, x_{m}\right]$ and $\operatorname{sr}(P)$

[^0]is the minimal integer s such that $f=\sum_{i=1}^{s} \ell_{i}^{d}$ with each $\ell_{i} \in \mathbb{K}\left[x_{0}, \ldots, x_{m}\right]_{1}$ a linear form. Dually, f may be seen as a symmetric tensor τ and $\operatorname{sr}(P)$ is the minimal number of rank 1 symmetric tensors with τ as their sum. Similarly, a finite set $S \subset \mathbb{P}^{N}$ such that $P \in\langle S\rangle$ corresponds to a decomposition $f=\sum_{Q \in S} \ell_{Q}^{d}$, where ℓ_{Q}^{d} is associated to the unique $O \in \mathbb{P}^{m}$ such that $Q=\nu_{d}(O)$. There are many practical problems which use the symmetric tensor rank and several general mathematical works on it ([10], [14], [9], [4], [7], [13], [16], [15], [3], [8], [6] and references therein). If $\operatorname{sr}(P)$ is very low, then there is a unique set $A \subset \mathbb{P}^{N}$ computing $\operatorname{sr}(P)$, i.e. with $P \in\langle A\rangle$ and $\sharp(A)=\operatorname{sr}(P)$ ([6], Theorem 1.2.6, [2], Theorem 2). In this paper we study a similar situation for larger (but not very large) values of the symmetric rank. We ask for sets $A, S \subset \mathbb{P}^{m}$ such that $P \in\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ and $A \neq S$. Without loss of generality we assume that A and S are " minimal ", i.e. we assume $P \notin\left\langle A^{\prime}\right\rangle$ for any $A^{\prime} \subsetneq A$ and $P \notin\left\langle S^{\prime}\right\rangle$ for any $S^{\prime} \subsetneq S$. For any $P \in \mathbb{P}^{N}$ let $\mathcal{S}(P)$ denote the set of all $B \subset \mathbb{P}^{m}$ such that $\nu_{d}(B)$ computes $\operatorname{sr}(P)$, i.e., the set of all $B \subset \mathbb{P}^{m}$ such that $\sharp(B)=\operatorname{sr}(P)$ and $P \in\left\langle\nu_{d}(B)\right\rangle$. Notice that $P \notin\left\langle\nu_{d}\left(B^{\prime}\right)\right\rangle$ for any $B \in \mathcal{S}(P)$ and any $B^{\prime} \subsetneq B$. The set $\mathcal{S}(P)$ is a constructible subset of \mathbb{P}^{m}. As usual for constructible sets $\operatorname{dim}(\mathcal{S}(P))$ denotes the maximal dimension of a quasi-projective variety contained in $\mathcal{S}(P)$. This integer is the maximal dimension of an irreducible component of the Zariski closure of $\mathcal{S}(P)$ in \mathbb{P}^{m}.

Let $E \subset \mathbb{P}^{r}$ be a finite set. The set E is said to be in linearly general position if $\operatorname{dim}(\langle F\rangle)=\min \{\sharp(F)-1, r\}$ for every $F \subseteq E$. We prove the following results.

Theorem 1.1. Fix integers $d>m \geq 2$ and subsets S, A of \mathbb{P}^{m} such that $\sharp(A) \geq m+1$, $\sharp(S) \geq m+1, \sharp(S)+\sharp(A) \leq m d+1$ and both S and A are in linearly general position in \mathbb{P}^{m}. Then $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle=\left\langle\nu_{d}(A \cap S)\right\rangle$.

Theorem 1.2. Fix integers $m \geq 4$ and $d \geq 2 m+1$. Fix $S \subset \mathbb{P}^{m}$ such that $\sharp(S) \leq$ $(3 d+1) / 2$ and S is in linearly general position in \mathbb{P}^{m}. Fix any $P \in\left\langle\nu_{d}(S)\right\rangle$ such that $P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$. Then $\operatorname{sr}(P)=\sharp(S)$ and $\mathcal{S}(P)=\{S\}$.

Theorem 1.1 shows that $\left\langle\nu_{d}(A \cap S)\right\rangle$ is the set of all $P \in \mathbb{P}^{N}$ which may be described both as a sum over the points of $\nu_{d}(A)$ and as a sum over the points of $\nu_{d}(S)$, when $\sharp(A)$ and $\sharp(S)$ are low. It obviously implies $s r(P) \leq \sharp(S \cap A)$ for every $P \in\langle A\rangle \cap\langle S\rangle$. Theorem
1.1 is sharp (see Example 2.7). Theorem 1.2 is a "partial improvement" of [2], Theorem 2 (it assumes less on $\sharp(S)$, but more on the shape of S).

To state our next result we introduce the following cases. Fix integers $m \geq 2$ and $d \geq 2$. We fix $P \in \mathbb{P}^{N}$ and assume the existence of finite sets $A, S \subset \mathbb{P}^{m}$ such that $S \neq A$, $P \in\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle, P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$ and $P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$.
(A) We say that (A, S, P) is as in case A if there is a line $D \subset \mathbb{P}^{m}$ such that $\sharp((A \cup S) \cap D) \geq d+2, \sharp(A \cap D) \leq d+1, \sharp(S \cap D) \leq d+1, A \backslash A \cap D=S \backslash S \cap D$, $\nu_{d}(A \backslash A \cap D)$ is linearly independent, and $\left\langle\nu_{d}(A \backslash A \cap D)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\emptyset$.
(B) We say that (A, S, P) is as in case B if $\sharp(A)+\sharp(S)=2 d+2, A \cap S=\emptyset$ and there are a plane $U \subseteq \mathbb{P}^{m}$ and a smooth conic $C \subset U$ such that $A \cup S \subset C$.
(C) We say that (A, S, P) is as in case C if there are a plane $U \subseteq \mathbb{P}^{m}$ and lines $L_{1}, L_{2} \subset U$ such that $L_{1} \neq L_{2}, A \cup S \subset L_{1} \cup L_{2}, L_{1} \cap L_{2} \notin A \cup S, A \cap S=\emptyset$, and $\sharp\left((A \cup S) \cap L_{1}\right)=\sharp\left((A \cup S) \cap L_{2}\right)=d+1$.

Notice that in case A we assume neither $A \cap S \cap D=\emptyset$ nor $\sharp(D \cap(A \cup S))=d+2$.
Proposition 1.3. Fix integers $m \geq 2$ and $d \geq 3$. Fix $A, S \subset \mathbb{P}^{m}$ such that $\sharp(A)+\sharp(S) \leq$ $2 d+2$. Assume the existence of $P \in\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ such that $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$ and $P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$. Then:
(a) (A, S, P) is either as in case A or as in case B or as in case C.
(b) If (A, S, P) is either as in case B or as in case C, then $\{P\}=\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$.

Part (b) of Proposition 1.3 shows that in cases B and C the pair (A, S) uniquely determines P.

Proposition 1.4. Assume $d \geq 5$ and fix a triple (A, S, P) as in case A with respect to the line D. Set $E:=A \backslash A \cap D$. Assume $\sharp(A)+\sharp(S) \leq 2 d+2$.
(a) There is a unique $P_{1} \in\left\langle\nu_{d}(D \cap A)\right\rangle \cap\left\langle\{P\} \cup \nu_{d}(E)\right\rangle$ and $\operatorname{sr}(P)=\operatorname{sr}\left(P_{1}\right)+\sharp(E)$. Set $\Gamma:=\{E \sqcup \beta\}_{\beta \in \mathcal{S}\left(P_{1}\right)}$. We have $\Gamma \subseteq \mathcal{S}(P)$ and equality holds, unless $\sharp(A)=\sharp(B)=$ $s r(P)=d+1$.
(b) Take another $(\widetilde{A}, \widetilde{S}, P)$ as in case A with respect to the same line D and with $\sharp(\widetilde{A})+\sharp(\widetilde{S}) \leq 2 d+2$. Then $\sharp(\widetilde{A} \backslash \widetilde{A} \cap D)=\sharp(E)$.
(c) Take another (\bar{A}, \bar{S}, P) as in case A with respect to some line \bar{D}. If $\sharp(\bar{A})+\sharp(\bar{S}) \leq$ $2 d+2, \sharp(A)+\sharp(\bar{A}) \leq 2 d+1$ and $2 \leq \sharp(A \cap D) \leq d$, then $\bar{D}=D$.

For an example which shows the necessity of some assumptions in part (c) of Proposition 1.4, see Example 3.6.

The integer $s r\left(P_{1}\right)$ appearing in Proposition 1.4 is also the symmetric rank of P_{1} with respect to the rational normal curve $\nu_{d}(D)([14]$, Proposition 3.1, or [15], Theorem 2.1). Hence, knowing P_{1} one can use several known algorithms to compute the integer $\operatorname{sr}\left(P_{1}\right)$ ([8], [15], Theorem 4.1, [3], §3).
Proposition 1.5. Assume $d \geq 3$ and (A, S, P) as in case B with respect to the smooth conic C. Then:
(a) We have $\operatorname{sr}(P)=\min \{\sharp(A), \sharp(S)\}$ and $\{P\}=\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$.
(b) If $\sharp(A) \neq \sharp(S)$, say $\sharp(A)<\sharp(S)$, then A is the only element of $\mathcal{S}(P)$.
(d) If $\sharp(A)=\sharp(S)=d+1$, then $\mathcal{S}(P)$ is one-dimensional, every $B \in \mathcal{S}(P)$ is contained in C and any two different elements of $\mathcal{S}(P)$ are disjoint.
Proposition 1.6. Assume $d \geq 5$ and fix (A, S, P) as in case C with respect to the reducible conic $L_{1} \cup L_{2}$. Set $\{Q\}:=L_{1} \cap L_{2}$. We have $\{P\}=\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$. Set $A_{i}:=A \cap L_{i}$ and $S_{i}:=S \cap L_{i}$. Either sr (P) is computed by A or by S or by $A_{1} \cup S_{2} \cup\{Q\}$ or by $A_{2} \cup S_{1} \cup\{Q\}$. If $\operatorname{sr}(P)<\min \{\sharp(A), \sharp(S)\}$, then $\mathcal{S}(P) \subseteq\left\{A_{1} \cup S_{2} \cup\{Q\}, A_{2} \cup S_{1} \cup\{Q\}\right\}$.

The existence of a curve as in (A), (B) or (C) (respectively a line, a smooth conic and a reducible conic) would easily follow from the main result of [1]. In the range $\sharp(A)+\sharp(S)<3 d$ the existence of a suitable curve follows from [11] , Theorem 3.8. We will use [11], Theorem 3.8, to shorten the proof. We prefer to present here a proof which not use [1], but the main point of this paper is the analysis of the pairs (A, S) associated to a given P and of the computation of $\operatorname{sr}(P)$ (Propositions 1.4, 1.5, 1.6)..

2. The proofs of Theorems 1.1 and 1.2

Grassmann's formula and the linear normality of Veronese varieties immediately give the following lemma.

Lemma 2.1. For all finite subsets A, S of \mathbb{P}^{m} such that $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A}(d)\right)=h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{S}(d)\right)=$ 0 we have

$$
\operatorname{dim}\left(\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle\right)=\operatorname{dim}\left(\left\langle\nu_{d}(A \cap S)\right\rangle\right)+h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A \cup S}(d)\right)
$$

Lemma 2.2. Fix finite subsets A, S of \mathbb{P}^{m} such that $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A}(d)\right)=h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{S}(d)\right)=0$ and a proper linear subspace M of \mathbb{P}^{m}. Set $F:=(A \cup S) \backslash(A \cup S) \cap M$ and $E:=(S \cap A) \backslash$ $(S \cap A \cap M)$. If $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{F}(d-1)\right)=0$, then $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is the linear span of $\langle E\rangle$ and of $\left\langle\nu_{d}(A \cap M)\right\rangle \cap\left\langle\nu_{d}(S \cap M)\right\rangle$ and its dimension is $\sharp(E)+\operatorname{dim}\left(\left\langle\nu_{d}(A \cap M)\right\rangle \cap\left\langle\nu_{d}(S \cap M)\right\rangle\right)$.

Proof. Since $E \subseteq A$ we have $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{E}(d)\right)=0$. Hence $\operatorname{dim}\left(\left\langle\nu_{d}(E)\right\rangle=\sharp(E)-1\right.$. Take a general hyperplane H of \mathbb{P}^{m} containing M. Since $A \cup S$ is finite, we have $(A \cup S) \cap H=$ $(A \cup S) \cap M$. From the residual exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{F}(d-1) \rightarrow \mathcal{I}_{S \cup A}(d) \rightarrow \mathcal{I}_{(S \cup A) \cap H}(d) \rightarrow 0 \tag{1}
\end{equation*}
$$

we get $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{S \cup A}(d)\right)=h^{1}\left(H, \mathcal{I}_{(S \cup A) \cap M}(d)\right)$. Hence $\operatorname{dim}\left(\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle\right)-\operatorname{dim}\left(\left\langle\nu_{d}(A \cap\right.\right.$ $A)\rangle)=\operatorname{dim}\left(\left\langle\nu_{d}(S \cap M)\right\rangle \cap\left\langle\nu_{d}(S \cap M)\right\rangle-\operatorname{dim}\left(\left\langle\nu_{d}(A \cap S \cap M)\right\rangle\right)\right.$ (Lemma 2.1). We have $S \cap A=(S \cap A \cap M) \sqcup E$. Since $E \subseteq F$ and $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{F}(d-1)\right)=0$, the exact sequence (1) also gives $\operatorname{dim}\left(\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle\right)=\sharp(E)+\operatorname{dim}\left(\left\langle\nu_{d}(A \cap M)\right\rangle \cap\left\langle\nu_{d}(S \cap M)\right\rangle\right)$ and that $\left\langle\nu_{d}(E)\right\rangle$ and $\left\langle\nu_{d}(A \cap M)\right\rangle \cap\left\langle\nu_{d}(S \cap M)\right\rangle$ are supplementary linear subspaces of $\left\langle\nu_{d}(S)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$. This completes the proof.

We will often call (1) (or similar exact sequences) the Castelnuovo's sequence. Let $Z \subset \mathbb{P}^{m}$ be a zero-dimensional scheme. For any hyperplane $H \subset \mathbb{P}^{m}$ the residual scheme $\operatorname{Res}_{H}(Z)$ of Z with to H is the closed subscheme of \mathbb{P}^{m} with $\mathcal{I}_{Z}: \mathcal{I}_{H}$ as its ideal sheaf. We have $\operatorname{Res}_{H}(Z) \subseteq Z, \operatorname{deg}(Z)=\operatorname{deg}\left(\operatorname{Res}_{H}(Z)\right)+\operatorname{deg}(Z \cap H)$ and for any $t \in \mathbb{Z}$ there is a Castelnuovo's sequence

$$
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{H}(Z)}(t-1) \rightarrow \mathcal{I}_{Z}(t) \rightarrow \mathcal{I}_{Z \cap H, H}(t) \rightarrow 0
$$

If Z is reduced, i.e. if Z is a finite set, then $\operatorname{Res}_{H}(Z)=Z \backslash Z \cap H$.
Lemma 2.3. Fix integers $m \geq 2, d \geq 3$ and sets $S, A \subset \mathbb{P}^{m}$ such that $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A}(d)\right)=$ $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{S}(d)\right)=0, \sharp(A \cup S) \leq 2 d+1$ and $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle \neq\left\langle\nu_{d}(A \cap S)\right\rangle$. Then there is
a line $D \subset \mathbb{P}^{m}$ such that $\sharp((A \cup S) \cap D) \geq d+2$ and, taking $E:=(A \cap S) \backslash(A \cap S \cap D)$, $\left\langle\nu_{d}(E)\right\rangle$ and $\left\langle\nu_{d}(A \cap D)\right\rangle \cap\left\langle\nu_{d}(S \cap D)\right\rangle$ are supplementary subspaces of $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ and $\operatorname{dim}\left(\nu_{d}(E)\right\rangle=\sharp(E)-1$.

Proof. Since $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A \cup S}(d)\right)>0\left(\right.$ Lemma 2.1), there is a line $D \subset \mathbb{P}^{m}$ such that $\sharp(D \cap(A \cup S)) \geq d+2$ ([3], Lemma 34). Set $E:=(A \cup S) \backslash(A \cup S) \cap D$. Since $\sharp(E) \leq d-1$, we have $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{E}(d-1)\right)=0\left([3]\right.$, Lemma 3.4). Hence $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is the linear span of $\left\langle\nu_{d}(E)\right\rangle$ and of $\left\langle\nu_{d}(A \cap D)\right\rangle \cap\left\langle\nu_{d}(S \cap D)\right\rangle$ (Lemma 2.2). Since $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{E}(d)\right) \leq h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{E}(d-1)\right)=0$, we have $\operatorname{dim}\left(\nu_{d}(E)\right\rangle=\sharp(E)-1$. Use Lemma 2.2. This completes the proof.

We need the following obvious lemma.
Lemma 2.4. Fix a linearly independent subset $F^{\prime} \subset \mathbb{P}^{r}$. Then the linear system $\left|\mathcal{I}_{F^{\prime}}(2)\right|$ has no base point outside F^{\prime}, i.e. $h^{1}\left(\mathcal{I}_{F^{\prime} \cup\{P\}}(2)\right)=0$ for every $P \in \mathbb{P}^{r} \backslash F^{\prime}$.

Lemma 2.5. Fix integers $r \geq 1$ and $t \geq 3$ and subsets E, F of \mathbb{P}^{r} such that both E and F are linearly independent. Then $h^{1}\left(\mathcal{I}_{E \cup F}(t)\right)=0$.

Proof. If $r=1$, then the lemma is true. Hence we may assume $r \geq 2$ and use induction on r. Enlarging if necessary E we may assume $\sharp(E)=r+1$. Let H be a hyperplane spanned by r points of E. Set $E^{\prime}:=E \backslash E \cap H$ and $F^{\prime}:=F \backslash F \cap H$. Since both E and F are linearly independent, both $E \cap H$ and $F \cap H$ are linearly independent. Hence the inductive assumption gives $h^{1}\left(H, \mathcal{I}_{(E \cup F) \cap H}(t)\right)=0$. Since $\sharp\left(E^{\prime} \cup F^{\prime}\right) \leq \sharp\left(F^{\prime}\right)+1$ and F^{\prime} is linearly independent, it is sufficient to apply Lemma 2.4. This completes the proof.

Lemma 2.6. Fix a finite set $E \subset \mathbb{P}^{r}$ such that $h^{1}\left(\mathcal{I}_{E}(2)\right)>0$. Then there is a linear subspace $U \subseteq \mathbb{P}^{r}$ such that $\sharp(E \cap U) \geq \operatorname{dim}(U)+3$.

Proof. We use induction on r, the case $r=1$ being obvious. Assume $r \geq 2$. Let $H \subset \mathbb{P}^{r}$ be a hyperplane such that $\sharp(E \cap H)$ is maximal. First assume $h^{1}\left(H, \mathcal{I}_{H \cap E}(2)\right)>0$. By the inductive assumption there is a linear subspace $U \subseteq H$ such that $\sharp(E \cap U) \geq \operatorname{dim}(U)+2$. Now assume $h^{1}\left(H, \mathcal{I}_{H \cap E}(2)\right)=0$. By the Castelnuovo's sequence (1) with $d=2$ and $E=A \cup S$ we have $h^{1}\left(\mathcal{I}_{E \backslash E \cap H}(1)\right)>0$. Hence $\sharp(E \backslash E \cap H) \geq 3$. Since we took E with $\sharp(E \cap H)$ maximal and E is not contained in $H, E \cap H$ spans H. Therefore $\sharp(E \cap H) \geq r$. Hence $\sharp(E) \geq r+3$. Hence we may take \mathbb{P}^{r} as U. This completes the proof.

Example.2.7. Let $C \subset \mathbb{P}^{m}$ be a rational normal curve. Fix finite subsets A, S of C such that $A \neq \emptyset, S \neq \emptyset, A \cap S=\emptyset$ and $\sharp(A)+\sharp(B)=m d+2$. Since $h^{0}\left(C, \mathcal{O}_{C}(d)\right)=m d+1$, $h+0\left(C, \mathcal{I}_{A \cup S}(d)\right)=0$, and $h^{1}\left(C, \mathcal{I}_{E}(d)\right)=0$ for every $E \subset C$ such that $\sharp(E) \leq m d+1$, Lemma 2.1 gives that $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(A)\right\rangle$ is a unique point, P, and $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle=$ $\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ for any $A^{\prime} \subsetneq A$ and any $S^{\prime} \subsetneq S$.

Proof of Theorem 1.1. Assume $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle \neq\left\langle\nu_{d}(A \cap S)\right\rangle$. Since S and A are in linearly general position in \mathbb{P}^{m} and $\sharp(A) \leq m d+1, \sharp(S) \leq m d+1$, we have $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A}(d)\right)=h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{S}(d)\right)=0([12]$, Theorem 3.2). Hence our assumption is equivalent to $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A \cup S}(d)\right)>0$ (Lemma 2.1). $\sharp(A \cup S) \leq d m+1$, the set $A \cup S$ is not in linearly general position ([12], Theorem 3.2). Set $W_{0}:=A \cup S$. Let $M_{1} \subset \mathbb{P}^{m}$ be a hyperplane such that $\sharp\left(W_{0} \cap M_{1}\right)$ is maximal. Set $W_{1}:=W_{0} \backslash\left(W_{0} \cap M_{1}\right)$. Fix an integer $i \geq 2$ and assume to have defined the sets W_{j} and the hyperplane $M_{j} \subset \mathbb{P}^{m}$ for all $j<i$. Let $M_{i} \subset \mathbb{P}^{m}$ be a hyperplane such that $\sharp\left(M_{i} \cap W_{i-1}\right)$ is maximal. Set $W_{i}:=W_{i-1} \backslash\left(W_{i-1} \cap M_{i}\right), w_{i}:=\sharp\left(W_{i}\right)$ and $b_{i}=\sharp\left(M_{i} \cap W_{i-1}\right)$. Hence $w_{0}=\sharp(A \cup S)$, $w_{i-1}=w_{i}+b_{i}$ for all $i>0$, and $b_{i} \geq b_{j}$ for all $i \geq j$. Since $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{A \cup S}(d)\right)>0($ Lemma 2.1), there is an integer $i \geq 1$ such that $h^{1}\left(M_{i}, \mathcal{I}_{M_{i} \cap W_{i-1}}(d+1-i)\right)>0$. Call k the minimal such integer. Notice that if $b_{j} \leq m-1$, then $b_{i}=0$ for all $i>j$. Hence $b_{i}=0$ for all $i>\left\lceil w_{0} / m\right\rceil$. Hence $b_{d+2}=0$ and $b_{d+1} \leq 1$. Since $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{E}\right)=0$ if $\sharp(E) \leq 1$, we have $k \leq d$. Since both A and S are in linearly general position, then $\sharp\left(A \cap M_{k}\right) \leq m$, $\sharp\left(S \cap M_{k}\right) \leq m$ and both $A \cap M_{k}$ and $S \cap M_{k}$ are linearly independent in M_{k}. Lemma 2.4 with $r=m-1, E=A \cap M_{k}$ and $F=S \cap M_{k}$ gives $k \geq d-1$. Since $A \cup S$ is not in linearly general position, we have $b_{1} \geq m+1$. Since $b_{i} \geq m$ if $b_{i+1}>0$, we have $b_{i} \geq m$ for $2 \leq i \leq k-2$. Hence $\sharp(A \cup S) \geq m+1+(k-2) m+b_{k}$. Fix an integer $i \geq 1$ such that $b_{i+1}>0$. Since M_{i} contains the maximal number of points of W_{i-1}, either W_{i-1} is in linearly general position in \mathbb{P}^{m} or $b_{i} \geq m+1$. If W_{i-1} is in linearly general position in \mathbb{P}^{m}, then all its subsets $W_{j}, j \geq i$, are in linearly general position in \mathbb{P}^{m}. Hence either $M_{k} \cap W_{k-1}$ is in linearly general position in M_{k} or $b_{i} \geq m+1$ for all $i \in\{1, \ldots, k-1\}$.
(a) Here we assume that $M_{k} \cap W_{k-1}$ is in linearly general position in M_{k}. Since $h^{1}\left(M_{k}, \mathcal{I}_{W_{k-1} \cap M_{k}}(d+1-k)\right)>0$, we get $b_{k} \geq(m-1)(d+1-k)+2$ ([12], Theorem
3.2). First assume $k=d-1$. Since $b_{d-1} \geq 2 m$ and $b_{i} \geq b_{d-1}$ for all $i \leq d-1$, we get $\sharp(A \cup S) \geq 2 m(d-1)>m d+1$, a contradiction. For $k=d$ we get $b_{d} \geq m+1$ and hence $\sharp(A \cup S) \geq(m+1) d$, a contradiction.
(b) In this step we assume that $M_{k} \cap W_{k-1}$ is not in linearly general position in M_{k}.
(b1) First assume $k=d$. Since $M_{d} \cap W_{d-1}$ is not in linearly general position, we have $b_{d} \geq 3$. Hence $\sharp(A \cup S) \geq(m+1)(d-1)+3>m d+1$ (since $\left.d>m\right)$.
(b2) Now assume $k=d-1$. Hence $h^{1}\left(M_{d-1}, \mathcal{I}_{M_{d-1} \cap W_{d-2}}(2)\right)>0$. Applying Lemma 2.6 with $r=m-1$ and $E=M_{d-1} \cap W_{d-2}$ we get the linear subspace $U \subseteq M_{d-1}$ such that $\sharp((A \cup S) \cap U) \geq \operatorname{dim}(U)+3$. Since b_{1} is at least the maximal integer $\sharp(F \cap(A \cup S))$, where F is a hyperplane containing U, we have $b_{1} \geq m+3$. If there is linear subspace V such that $\sharp\left(V \cap W_{1}\right) \geq \operatorname{dim}(V)+3$, then $b_{2} \geq m+3$ (or $b_{3}=0$). If there is no such linear subspace then we may take the hyperplanes so that W_{d-1} has no linear subspace U as above. And so on. Hence we get $b_{i} \geq m+3$ for $1 \leq i \leq d-2$. Hence $\sharp(A \cup S) \geq(m+3)(d-2)+b_{d-1}$. Since $b_{d-1} \geq 4$ and $d>m$ we get $\sharp(A \cup S) \geq m d+2$, a contradiction.

Proof of Theorem 1.2. Take $A \subset \mathbb{P}^{m}$ such that $\nu_{d}(A)$ computes $\operatorname{sr}(P)$. If $\operatorname{sr}(P)=$ $\sharp(S)$, then assume $A \neq S$. It is sufficient to prove that these assumptions give a contradiction. We have $\sharp(A \cup S) \leq 3 d+1$ with strict inequality if d is even. Set $W:=A \cup S$ and $\rho_{0}:=\sharp(W)$. We assumed $P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$. Since $\nu_{d}(A)$ computes $s r(P)$, then $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$. Hence $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{W}(d)\right)>0$ ([2], Lemma 1). If $\sharp(S) \leq d+1$, then the statement is a particular case of [2], Theorem 2. Hence we may assume $\sharp(S) \geq d+2$.
(a) Let $H_{1} \subset \mathbb{P}^{m}$ be a hyperplane such that $\rho_{1}:=\sharp\left(W \cap H_{1}\right)$ is maximal. Set $W_{0}:=W$ and $W_{1}:=W_{0} \backslash W_{0} \cap H_{1}$. For every integer $i \geq 2$ define inductively the subsets W_{i} of W, the hyperplane $H_{i} \subset \mathbb{P}^{m}$ and the integer ρ_{i} in the following way. Fix an integer $i \geq 2$ and assume that W_{i-1} is defined. Let $H_{i} \subset \mathbb{P}^{m}$ be any hyperplane such that $\rho_{i}:=\sharp\left(W_{i-1} \cap H_{i}\right)$ is maximal. Set $W_{i}:=W_{i-1} \backslash W_{i-1} \cap H_{i}$. Hence $W_{i+1} \subseteq W_{i}$ for all i, $\sharp\left(W_{i}\right)=\rho_{0}-\sum_{h=1}^{i} \rho_{h}$ for all $i \geq 1$. The maximality condition implies that the sequence $\left\{\rho_{i}\right\}_{i \geq 1}$ is non-increasing and $\rho_{0} \geq \sum_{i \geq 1} \rho_{i}$. Hence $W_{i+1}=W_{i} \Leftrightarrow \rho_{i}=0 \Leftrightarrow \rho_{h}=0$ for all $h \geq i$. Since $W_{i}=W_{i-1} \backslash W_{i-1} \cap H_{i}$, for all integers t, i with $i \geq 1$ we have the following
exact sequence of sheaves (often called the Castelnuovo's sequence)

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{W_{i}}(t-1) \rightarrow \mathcal{I}_{W_{i-1}}(t) \rightarrow \mathcal{I}_{W_{i-1} \cap H_{i}, H_{i}}(t) \rightarrow 0 \tag{2}
\end{equation*}
$$

Since $W_{i}=\emptyset$ for all $i \gg 0\left(\right.$ say for all $\left.\left.i \geq \rho_{0}\right)\right)$ and $h^{1}\left(\mathbb{P}^{n}, \mathcal{I}_{W}(d)\right)>0$, there is an integer $i \geq 1$ such that $h^{1}\left(H_{i}, \mathcal{I}_{W_{i-1} \cap H_{i}, H_{i}}(d+1-i)\right)>0$. Call i_{0} the minimal such integer. Since $\rho_{0} \leq 3 d+1$ and $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{W}(d)\right)>0, W$ is not in linearly general position ([12], Theorem 3.2). Hence $\rho_{1} \geq m+1$. By the maximality of each ρ_{i} we get that either $W_{i-1} \cap H_{i}$ spans H_{i} (and hence $\rho_{i-1} \geq m$) or $W_{i-1} \subset H_{i}$ and hence $\rho_{j}=0$ for all $j \geq i_{0}$. Since $\sharp(A \cup S) \leq 3 d+1<m(d-1)$, we have $i_{0} \leq d$. Hence $d+1-i_{0}>0$. By [3], Lemma 34, we have $\rho_{i_{0}} \geq d+3-i_{0}$ and equality holds if and only if $W_{i_{0}-1} \cap H_{i}$ is contained in a line. Since the sequence $\left\{\rho_{i}\right\}_{i \geq 1}$ is non-increasing, we get $i_{0}\left(d+3-i_{0}\right) \leq \rho_{0}$. Since $\rho_{0} \leq 3 d+1$ and the function $t \mapsto t(d+3-t)$ is strictly increasing for $t<(d+3) / 2$ and strictly decreasing for $t>(d+3) / 2$, we get that either $i_{0} \in\{1,2,3\}$ or $i_{0} \geq d-3$ (for $t=4$ we need $d \geq 5$).
(b) Here we assume $i_{0}=1$ and $\rho_{1} \leq 2 d+1$. There is a line $L \subset H_{1}$ such that $\sharp(W \cap L) \geq d+2([3]$, Lemma 34). Since S is in linearly general position, we have $\sharp(S \cap L) \leq 2$. Hence $\sharp(A \cap L) \geq d$. Set $S^{\prime}:=S \backslash L$ and $A^{\prime}:=A \backslash S \cap L$. Since $P \in\left\langle\nu_{d}(A)\right\rangle$ and $P \notin\langle A \backslash L \cap A\rangle$, the set $\left\langle\{P\} \cup \nu_{d}(A \backslash A \cap L)\right\rangle \cap\left\langle\nu_{d}(A)\right\rangle$ is a unique point; call P_{1} this point. Since $P \in\left\langle\nu_{d}(A \backslash A \cap L) \cup\left\{P_{1}\right\}\right\rangle, P_{1} \in\left\langle\nu_{d}(A \cap L)\right\rangle$, and A computes $s r(P)$, the set $\nu_{d}(A \cap L)$ computes $\operatorname{sr}\left(P_{1}\right)$. Since $\nu_{d}(A \cap L) \subset \nu_{d}(L)$, then $P_{1} \in\left\langle\nu_{d}(L)\right\rangle$ and $A \cap L$ computes the symmetric rank of P_{1} with respect to the rational normal curve $\nu_{d}(L)$ ([14], Proposition 3.1, [15]). Hence $\sharp(A \cap L) \leq d([8],[15]$, Theorem 4.1, [3], Theorem 34). Since we knew the opposite inequality, we get $\sharp(A \cap L)=d$. Hence P_{1} has border rank 2 ([8], [15], Theorem 4.1, [3], Theorem 34). Hence there is a degree two 0-dimensional scheme $Z \subset L$ such that $P_{1} \in\left\langle\nu_{d}(Z)\right\rangle\left([6]\right.$, Lemma 2.1.5, or [3], Proposition 11). Hence $P \in\left\langle\nu_{d}\left(Z \cup\left(A^{\prime}\right)\right)\right\rangle$. Since $\sharp(A) \leq \sharp(S) \leq 3 d+1$, we get $\operatorname{deg}\left(Z \cup A^{\prime}\right)+\sharp(S) \leq 3 d+1+2-d \leq 2 d+3$. If $\operatorname{deg}\left(Z \cup A^{\prime}\right)+\sharp(S) \leq 2 d+1$ (e.g., if $\sharp(A)+\sharp(S) \leq 3 d-1$), then we may repeat the proof of [2], Theorem 1, applied to $\mathcal{Z}:=\nu_{d}\left(Z \cup A^{\prime}\right)$ and to $\mathcal{S}:=\nu_{d}(S)$, and obtain a contradiction, because no line contains at least $\lceil(d+2) / 2\rceil$ points of S. Hence we could assume $\sharp(A)+\sharp(S) \geq 3 d$. First assume $h^{1}\left(\mathcal{I}_{A^{\prime} \cup S^{\prime}}(d-1)\right)=0$. For a general hyperplane M
containing L we have $\operatorname{Res}_{M}\left(Z \cup A^{\prime} \cup S\right)=A^{\prime} \cup S^{\prime}$. From the Castelnuovo's sequence with respect to M we get that $\left\langle\nu_{d}\left(Z \cup A^{\prime}\right)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is the linear span of $\left\langle\nu_{d}(Z)\right\rangle \cap\left\langle\nu_{d}(S \cap L)\right\rangle$ and of $\left.\nu_{d}\left(A^{\prime} \cap S^{\prime}\right)\right\rangle$. Since $S \cap L$ is reduced, either $Z_{\text {red }} \in S \cap L$ or $\sharp(S \cap L) \geq d$ or $\left\langle\nu_{d}(Z)\right\rangle \cap\left\langle\nu_{d}(S \cap L)\right\rangle=\emptyset([8])$. Since S is in linearly general position and $d>2$, we have $\sharp(S \cap L)<d$. Now assume $Z_{\text {red }} \subset S \cap L$; we get $\left\langle\nu_{d}(Z)\right\rangle \cap\left\langle\nu_{d}(S \cap L)\right\rangle=\left\{\nu_{d}\left(Z_{\text {red }}\right)\right\}$; hence $P \in\left\langle Z_{\text {red }} \cup S^{\prime}\right\rangle$ with $Z_{\text {red }} \subset S$; since $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq S$, we get $S \cap L=Z_{\text {red }}$. Hence $\sharp(A \cap L) \geq d+1$, a contradiction. Similarly, if $\left\langle\nu_{d}(Z)\right\rangle \cap\left\langle\nu_{d}(S \cap L)\right\rangle=\emptyset$ we get $P \in\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ and hence $\sharp(A \cap L) \geq d+2$, a contradiction.

Now assume $h^{1}\left(\mathcal{I}_{A^{\prime} \cup S^{\prime}}(d-1)\right)>0$. Since $\sharp\left(A^{\prime} \cup S^{\prime}\right) \leq \sharp(A \cup S)-d-2 \leq 2(d-1)+1$, there is a line $R \subset \mathbb{P}^{m}$ such that $\sharp\left(R \cap\left(A^{\prime} \cup S^{\prime}\right)\right) \geq d+1$. Since S^{\prime} is in linearly general position, we have $\sharp\left(S^{\prime} \cap R\right) \leq 2$. Hence $\sharp\left(A^{\prime}\right) \geq d-1$. Hence $\sharp(A) \geq 2 d-1$, a contradiction.
(c) Here we assume $i_{0}=1$ and $\rho_{1} \geq 2 d+2$. Since S is in linearly general position, we have $\sharp\left(S \cap H_{1}\right) \leq m$. Hence $\sharp\left(A \cap H_{1}\right) \geq 2 d+2-m$. Since $d \geq 2 m+1$, we have $2 d+2-m>(3 d+1) / 2$. Hence $\sharp(A)>(3 d+1) / 2$, a contradiction.
(d) Here we assume $i_{0}=2$. Hence $\rho_{2} \geq d+1$ ([3], Lemma 34). Since the sequence $\left\{\rho_{j}\right\}_{j \geq 1}$ is non-increasing and $2(2 d-1)>3 d+1 \geq \rho_{0}$, we get $\rho_{2} \leq 2 d-1$. Hence there is a line $L_{1} \subset H_{2}$ such that $\sharp\left(W_{1} \cap L_{1}\right) \geq d+1$. If $\sharp(S) \geq 2 m+1$, then $\rho_{3} \geq$ $\sharp(S)-2 m>0$, because S is in linearly general position. Hence $W_{1} \cap H_{2}$ spans H_{2}. Hence $\rho_{2} \geq \operatorname{deg}\left(W_{1} \cap L\right)+m-2 \geq m+d-1$. Since $\rho_{1} \geq \rho_{2}$ and $\sharp\left(S \cap H_{1}\right) \leq m$, we also get $\sharp\left(A \cap\left(H_{1} \cup H_{2}\right)\right) \geq 2 d-2$, a contradiction. Now assume $\sharp(S) \leq 2 m$. Since $d>2 m$, the theorem in this case is a particular case of [2], Theorem 2.
(e) Here we assume $i_{0}=3$. Since the sequence $\left\{\rho_{j}\right\}_{j \geq 1}$ is non-increasing and $3(d+1)>$ $3 d+1$, we get that $W_{2} \cap H_{3}$ is the union of d collinear points, say on a line L_{3}, and hence $\rho_{j}=0$ for all $j>3$. We get $\rho_{0}=3 d+\epsilon$ with $\epsilon \in\{0,1\}, \rho_{1}=d+\epsilon, \rho_{2}=d$ and $\rho_{3}=d$. Instead of H_{1} we take a hyperplane M_{1} containing L_{3} and at least $m-2$ other points of W. Since $m \geq 4$, we get a contradiction.
(f) Here we assume $i_{0} \geq d-3$. Recall that the sequence $\left\{\rho_{i}\right\}_{i \geq 1}$ is non-increasing and that $\rho_{i} \geq m$ if $\rho_{i+1}>0$. Since $A \cup S$ is not in linearly general position, we have $\rho_{1} \geq m+1$.
(f1) If $i_{0} \geq d+1$ we get $\rho_{0} \geq m+1+m(d-1)+1$, a contradiction.
(f2) Now assume $i_{0}=d$. Since $h^{1}\left(H_{d}, \mathcal{I}_{W_{d}}(1)\right)>0$, we get $\rho_{d} \geq 3$. Hence $\rho_{0} \geq$ $m+1+m(d-2)+3$. Since $m \geq 4$, we get $\rho_{0}>3 d+1$, a contradiction.
(f3) Now assume $i_{0}=d-1$. We have $\rho_{d-1} \geq 4$ and either $\rho_{d-1} \geq 6$ or $W_{d-2} \cap H_{d-1}$ contains 4 collinear points ([3], Lemma 34). If $\rho_{d-1} \geq 6$ we get $\rho_{0} \geq(m+1)+(d-3) m+6$; we have $(m+1)+(d-3) m+6 \geq 3 d+2$ if and only if $m \geq 4$ and $(m-3) d \geq 2 m-5$ (true under our assumptions $d \geq 2 m+1$ and $m \geq 4$). If $\rho_{d-1} \leq 5$, then $W_{d-2} \cap H_{d-1}$ contains 4 collinear points. Hence (as in step (b2) of the proof of Theorem 1.1) we easily get $\rho_{i} \geq m+2$ for all $i \leq d-2$. Hence $\rho_{0} \geq(m+2)(d-2)+4 \geq 3 d+2$.
(f4) Now assume $i_{0}=d-2$. We have $\rho_{d-2} \geq 5$ and either $\rho_{d-2} \geq 8$ or $W_{d-3} \cap H_{d-2}$ contains 5 collinear points ([3], Lemma 34). If $\rho_{d-2} \geq 8$ we get $\rho_{0} \geq(m+1)+(d-4) m+8$; we have $(m+1)+(d-4) m+8 \geq 3 d+2$ if and only if $(m-3) d \geq 3 m-7$ (true under our assumptions $m \geq 4$ and $d \geq 2 m+1$). If $\rho_{d-2} \leq 7$, then W_{d-3} contains 5 collinear points. As above we get $\rho_{i} \geq m+3$ for all $i \leq d-3$. Hence $\rho_{0} \geq 5+(d-2)(m+3)$. We have $5+(d-2)(m+3) \geq 3 d+2$ if and only if $m d-2 m \geq 3$ (true under our assumptions).
(f5) Now assume $i_{0}=d-3$. We have $\rho_{d-3} \geq 6$ and either $\rho_{d-3} \geq 10$ or $W_{d-4} \cap H_{d-3}$ contains 6 collinear points ([3], Lemma 34). If $\rho_{d-3} \geq 10$ we get $\rho_{0} \geq(m+1)+(d-5) m+10$; we have $(m+1)+(d-5) m+10 \geq 3 d+2$ if and only if $(m-3) d \geq 4 m-9$ (true under our assumptions). If $\rho_{d-3} \leq 9$, then $W_{d-4} \cap H_{d-3}$ contains 6 collinear points. As above get $\rho_{i} \geq m+4$ for all $i \leq d-4$. Hence $\rho_{0} \geq(m+4)(d-4)+6$. We have $(m+4)(d-4)+6 \geq 3 d+2$ if and only if $m(d-4) \geq 12-d$ (true under our assumptions).

3. The proofs of Propositions $1.3,1.4,1.5,1.6$

Lemma 3.1. Fix an integer $d>0$ and finite sets $A, S \subset \mathbb{P}^{m}, m \geq 2$, such that $\sharp(A)+$ $\sharp(S) \leq 2 d+2$ and there is a line $D \subset \mathbb{P}^{m}$ such that $\sharp((A \cup S) \cap D) \geq d+2$. Assume $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle \neq\left\langle\nu_{d}(A \cap S)\right\rangle$ and the existence of $P \in\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ such that $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$ and $P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$. Then $A \backslash A \cap D=S \backslash A \cap D$, i.e., (A, S, P) is as in case A.

Proof. Since $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A$, the set $\nu_{d}(A)$ is linearly independent. For the same reason $\nu_{d}(S)$ is linearly independent. Hence $\sharp(A \cap D) \leq d+1$ and $\sharp(S \cap D) \leq d+1$. Hence $(S \backslash S \cap A) \cap D \neq \emptyset$. Set $A^{\prime}:=A \backslash A \cap D$ and $S^{\prime}:=S \backslash S \cap D$. Since $\sharp((A \cup S) \cap D) \geq$ $d+2$, we have $\sharp\left(A^{\prime} \cup S^{\prime}\right) \leq d$. Hence $h^{1}\left(\mathcal{I}_{A^{\prime} \cup S^{\prime}}(d-1)\right)=0$. Hence $\nu_{d}\left(A^{\prime} \cup S^{\prime}\right)$ is linearly independent. Let $H \subset \mathbb{P}^{m}$ be a general hyperplane containing D. Since $A \cup S$ is finite and H is general, we have $A^{\prime}=A \backslash A \cap H$ and $S^{\prime}=S \backslash S \cap H$. Since $(A \cup S) \cap H=(A \cup S) \cap D$ and the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{m}}(d)\right) \rightarrow H^{0}\left(D, \mathcal{O}_{D}(d)\right)$ is surjective, the Castelnuovo's sequence (1) with $A^{\prime} \cup S^{\prime}$ instead of F gives $h^{1}\left(\mathcal{I}_{A \cup S}(d)\right)=h^{1}\left(D, \mathcal{I}_{(A \cup S) \cap D}(d)\right)$. Lemma 2.2 gives that $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is spanned by its supplementary subspaces $\left\langle\nu_{d}(A \cap D)\right\rangle \cap$ $\left\langle\nu_{d}(S \cap D)\right\rangle$ and $\left\langle\nu_{d}\left(A^{\prime} \cap S^{\prime}\right)\right\rangle$. Since $P \notin\left\langle\nu_{d}(E)\right\rangle$ for any $E \subsetneq A$, we get $A^{\prime} \cap S^{\prime}=A^{\prime}$. For the same reason we get $A^{\prime} \cap S^{\prime}=S^{\prime}$. Hence $A^{\prime}=S^{\prime}$. This completes the proof.

Lemma 3.2. Fix an integer $d \geq 2$, a smooth conic $C \subset \mathbb{P}^{m}, m \geq 2$, and sets $A, S \subset C$ such that $S \cap A=\emptyset$ and $\sharp(A)+\sharp(S)=2 d+2$. Then $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is a single point (call it P), and $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A, P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$.
(i) If $\sharp(A) \leq d$, then $\operatorname{sr}(A)=\sharp(A)$ and $\mathcal{S}(P)=\{A\}$.
(ii) If $\sharp(A)=d+1$, then sr $(P)=d+1$ and $\operatorname{dim}(\mathcal{S}(d, P)) \geq 1$; if we assume $d \geq 5$, then $\operatorname{dim}(\mathcal{S}(d, P))=1$ and every $B \in \mathcal{S}(d, P)$ is contained in C.

Proof. Since $\operatorname{dim}\left(\left\langle\nu_{d}(C)\right\rangle\right)=2 d$ and $h^{1}\left(\mathcal{I}_{E}(d)\right)=0$ for any $E \subseteq C$ (use that C is arithmetically normal), we get $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is a single point (call it P), and $P \notin$ $\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A, P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$.
(a) Assume $\sharp(A) \leq d$ and the existence of $B \in \mathcal{S}(P)$ such that $B \neq A$. Hence $h^{1}\left(\mathcal{I}_{A \cup B}(d)\right)>0\left([2]\right.$, Lemma 1). Since $\sharp(A)+\sharp(B) \leq 2 d+1$, there is a line $D \subset \mathbb{P}^{m}$ such that $\sharp((A \cup B) \cap D) \geq d+2$. Lemma 3.3 gives $A \backslash A \cap D=B \backslash B \cap D$. Since $\sharp(A \cap D) \leq 2$, we get $\sharp(B) \geq \sharp(B \cap D)+1 \geq d+1$, a contradiction.
(b) Now assume $\sharp(A)=d+1$. As in step (a) we get a contradiction assuming $\operatorname{sr}(P) \leq d$. Hence $\operatorname{sr}(P)=d+1$. Since $\nu_{d}(C)$ is a degree $2 d$ rational normal curve in $\left\langle\nu_{d}(C)\right\rangle$, it is well-known that the set of all $E \subset C$ computing the symmetric rank of P with respect to $\nu_{d}(C)$ is one-dimensional. Now assume $d \geq 5$. Take any $B \in \mathcal{S}(P)$ and assume that B is not contained in C. By [14], Proposition 3.1, B spans a plane $U \subseteq \mathbb{P}^{m}$
and U is the plane spanned by C. Hence in order to obtain a contradiction we may assume $m=2$. Set $W:=B \cup S$. Since $\sharp(W \cap C) \leq 2 d+1$, we have $h^{1}\left(C, \mathcal{I}_{W \cap C}(d)\right)=0$. Hence in order to obtain a contradiction it is sufficient to prove $h^{1}\left(U, \mathcal{I}_{W \backslash W \cap C}(d-2)\right)=0$ (use a Castelnuovo's sequence and [2], Lemma 1). Since $S \subset C$, we have $\sharp(W \backslash W \cap C) \leq$ $d+1 \leq 2(d-2)+1$. Hence if $h^{1}\left(U, \mathcal{I}_{W \backslash W \cap C}(d-2)\right)>0$, then there is a line $D \subset U$ such that $\sharp(D \cap B \backslash D \cap B \cap C) \geq d$. Since $\sharp(B) \leq d+1$, we have $h^{1}\left(U, \mathcal{I}_{B \cap D}(d)\right)=0$. Since $\sharp(W \cap C) \leq d+2 \leq 2(d-2)+1$, we have $h^{1}\left(C, \mathcal{I}_{(W \backslash D) \cap C}(d-2)\right)=0$. Since $W \backslash W \cap(C \cup D))$ is at most one point, we have $h^{1}\left(U, \mathcal{I}_{W \backslash(W \cap C \cup D)}(d-4)\right)=0$. A Castelnuovo's exact sequence gives $h^{1}\left(U, \mathcal{I}_{W \backslash W \cap C}(d-2)\right)=0$. This completes the proof.

Proof of Proposition 1.5. By Lemma 3.2 it only remains to prove that if $\operatorname{sr}(P)=$ $d+1, B, B_{1} \in \mathcal{S}(P)$ and $B \neq B_{1}$, then $B \cap B_{1}=\emptyset$. Assume $B \cap B_{1} \neq \emptyset$. Hence $\sharp\left(B \cup B_{1}\right) \leq 2 d+1$. Since $B \cup B_{1} \subset C$, we get $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{B \cup B_{1}}(d)\right)=0$, contradicting [2], Lemma 1.

Lemma 3.3. Fix $A, S \subset \mathbb{P}^{m}, m \geq 2$, such that $\sharp(A \cup S) \leq 2 d+2$ and $A \cup S$ is not in linearly general position in $\langle A \cup S\rangle$. Assume the existence of $P \in\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ such that $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$ and $P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$. Then (A, S, P) is either as in case A or as in case C.

Proof. First assume $m=2$. We repeat the proof of Theorem 1.2. Set $W_{0}:=A \cup S$ and let $L_{1} \subset \mathbb{P}^{2}$ be any line such that $\sharp\left(W_{0} \cap L_{1}\right)$ is maximal. Set $W_{1}:=W_{0} \backslash L_{1} \cap W_{0}$. Define inductively the line $L_{i}, i \geq 1$, as one of the lines such that $b_{i}:=\sharp\left(L_{i} \cap W_{i-1}\right)$ is maximal and set $W_{i}:=W_{i-1} \backslash L_{i} \cap W_{i-1}$. Notice that if $b_{i} \leq 1$, then $b_{j}=0$ for all $j>i$. Since W_{0} is not in linearly general position, we have $b_{1} \geq 3$. Hence $b_{i}=0$ for $i \geq d+1, b_{d+1} \leq 1$ and $b_{d+1}=1$ if and only if $b_{i}=2$ for $2 \leq i \leq d$. Let k be the minimal integer i such that $h^{1}\left(L_{i}, \mathcal{I}_{W_{i-1} \cap L_{i}}(d+1-i)\right)>0$, i.e. such that $b_{i} \geq d+3-i(k$ exists by [2], Lemma 1$)$. If $k=1$, i.e. if $b_{1} \geq d+2$, then (A, S, P) is in case A by Lemma 3.1. Assume $k \geq 2$. Since $b_{d+1} \leq 1$ and $b_{i}=0$ for all $i \geq d+2$, we have $k \leq d$. Hence $\sharp\left(W_{0}\right) \geq k(d+3-k) \geq 2(d+1)$ and the last equality holds if and only if $k=2$. Assume $k=2$. Hence $b_{2} \geq d+1$. Since $\sharp(A \cup S) \leq 2 d+2$, we get $b_{1}=b_{2}=d+1$ and $b_{3}=0$. Hence $W_{1} \subset L_{2}$. Since $b_{2}=b_{1}$, we
must have $L_{2} \cap W_{1}=L_{2} \cap(A \cup S)$, i.e. $L_{1} \cap L_{2} \notin(A \cup S)$. Hence (A, S, P) is as in case C with respect to the reducible conic $L_{1} \cup L_{2}$.

Now assume $m>2$. We repeat the same proof starting from a hyperplane $H_{1} \subset \mathbb{P}^{m}$ such that $\sharp\left((A \cup S) \cap H_{1}\right)$ is maximal. If $A \cup S \subset H_{1}$, we conclude by induction on m. Now assume $(A \cup S) \cap H_{1} \neq H_{1}$. Hence $\left.\sharp\left((A \cup S) \cap H_{1}\right)\right) \leq 2 d+1$. First assume $h^{1}\left(H_{1}, \mathcal{I}_{(A \cup S) \cap H_{1}}(d)\right)>0$. By [3], Lemma 34, we have $\sharp\left((A \cup S) \cap H_{1}\right) \geq d+2$ and there is a line $D \subset H_{1}$ such that $D \cap(A \cup S) \geq d+2$. Lemma 3.1 gives that (A, S, P) is as in case A. Now assume $h^{1}\left(H_{1}, \mathcal{I}_{(A \cup S) \cap H_{1}}(d)\right)=0$. We continue as in the case $m=2$ using hyperplanes H_{i} instead of lines L_{i}. Now the inequality $b_{k} \geq d+3-k$ does not follow from the cohomology of line bundles on $L_{k} \cong \mathbb{P}^{1}$, but from [3], Lemma 34. This completes the proof.

Lemma 3.4. Fix an integer $d \geq 2$. Fix lines L_{1}, L_{2} of \mathbb{P}^{2} and set $\{Q\}:=L_{1} \cap L_{2}$. Fix sets A, S such that $A \cap S=\emptyset, Q \notin(A \cup S), A \cup S \subset L_{1} \cup L_{2}$, and $\sharp\left((A \cup S) \cap L_{1}\right)=$ $\sharp\left((A \cup S) \cap L_{2}\right)=d+1$. Then $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is a single point (call it P), and $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A, P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$.

Proof. Since $L_{1} \cup L_{2}$ is a reducible conic, we have $\operatorname{dim}\left(\left\langle\nu_{d}\left(L_{1} \cup L_{2}\right)\right\rangle\right)=2 d$. Since $\left.\sharp(A \cap S) \cap L_{i}\right) \geq d+1$, we have $\left\langle\nu_{d}\left(L_{i}\right)\right\rangle \subset\left\langle\nu_{d}(A \cup S)\right\rangle$. Hence $\operatorname{dim}\left(\left\langle\nu_{d}(A \cup S)\right\rangle\right)=$ $2 d$. Since $A \cap S=\emptyset$ and $\sharp(A \cup S)=2 d+2$, we get $h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{A \cup S}(d)\right)=1$ and that $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle$ is a single point (call it $\left.P\right)$. Fix $A^{\prime} \subsetneq A$. Since $\sharp\left(A^{\prime} \cup S\right) \leq 2 d+1$ and no line contains at least $d+2$ points of $A^{\prime} \cup S,[3]$, Lemma 34 , gives $h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{A^{\prime} \cup S}(d)\right)=0$, i.e. $\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle \cap\left\langle\nu_{d}(S)\right\rangle=\left\langle\nu_{d}\left(A^{\prime} \cap S\right)\right\rangle=\emptyset$. Hence $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$. Similarly, $P \notin\left\langle\nu_{d}\left(S^{\prime}\right)\right\rangle$ for any $S^{\prime} \subsetneq S$. This completes the proof.

Notice that in the statement of Lemma 3.4 we allow the case $S \subset L_{i}$, i.e., $A \subset L_{2-i}$.
Proof of Proposition 1.3. By Lemma 3.3 to prove part (a) we may assume that $A \cup S$ is in linearly general position in $U:=\langle A \cup S\rangle$. Since $\sharp(A \cup S)<3 d$ and $A \cup S$ is linearly independent in U, [11], theorem 3.8, gives the existence of a smooth plane conic C such that $\sharp(C \cap(A \cup S)) \geq 2 d+2$. Hence $A \cup S \subset C$ and $A \cap S=\emptyset$. Hence (A, S, P) is as in case B. Part (b) in case C is true by Lemma 3.4. The proof of part (b) in case B is similar, but easier, because any $E \subset C$ with $\sharp(E) \leq 2 d-1$ satisfies $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{E}(d)\right)=0$.

Lemma 3.5. Fix a line $D \subset \mathbb{P}^{m}, m \geq 2$, and a finite set $B \subset \mathbb{P}^{m}$ such that $\sharp(B \backslash B \cap D) \leq$ d. Then $\left\langle\nu_{d}(B)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\left\langle\nu_{d}(B \cap D)\right\rangle$.

Proof. Fix a general hyperplane $H \subset \mathbb{P}^{m}$ containing D. Since B is finite and H is general, we have $B \cap H=B \cap D$. Since $\sharp\left((B \backslash B \cap D) \leq d-1\right.$, we have $h^{1}\left(\mathcal{I}_{B \backslash B \cap D}(d-1)\right)=0$. Hence a Castelnuovo's sequence and linear algebra gives $\left\langle\nu_{d}(B \backslash B \cap D)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\emptyset$. Hence $\left\langle\nu_{d}(B)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\left\langle\nu_{d}(B \cap D)\right\rangle$. This completes the proof.

Proof of Proposition 1.4. Since $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A, \nu_{d}(A)$ is linearly independent. For the same reason $\nu_{d}(S)$ is linearly independent. Since (A, S, P) is as in case A with respect to the line D, we have $E=S \backslash D \cap S$. Since $P \in\left\langle\nu_{d}(A)\right\rangle$ and $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$, the set $\left\langle\nu_{d}(E) \cup\{P\}\right\rangle \cap\left\langle\nu_{d}(A \cap D)\right\rangle$ is a single point and we called it P_{1}. Lemma 3.5 gives $\left\langle\nu_{d}(E)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\emptyset$. Hence $\left\langle\nu_{d}(E) \cup\{P\}\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle$ is at most one point. Hence $\left\langle\nu_{d}(E) \cup\{P\}\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\left\{P_{1}\right\}$. Taking S instead of A we $\operatorname{get}\left\langle\nu_{d}(E) \cup\{P\}\right\rangle \cap\left\langle\nu_{d}(S \cap D)\right\rangle=\left\{P_{1}\right\}$.
(i) In this step we check part (c). Assume $D \neq \bar{D}$. Notice that $D \cup \bar{D}$ is contained in a quadric hypersurface (even if $m \geq 3$ and $D \cap \bar{D}=\emptyset$). Set $G:=\bar{A} \backslash \bar{A} \cap \bar{D}$. Using $\bar{A}, \bar{S}, \bar{D}$, and G instead of A, S, D, and E, we get that $\langle\{P\} \cup G\rangle \cap\left\langle\nu_{d}(\bar{D})\right\rangle$ is a single point. Call it P_{3}. Since $\sharp(E \cup G) \leq d-1$, we have $h^{1}\left(\mathcal{I}_{E \cup G}(d-2)\right)=0$. Hence a Castelnuovo's exact sequence and the fact that $D \cup \bar{D}$ is contained in a quadric hypersurface give $\left\langle\nu_{d}(E \cup G)\right\rangle \cap\left\langle\nu_{d}(D \cup \bar{D}\rangle\right)=\emptyset$. Hence $\left.\left\langle\{P\} \cup \nu_{d}(E \cup G)\right\rangle \cap\left\langle\nu_{d}(D \cup \bar{D})\right\rangle\right)$ is at most one point. Hence $P_{3}=P_{1}$ and $\left\langle\{P\} \cup \nu_{d}(E \cup G)\right\rangle \cap\left\langle\nu_{d}(D \cup \bar{D}\rangle\right)=\left\{P_{1}\right\}$. Hence $P_{1} \in\left\langle\nu_{d}(D)\right\rangle \cap\left\langle\nu_{d}(\bar{D}\rangle\right)$. Since $d \geq 2$, we have $\left\langle\nu_{d}(D)\right\rangle \cap\left\langle\nu_{d}(\bar{D}\rangle\right)=\nu_{d}(D \cap \bar{D})$. Hence $D \cap \bar{D} \neq \emptyset$ and $\left\{P_{1}\right\}=\nu_{d}(D \cap \bar{D})$. Hence $\operatorname{sr}\left(P_{1}\right)=1$. Recall that $P_{1} \in\left\langle\nu_{d}(A \cap D)\right\rangle$. Since any $d+1$ points of $\nu_{d}(D)$ are linearly independent, we get that either $P_{1} \in A \cap D$ or $\sharp(A \cap D) \geq d+1$. Notice that if $P_{1} \in \nu_{d}(A \cap D)$, then $A \cap D$ is the only point, Q^{\prime}, such that $\nu_{d}\left(Q^{\prime}\right)=P_{1}$, because $P \in\left\langle\left\{P_{1}\right\} \cup \nu_{d}(E)\right\rangle$ and $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$. Hence the assumption $2 \leq \sharp(A \cap D) \leq d$ made in part (c) is not satisfied.
(ii) In this step we check part (a). Obviously, $\operatorname{sr}(P) \leq s r\left(P_{1}\right)+\sharp(E)$. Fix $B \in \mathcal{S}(P)$ and $B_{1} \in \mathcal{S}\left(P_{1}\right)$. By a parsimony lemma we have $B_{1} \subset D$ ([14], Proposition 3.1, [15],
theorem 2.1). Set $M:=E \cup B_{1}$. We have $P \in\left\langle\nu_{d}(M)\right\rangle$. Let M^{\prime} be a minimal subset of M such that $P \in\langle M\rangle$.

Claim: We have $M^{\prime}=M$.
Proof of the Claim: Assume $M^{\prime} \neq M$. Hence either there is $E^{\prime} \subsetneq E$ such that $P \in\left\langle\nu_{d}\left(E^{\prime} \cup B_{1}\right)\right\rangle$ or there is $B^{\prime} \subsetneq B_{1}$ such that $P \in\left\langle\nu_{d}\left(E \cup B^{\prime}\right)\right\rangle$. First assume the existence of E^{\prime}. Since $B_{1} \subset D$ and $P \notin\left\langle\nu_{d}(E)\right\rangle$, we get $\left\langle\{P\} \cup \nu_{d}\left(E^{\prime}\right)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle \neq \emptyset$. Since $\left\{P_{1}\right\}=\left\langle\{P\} \cup \nu_{d}(E)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle$, we get $\left\langle\{P\} \cup \nu_{d}\left(E^{\prime}\right)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\left\{P_{1}\right\}$. Since $P_{1} \in\left\langle\nu_{d}(A \cap D)\right\rangle$, we get $P \in\left\langle\nu_{d}\left(E^{\prime} \cup(A \cap D)\right\rangle\right.$. Since $E^{\prime} \cup(A \cap D) \subsetneq E$, we obtained a contradiction. Now assume the existence of $B^{\prime} \subsetneq B_{1}$ such that $P \in\left\langle\nu_{d}\left(E \cup B^{\prime}\right)\right\rangle$. Since $\left\langle\{P\} \cup \nu_{d}(E)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\left\{P_{1}\right\}$, we get $P_{1} \in\left\langle\nu_{d}\left(B^{\prime} \cup E\right)\right\rangle$. Taking B^{\prime} minimal and applying [2], Lemma 1, to P_{1} we get $h^{1}\left(\mathcal{I}_{E \cup B_{1} \cup B}(d)\right)>0$. Since $E \cup B_{1} \cup B=E \cup B$ and $\sharp(E \cup B) \leq 2 d+1$, there is a line $T \subset \mathbb{P}^{m}$ such that $\sharp(T \cap(E \cup B)) \geq d+2$. Since $\sharp(E) \leq d-1$ and $B \subset D$, we have $T=D$. Since $D \cap E=\emptyset$ and $\sharp(B)<d+2$, we get a contradiction.

Assume $M \neq B$. Since $P \notin\left\langle\nu_{d}\left(M_{1}\right)\right\rangle$ for any $M_{1} \subsetneq M$ by the Claim and B has the same property, [2], Lemma 1, gives $h^{1}\left(\mathcal{I}_{M \cup B}(d)\right)>0$. Since $B_{1} \in \mathcal{S}\left(P_{1}\right)$ and $P_{1} \in$ $\left\langle\nu_{d}(A \cap D)\right\rangle \cap\left\langle\nu_{d}(A \cap S)\right\rangle$, we have $\sharp(M) \leq \min \{\sharp(A), \sharp(S)\}$. Since $B \in \mathcal{S}(P)$ and $P \in\left\langle\nu_{d}(M)\right\rangle$, we have $\sharp(B) \leq \sharp(M)$. Hence $\sharp(M \cup B) \leq 2 d+2$.
(ii.1) Here we assume $\sharp(M \cup B) \leq 2 d+1$. Since $h^{1}\left(\mathcal{I}_{M \cup B}(d)\right)>0$, there is a line $T \subset \mathbb{P}^{m}$ such that $\sharp(T \cap(M \cup B)) \geq d+2, \nu_{d}(M \cup B \backslash(M \cup B) \cap T)$ is linearly independent and $\left\langle\nu_{d}(M \cup B \backslash(M \cup B) \cap T)\right\rangle \cap\left\langle\nu_{d}(T)\right\rangle=\emptyset$. Lemma 3.1 gives $M \backslash M \cap T=B \backslash B \cap T$. Hence $\sharp(B \cap T) \leq \sharp(M \cap T)$. Assume for the moment $T=D$. Since $M \backslash M \cap T=B \backslash B \cap T$, we get $E \subseteq B$, say $B=E \sqcup B_{2}$ with $\sharp\left(B_{2}\right) \leq \sharp\left(B_{1}\right)$ and $B_{2} \subset D$. Since $\operatorname{dim}\left(\left\langle\nu_{d}(E \cup\right.\right.$ $D)\rangle)=d+\sharp(E)$ and $B_{2} \subset D$, we have $\left\langle\nu_{d}(B)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\left\langle\nu_{d}\left(B_{2}\right)\right\rangle$ (Grassmann's formula). Since $P_{1} \in\left\langle\nu_{d}(E) \cup\{P\}\right\rangle,\left\langle\nu_{d}(E) \cup\{P\}\right\rangle \subseteq\left\langle\nu_{d}(B)\right\rangle$ and $P_{1} \in\left\langle\nu_{d}(B)\right\rangle$, we get $P_{1} \in\left\langle\nu_{d}\left(B_{2}\right)\right\rangle$. Since $\sharp\left(B_{2}\right) \leq \sharp\left(B_{1}\right)=\operatorname{sr}\left(P_{1}\right)$, we get $B_{2} \in \mathcal{S}(P)$. Hence $B \in \Gamma$. Now assume $T \neq D$. Since (B, M, P) is in case A with respect to the line T, step (i) gives a contradiction, unless either $B \cap T$ is a single point or $\sharp(B \cap T) \geq d+1$. First assume $\sharp(B \cap T)=1$. Hence $\sharp(M \cap T) \geq d+1$. Since $\sharp(M \cap D \cap T) \leq 1$ and $\sharp(E) \leq d$, this is
absurd. Now assume $\sharp(B \cap T) \geq d+1$. Since $\sharp(B) \leq \sharp(M) \leq \min \{\sharp(A), \sharp(S)\}$, we get $\sharp(A)=\sharp(S)=\sharp(M)=\sharp(B)=d+1$ and $B \subset T$. Hence $P \in\left\langle\nu_{d}(T)\right\rangle$. Hence $\operatorname{sr}(P) \leq d$ ([8], [15], Theorem 4.1, or [3], §3). Hence $\sharp(B) \leq d$, a contradiction.
(ii.2) Here we assume $\sharp(B \cup M)=2 d+2$. Since $\sharp(B) \leq \sharp(M) \leq \min \{\sharp(A), \sharp(S)\}$, we have $\sharp(A)=\sharp(S)=\sharp(M)=\sharp(B)=d+1$, and $M \cap B=\emptyset$. Since $\sharp(M)=\sharp(B)$, we get $M \in \mathcal{S}(P)$.
(iii) Now we check part (b). Set $F:=\widetilde{A} \backslash \widetilde{A} \cap D$. Since $\sharp(A)+\sharp(S) \leq 2 d+2$, we have $\sharp(E) \leq d / 2$. Similarly we get $\sharp(F) \leq d / 2$. Hence $\sharp(E \cup F) \leq d$. We saw at the beginning of the proof that $\left\langle\{P\} \cup \nu_{d}(F)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle$ is a unique point. We call it P_{2}. We saw in step (ii) that $s r(P)=s r\left(P_{2}\right)+\sharp(F)$. Since $\sharp(E \cup F) \leq d$, Lemma 3.5 gives $\operatorname{dim}\left(\left\langle\nu_{d}(E \cup F)\right\rangle\right)=$ $\sharp(E \cup F)$ and $\left\langle\nu_{d}(E \cup F)\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle=\emptyset$. Hence $\left\langle\nu_{d}(E \cup F) \cup\{P\}\right\rangle \cap\left\langle\nu_{d}(D)\right\rangle$ is at most one point. Therefore $P_{2}=P_{1}$. Hence $\sharp(F)=\sharp(E)$.

Example 3.6. Fix integers m, d, e such that $m \geq 2, d \geq 2$ and $0 \leq e \leq d-1$. Fix a line $D \subset \mathbb{P}^{m}, P_{1} \in D, S_{1} \subset D \backslash\left\{P_{1}\right\}$ such that $\sharp\left(S_{1}\right)=d+1$ and $E \subset \mathbb{P}^{m}$ such that $\sharp(E)=e$ (if $e=0$ we just take $P=P_{1}$). Set $A:=\left\{P_{1}\right\} \cup E$ and $S=S_{1} \cup E$. Since Obviously (A, S, P) is as in case A with respect to the line D. Take a general line $\bar{D} \subset \mathbb{P}^{m}$ containing P_{1} and $\bar{S}_{1} \subset \bar{D} \backslash\left\{P_{1}\right\}$ with $\sharp\left(\bar{S}_{1}\right)=d+1$. We also assume $\bar{S}_{1} \cap E=\emptyset$. Set $\bar{A}:=A$ and $\bar{S}:=E \sqcup \bar{S}_{1}$. The triple (\bar{A}, \bar{S}, P) is as in case A with respect to the line $\bar{D} \neq D$.

Lemma 3.7. Assume $d \geq 5$. Take (A, S, P) as in case C with respect to the lines L_{1} and L_{2}. Assume $S \subset L_{1}$. Set $\{Q\}:=L_{1} \cap L_{2}$ and $B:=\{Q\} \cup A_{1}$. Then $\operatorname{sr}(P)=$ $\min \{\sharp(S), 2+d-\sharp(S)\}$. If $\sharp(S)<(d+2) / 2$, then $\mathcal{S}(P)=\{S\}$. If $\sharp(S)>(d+2) / 2$, then $\mathcal{S}(P)=\{B\}$. If $\sharp(S)=(d+2) / 2$, then $\operatorname{sr}(P)=\sharp(S), \mathcal{S}(P)$ is one-dimensional and every element of $\mathcal{S}(P)$ is contained in L_{1}.

Proof. Since $S \subset L_{1}$, we have $P \in\left\langle\nu_{d}\left(L_{1}\right)\right\rangle$. By a parsimony lemma ([14], Proposition 3.1, or [5], Theorem 2.1, for a generalization of the non-symmetric one), every element of $\mathcal{S}(P)$ is contained in L_{1}. Since $\sharp\left(A \cap L_{2}\right)=d+1$, we have $\left\langle\nu_{d}\left(A \cap L_{2}\right)\right\rangle=\left\langle\nu_{d}\left(L_{2}\right)\right\rangle$. Since $\left\langle\nu_{d}\left(L_{1}\right)\right\rangle \cap\left\langle\nu_{d}\left(L_{2}\right)\right\rangle=\left\{\nu_{d}(Q)\right\}$ and $\nu_{d}(A)$ is linearly independent, we get $\left\langle\nu_{d}(A)\right\rangle \cap$ $\left\langle\nu_{d}\left(L_{1}\right)\right\rangle=\left\langle\nu_{d}(B)\right\rangle$. Hence $P \in\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(B)\right\rangle$. Since $Q \notin(A \cup S)$, we have $\sharp(S)+$
$\sharp(B)=d+2$. Since any $d+1$ points of $\nu_{d}\left(L_{1}\right)$ are linearly independent, all the statements are obvious consequences of Sylvester's theorem ([8], [15], Theorem 4.1, [3], Theorem 23). This completes the proof.

Proof of Proposition 1.6. Assume $\operatorname{sr}(P)<\min \{\sharp(A), \sharp(S)\}$ and fix $P \in \mathcal{S}(P)$. Fix any $E \subset A \cup B$ such that $\sharp(E)=2 d+1$. Since $\sharp(E) \leq 2 d+1$ and $\sharp(R \cap E) \leq d+1$ for every line $R \subset \mathbb{P}^{m}$, then $h^{1}\left(\mathcal{I}_{E}(d)\right)=0\left([3]\right.$, Lemma 34). Hence $\operatorname{dim}\left(\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(B)\right\rangle\right) \leq 1+$ $\operatorname{dim}(\langle A \cap B\rangle)=1-1$. Hence $\left\langle\nu_{d}(A)\right\rangle \cap\left\langle\nu_{d}(B)\right\rangle=\{P\}$. Assume $\operatorname{sr}(P)<\min \{\sharp(A), \sharp(B)\}$ and take $B \in \mathcal{S}(P)$. Since $P \notin\left\langle\nu_{d}\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$, we have $B \nsubseteq A$. Since $\sharp(A \cup B) \leq 2 d+1$ and $h^{1}\left(\mathcal{I}_{A \cup B}(d)\right)>0([2]$, Lemma 1$)$, there is a line D such that $\sharp(D \cap(A \cup B)) \geq d+2$. Lemma 3.1 gives $B \backslash B \cap D=A \backslash A \cap D$. For the same reason there is a line R such that $B \backslash B \cap R=S \backslash A \cap R$.
(a) First assume $R=D$. Since $A \cap S=\emptyset$ and $A \backslash A \cap D=B \backslash B \cap D=S \backslash S \cap D$, we get $A \cup S \subset D$, contradicting the assumption $\sharp\left((A \cup S) \cap L_{i}\right)=d+1$ for all i.
(b) Now assume $R \neq D$ and $\left\{L_{1}, L_{2}\right\} \neq\{D, R\}$. First assume $D \notin\left\{L_{1}, L_{2}\right\}$. Therefore $\sharp\left(D \cap\left(L_{1} \cup L_{2}\right)\right) \leq 2$. Since $A \subset L_{1} \cup L_{2}$, we get $\sharp(A \cap D) \leq 2$. Hence $\sharp(B \cap D) \geq d$. Since $\sharp(B)<\min \{\sharp(A), \sharp(S)\} \leq d+1$, we get $\sharp(A)=\sharp(S)=d+1$, $\operatorname{sr}(P)=\sharp(B)=d$, and $B=B \cap D$, i.e. $B \subset D$. Assume for the moment $R \in\left\{L_{1}, L_{2}\right\}$, say $R=L_{1}$. Since $B \subset D, D \neq L_{1}$ and $\sharp((B \cup S) \cap D) \geq d+2$, we get $S \subset L_{1}$. We analyzed this case in Lemma 3.7. Now assume $R \notin\left\{L_{1}, L_{2}\right\}$. Hence $\sharp(R \cap S) \leq 2$. Hence $\sharp(R \cap B) \geq d>1$. Since $B \subset D$ and $R \neq D$, we get a contradiction.
(c) Now assume $R \neq D$ and $\left\{L_{1}, L_{2}\right\}=\{D, R\}$, say $L_{1}=D$ and $L_{2}=R$. Set $B_{i}:=B \cap L_{i}, i=1,2$. Since $A \backslash A \cap D=B \backslash B \cap D$, we get $A_{2}=B \backslash\left(B \cap B_{1}\right)$. Hence $B \subset L_{1} \cup L_{2}$. Since $S_{1}=S \backslash S \cap R=B \backslash B_{2}$, we get that either $B=S_{1} \cup A_{2}$ or $B=S_{1} \cup A_{2} \cup\{Q\}$. We have $\sharp\left(A_{1}\right)+\sharp\left(S_{1}\right)=d+1$. Since $\sharp\left(A_{1}\right)+\sharp\left(B_{1}\right) \geq d+2$, we get $B=S_{1} \cup A_{2} \cup\{Q\}$. Similarly, if $L_{1}=R$ and $L_{2}=D$, then we get $B=S_{2} \cup A_{1} \cup\{Q\}$.

References

[1] E. Ballico, Finite subsets of projective spaces with bad postulation in a fixed degree, preprint.
[2] E. Ballico, A. Bernardi, Decomposition of homogeneous polynomials with low rank. arXiv:1003.5157, Math. Z. DOI : 10.1007/s00209-011-0907-6

E. BALLICO*

[3] A. Bernardi, A. Gimigliano, M. Idà. Computing symmetric rank for symmetric tensors. J. Symbolic. Comput. 46 (2011), 34-55.
[4] J. Brachat, P. Comon, B. Mourrain, E. P. Tsigaridas, Symmetric tensor decomposition. Linear Algebra Appl. 433 (2010), no. 11-12, 1851-1872.
[5] J. Buczyński and J. M. Landsberg, Ranks of tensors and a generalization of secant varieties. arXiv:0909.4262v4 [math.AG].
[6] J. Buczyński, A. Ginensky, J. M. Landsberg. Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture. arXiv:1007.0192v3 [math.AG].
[7] C. Ciliberto. Geometric aspects of polynomial interpolation in more variables and of Waring's problem, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 289-316.
[8] G. Comas, M. Seiguer, On the rank of a binary form, Found. Comp. Math. 11 (2011), no. 1, 65-78.
[9] P. Comon, G. H. Golub, L.-H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. 30 (2008) 1254-1279.
[10] P. Comon, B. Mourrain. Decomposition of quantics in sums of powers of linear forms, Signal Processing, Elsevier 53, 2, 1996.
[11] A. Couvreur, The dual minimum distance of arbitrary dimensional algebraic-geometric codes, J. Algebra 350 (2012), no. 1, 84-107.
[12] D. Eisenbud and J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), no. 1, 15-30.
[13] A. Iarrobino, V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and Steven L. Kleiman.
[14] L.-H. Lim, V. De Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. 30 (2008), no. 3, 1084-1127.
[15] J. M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010) no. 3, 339-366.
[16] K. Ranestad, F. O. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147-181.

[^0]: *Corresponding author
 E-mail address: ballico@science.unitn.it(E. Ballico)
 Received January 14, 2012

