Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 2, 394-412 ISSN: 1927-5307

ON THE RANK 1 DECOMPOSITIONS OF SYMMETRIC TENSORS E. BALLICO*

Department of Mathematics, University of Trento, 38123 Trento (TN), Italy

Abstract. Here we study the uniqueness of a representation of a homogeneous polynomial as a sum of a small number of powers of linear forms (equivalently, a representation of a symmetric tensor as a sum of powers) or (when it is not unique) describe all such additive decompositions. We require a linear upper bound for the number of addenda with respect to the degree of the polynomial and, for some results, assumptions like linearly general position.

Keywords: Waring problem; Polynomial decomposition; Symmetric tensor rank; Symmetric rank; Symmetric tensors.

2010 AMS Subject Classification: 15A21, 15A69, 14N15

1. Introduction

Let \mathbb{K} be an algebraically closed base field with characteristic zero. For any finite subset A of a projective space let $\langle A \rangle$ denote its linear span. Fix an integer $m \geq 1$. For any integer $d \geq 1$ let $\nu_d : \mathbb{P}^m \to \mathbb{P}^N$, $N := \binom{m+d}{m} - 1$, denote the order d Veronese embedding of \mathbb{P}^m . Set $X_{m,d} := \nu_d(\mathbb{P}^m)$. For any $P \in \mathbb{P}^N$ the symmetric rank sr(P) of P is the minimal cardinality of a finite set $S \subset X_{m,d}$ such that $P \in \langle S \rangle$. Up to a scalar the point P represents a homogeneous degree d polynomial $f \in \mathbb{K}[x_0, \ldots, x_m]$ and sr(P)

^{*}Corresponding author

E-mail address: ballico@science.unitn.it(E. Ballico)

Received January 14, 2012

is the minimal integer s such that $f = \sum_{i=1}^{s} \ell_i^d$ with each $\ell_i \in \mathbb{K}[x_0, \ldots, x_m]_1$ a linear form. Dually, f may be seen as a symmetric tensor τ and sr(P) is the minimal number of rank 1 symmetric tensors with τ as their sum. Similarly, a finite set $S \subset \mathbb{P}^N$ such that $P \in \langle S \rangle$ corresponds to a decomposition $f = \sum_{Q \in S} \ell_Q^d$, where ℓ_Q^d is associated to the unique $O \in \mathbb{P}^m$ such that $Q = \nu_d(O)$. There are many practical problems which use the symmetric tensor rank and several general mathematical works on it ([10], [14],[9], [4], [7], [13], [16], [15], [3], [8], [6] and references therein). If <math>sr(P) is very low, then there is a unique set $A \subset \mathbb{P}^N$ computing sr(P), i.e. with $P \in \langle A \rangle$ and $\sharp(A) = sr(P)$ ([6], Theorem 1.2.6, [2], Theorem 2). In this paper we study a similar situation for larger (but not very large) values of the symmetric rank. We ask for sets $A, S \subset \mathbb{P}^m$ such that $P \in \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ and $A \neq S$. Without loss of generality we assume that A and S are "minimal ", i.e. we assume $P \notin \langle A' \rangle$ for any $A' \subsetneq A$ and $P \notin \langle S' \rangle$ for any $S' \subsetneq S$. For any $P \in \mathbb{P}^N$ let $\mathcal{S}(P)$ denote the set of all $B \subset \mathbb{P}^m$ such that $\nu_d(B)$ computes sr(P), i.e., the set of all $B \subset \mathbb{P}^m$ such that $\sharp(B) = sr(P)$ and $P \in \langle \nu_d(B) \rangle$. Notice that $P \notin \langle \nu_d(B') \rangle$ for any $B \in \mathcal{S}(P)$ and any $B' \subsetneq B$. The set $\mathcal{S}(P)$ is a constructible subset of \mathbb{P}^m . As usual for constructible sets dim $(\mathcal{S}(P))$ denotes the maximal dimension of a quasi-projective variety contained in $\mathcal{S}(P)$. This integer is the maximal dimension of an irreducible component of the Zariski closure of $\mathcal{S}(P)$ in \mathbb{P}^m .

Let $E \subset \mathbb{P}^r$ be a finite set. The set E is said to be *in linearly general position* if $\dim(\langle F \rangle) = \min\{\sharp(F) - 1, r\}$ for every $F \subseteq E$. We prove the following results.

Theorem 1.1. Fix integers $d > m \ge 2$ and subsets S, A of \mathbb{P}^m such that $\sharp(A) \ge m + 1$, $\sharp(S) \ge m + 1$, $\sharp(S) + \sharp(A) \le md + 1$ and both S and A are in linearly general position in \mathbb{P}^m . Then $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle = \langle \nu_d(A \cap S) \rangle$.

Theorem 1.2. Fix integers $m \ge 4$ and $d \ge 2m + 1$. Fix $S \subset \mathbb{P}^m$ such that $\sharp(S) \le (3d+1)/2$ and S is in linearly general position in \mathbb{P}^m . Fix any $P \in \langle \nu_d(S) \rangle$ such that $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$. Then $sr(P) = \sharp(S)$ and $\mathcal{S}(P) = \{S\}$.

Theorem 1.1 shows that $\langle \nu_d(A \cap S) \rangle$ is the set of all $P \in \mathbb{P}^N$ which may be described both as a sum over the points of $\nu_d(A)$ and as a sum over the points of $\nu_d(S)$, when $\sharp(A)$ and $\sharp(S)$ are low. It obviously implies $sr(P) \leq \sharp(S \cap A)$ for every $P \in \langle A \rangle \cap \langle S \rangle$. Theorem

1.1 is sharp (see Example 2.7). Theorem 1.2 is a "partial improvement" of [2], Theorem 2 (it assumes less on $\sharp(S)$, but more on the shape of S).

To state our next result we introduce the following cases. Fix integers $m \ge 2$ and $d \ge 2$. We fix $P \in \mathbb{P}^N$ and assume the existence of finite sets $A, S \subset \mathbb{P}^m$ such that $S \ne A$, $P \in \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$, $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$ and $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$.

(A) We say that (A, S, P) is as in case A if there is a line $D \subset \mathbb{P}^m$ such that $\sharp((A \cup S) \cap D) \ge d + 2, \ \sharp(A \cap D) \le d + 1, \ \sharp(S \cap D) \le d + 1, \ A \setminus A \cap D = S \setminus S \cap D,$ $\nu_d(A \setminus A \cap D)$ is linearly independent, and $\langle \nu_d(A \setminus A \cap D) \rangle \cap \langle \nu_d(D) \rangle = \emptyset.$

(B) We say that (A, S, P) is as in case B if $\sharp(A) + \sharp(S) = 2d + 2$, $A \cap S = \emptyset$ and there are a plane $U \subseteq \mathbb{P}^m$ and a smooth conic $C \subset U$ such that $A \cup S \subset C$.

(C) We say that (A, S, P) is as in case C if there are a plane $U \subseteq \mathbb{P}^m$ and lines $L_1, L_2 \subset U$ such that $L_1 \neq L_2, A \cup S \subset L_1 \cup L_2, L_1 \cap L_2 \notin A \cup S, A \cap S = \emptyset$, and $\sharp((A \cup S) \cap L_1) = \sharp((A \cup S) \cap L_2) = d + 1.$

Notice that in case A we assume neither $A \cap S \cap D = \emptyset$ nor $\sharp (D \cap (A \cup S)) = d + 2$.

Proposition 1.3. Fix integers $m \ge 2$ and $d \ge 3$. Fix $A, S \subset \mathbb{P}^m$ such that $\sharp(A) + \sharp(S) \le 2d + 2$. Assume the existence of $P \in \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ such that $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$ and $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$. Then:

(a) (A, S, P) is either as in case A or as in case B or as in case C.

(b) If (A, S, P) is either as in case B or as in case C, then $\{P\} = \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$.

Part (b) of Proposition 1.3 shows that in cases B and C the pair (A, S) uniquely determines P.

Proposition 1.4. Assume $d \ge 5$ and fix a triple (A, S, P) as in case A with respect to the line D. Set $E := A \setminus A \cap D$. Assume $\sharp(A) + \sharp(S) \le 2d + 2$.

(a) There is a unique $P_1 \in \langle \nu_d(D \cap A) \rangle \cap \langle \{P\} \cup \nu_d(E) \rangle$ and $sr(P) = sr(P_1) + \sharp(E)$. Set $\Gamma := \{E \sqcup \beta\}_{\beta \in \mathcal{S}(P_1)}$. We have $\Gamma \subseteq \mathcal{S}(P)$ and equality holds, unless $\sharp(A) = \sharp(B) = sr(P) = d + 1$.

(b) Take another $(\widetilde{A}, \widetilde{S}, P)$ as in case A with respect to the same line D and with $\sharp(\widetilde{A}) + \sharp(\widetilde{S}) \leq 2d + 2$. Then $\sharp(\widetilde{A} \setminus \widetilde{A} \cap D) = \sharp(E)$.

SYMMETRIC RANK

(c) Take another $(\overline{A}, \overline{S}, P)$ as in case A with respect to some line \overline{D} . If $\sharp(\overline{A}) + \sharp(\overline{S}) \le 2d + 2$, $\sharp(A) + \sharp(\overline{A}) \le 2d + 1$ and $2 \le \sharp(A \cap D) \le d$, then $\overline{D} = D$.

For an example which shows the necessity of some assumptions in part (c) of Proposition 1.4, see Example 3.6.

The integer $sr(P_1)$ appearing in Proposition 1.4 is also the symmetric rank of P_1 with respect to the rational normal curve $\nu_d(D)$ ([14], Proposition 3.1, or [15], Theorem 2.1). Hence, knowing P_1 one can use several known algorithms to compute the integer $sr(P_1)$ ([8], [15], Theorem 4.1, [3], §3).

Proposition 1.5. Assume $d \ge 3$ and (A, S, P) as in case B with respect to the smooth conic C. Then:

- (a) We have $sr(P) = \min\{\sharp(A), \sharp(S)\}$ and $\{P\} = \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$.
- (b) If $\sharp(A) \neq \sharp(S)$, say $\sharp(A) < \sharp(S)$, then A is the only element of $\mathcal{S}(P)$.

(d) If $\sharp(A) = \sharp(S) = d + 1$, then $\mathcal{S}(P)$ is one-dimensional, every $B \in \mathcal{S}(P)$ is contained in C and any two different elements of $\mathcal{S}(P)$ are disjoint.

Proposition 1.6. Assume $d \ge 5$ and fix (A, S, P) as in case C with respect to the reducible conic $L_1 \cup L_2$. Set $\{Q\} := L_1 \cap L_2$. We have $\{P\} = \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$. Set $A_i := A \cap L_i$ and $S_i := S \cap L_i$. Either sr(P) is computed by A or by S or by $A_1 \cup S_2 \cup \{Q\}$ or by $A_2 \cup S_1 \cup \{Q\}$. If $sr(P) < \min\{\sharp(A), \sharp(S)\}$, then $\mathcal{S}(P) \subseteq \{A_1 \cup S_2 \cup \{Q\}, A_2 \cup S_1 \cup \{Q\}\}$.

The existence of a curve as in (A), (B) or (C) (respectively a line, a smooth conic and a reducible conic) would easily follow from the main result of [1]. In the range $\sharp(A) + \sharp(S) < 3d$ the existence of a suitable curve follows from [11], Theorem 3.8. We will use [11], Theorem 3.8, to shorten the proof. We prefer to present here a proof which not use [1], but the main point of this paper is the analysis of the pairs (A, S) associated to a given P and of the computation of sr(P) (Propositions 1.4, 1.5, 1.6)..

2. The proofs of Theorems 1.1 and 1.2

Grassmann's formula and the linear normality of Veronese varieties immediately give the following lemma.

Lemma 2.1. For all finite subsets A, S of \mathbb{P}^m such that $h^1(\mathbb{P}^m, \mathcal{I}_A(d)) = h^1(\mathbb{P}^m, \mathcal{I}_S(d)) = 0$ we have

$$\dim(\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle) = \dim(\langle \nu_d(A \cap S) \rangle) + h^1(\mathbb{P}^m, \mathcal{I}_{A \cup S}(d)).$$

Lemma 2.2. Fix finite subsets A, S of \mathbb{P}^m such that $h^1(\mathbb{P}^m, \mathcal{I}_A(d)) = h^1(\mathbb{P}^m, \mathcal{I}_S(d)) = 0$ and a proper linear subspace M of \mathbb{P}^m . Set $F := (A \cup S) \setminus (A \cup S) \cap M$ and $E := (S \cap A) \setminus (S \cap A \cap M)$. If $h^1(\mathbb{P}^m, \mathcal{I}_F(d-1)) = 0$, then $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ is the linear span of $\langle E \rangle$ and of $\langle \nu_d(A \cap M) \rangle \cap \langle \nu_d(S \cap M) \rangle$ and its dimension is $\sharp(E) + \dim(\langle \nu_d(A \cap M) \rangle \cap \langle \nu_d(S \cap M) \rangle)$.

Proof. Since $E \subseteq A$ we have $h^1(\mathbb{P}^m, \mathcal{I}_E(d)) = 0$. Hence $\dim(\langle \nu_d(E) \rangle = \sharp(E) - 1$. Take a general hyperplane H of \mathbb{P}^m containing M. Since $A \cup S$ is finite, we have $(A \cup S) \cap H = (A \cup S) \cap M$. From the residual exact sequence

(1)
$$0 \to \mathcal{I}_F(d-1) \to \mathcal{I}_{S \cup A}(d) \to \mathcal{I}_{(S \cup A) \cap H}(d) \to 0$$

we get $h^1(\mathbb{P}^m, \mathcal{I}_{S\cup A}(d)) = h^1(H, \mathcal{I}_{(S\cup A)\cap M}(d))$. Hence $\dim(\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle) - \dim(\langle \nu_d(A \cap A) \rangle) = \dim(\langle \nu_d(S \cap M) \rangle \cap \langle \nu_d(S \cap M) \rangle) - \dim(\langle \nu_d(A \cap S \cap M) \rangle)$ (Lemma 2.1). We have $S \cap A = (S \cap A \cap M) \sqcup E$. Since $E \subseteq F$ and $h^1(\mathbb{P}^m, \mathcal{I}_F(d-1)) = 0$, the exact sequence (1) also gives $\dim(\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle) = \sharp(E) + \dim(\langle \nu_d(A \cap M) \rangle \cap \langle \nu_d(S \cap M) \rangle)$ and that $\langle \nu_d(E) \rangle$ and $\langle \nu_d(A \cap M) \rangle \cap \langle \nu_d(S \cap M) \rangle$ are supplementary linear subspaces of $\langle \nu_d(S) \rangle \cap \langle \nu_d(S) \rangle$. This completes the proof.

We will often call (1) (or similar exact sequences) the Castelnuovo's sequence. Let $Z \subset \mathbb{P}^m$ be a zero-dimensional scheme. For any hyperplane $H \subset \mathbb{P}^m$ the residual scheme $\operatorname{Res}_H(Z)$ of Z with to H is the closed subscheme of \mathbb{P}^m with $\mathcal{I}_Z : \mathcal{I}_H$ as its ideal sheaf. We have $\operatorname{Res}_H(Z) \subseteq Z$, $\operatorname{deg}(Z) = \operatorname{deg}(\operatorname{Res}_H(Z)) + \operatorname{deg}(Z \cap H)$ and for any $t \in \mathbb{Z}$ there is a Castelnuovo's sequence

 $0 \to \mathcal{I}_{\operatorname{Res}_{H}(Z)}(t-1) \to \mathcal{I}_{Z}(t) \to \mathcal{I}_{Z \cap H,H}(t) \to 0.$

If Z is reduced, i.e. if Z is a finite set, then $\operatorname{Res}_H(Z) = Z \setminus Z \cap H$.

Lemma 2.3. Fix integers $m \ge 2$, $d \ge 3$ and sets $S, A \subset \mathbb{P}^m$ such that $h^1(\mathbb{P}^m, \mathcal{I}_A(d)) = h^1(\mathbb{P}^m, \mathcal{I}_S(d)) = 0$, $\sharp(A \cup S) \le 2d + 1$ and $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle \ne \langle \nu_d(A \cap S) \rangle$. Then there is

398

a line $D \subset \mathbb{P}^m$ such that $\sharp((A \cup S) \cap D) \ge d + 2$ and, taking $E := (A \cap S) \setminus (A \cap S \cap D)$, $\langle \nu_d(E) \rangle$ and $\langle \nu_d(A \cap D) \rangle \cap \langle \nu_d(S \cap D) \rangle$ are supplementary subspaces of $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ and $\dim(\nu_d(E)) = \sharp(E) - 1$.

Proof. Since $h^1(\mathbb{P}^m, \mathcal{I}_{A\cup S}(d)) > 0$ (Lemma 2.1), there is a line $D \subset \mathbb{P}^m$ such that $\sharp(D \cap (A \cup S)) \geq d + 2$ ([3], Lemma 34). Set $E := (A \cup S) \setminus (A \cup S) \cap D$. Since $\sharp(E) \leq d - 1$, we have $h^1(\mathbb{P}^m, \mathcal{I}_E(d-1)) = 0$ ([3], Lemma 3.4). Hence $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ is the linear span of $\langle \nu_d(E) \rangle$ and of $\langle \nu_d(A \cap D) \rangle \cap \langle \nu_d(S \cap D) \rangle$ (Lemma 2.2). Since $h^1(\mathbb{P}^m, \mathcal{I}_E(d)) \leq h^1(\mathbb{P}^m, \mathcal{I}_E(d-1)) = 0$, we have $\dim(\nu_d(E)) = \sharp(E) - 1$. Use Lemma 2.2. This completes the proof.

We need the following obvious lemma.

Lemma 2.4. Fix a linearly independent subset $F' \subset \mathbb{P}^r$. Then the linear system $|\mathcal{I}_{F'}(2)|$ has no base point outside F', i.e. $h^1(\mathcal{I}_{F'\cup\{P\}}(2)) = 0$ for every $P \in \mathbb{P}^r \setminus F'$.

Lemma 2.5. Fix integers $r \ge 1$ and $t \ge 3$ and subsets E, F of \mathbb{P}^r such that both E and F are linearly independent. Then $h^1(\mathcal{I}_{E\cup F}(t)) = 0$.

Proof. If r = 1, then the lemma is true. Hence we may assume $r \ge 2$ and use induction on r. Enlarging if necessary E we may assume $\sharp(E) = r + 1$. Let H be a hyperplane spanned by r points of E. Set $E' := E \setminus E \cap H$ and $F' := F \setminus F \cap H$. Since both E and F are linearly independent, both $E \cap H$ and $F \cap H$ are linearly independent. Hence the inductive assumption gives $h^1(H, \mathcal{I}_{(E \cup F) \cap H}(t)) = 0$. Since $\sharp(E' \cup F') \le \sharp(F') + 1$ and F'is linearly independent, it is sufficient to apply Lemma 2.4. This completes the proof.

Lemma 2.6. Fix a finite set $E \subset \mathbb{P}^r$ such that $h^1(\mathcal{I}_E(2)) > 0$. Then there is a linear subspace $U \subseteq \mathbb{P}^r$ such that $\sharp(E \cap U) \ge \dim(U) + 3$.

Proof. We use induction on r, the case r = 1 being obvious. Assume $r \ge 2$. Let $H \subset \mathbb{P}^r$ be a hyperplane such that $\sharp(E \cap H)$ is maximal. First assume $h^1(H, \mathcal{I}_{H \cap E}(2)) > 0$. By the inductive assumption there is a linear subspace $U \subseteq H$ such that $\sharp(E \cap U) \ge \dim(U) + 2$. Now assume $h^1(H, \mathcal{I}_{H \cap E}(2)) = 0$. By the Castelnuovo's sequence (1) with d = 2 and $E = A \cup S$ we have $h^1(\mathcal{I}_{E \setminus E \cap H}(1)) > 0$. Hence $\sharp(E \setminus E \cap H) \ge 3$. Since we took E with $\sharp(E \cap H)$ maximal and E is not contained in $H, E \cap H$ spans H. Therefore $\sharp(E \cap H) \ge r$. Hence $\sharp(E) \ge r + 3$. Hence we may take \mathbb{P}^r as U. This completes the proof. **Example.2.7.** Let $C \subset \mathbb{P}^m$ be a rational normal curve. Fix finite subsets A, S of C such that $A \neq \emptyset$, $S \neq \emptyset$, $A \cap S = \emptyset$ and $\sharp(A) + \sharp(B) = md + 2$. Since $h^0(C, \mathcal{O}_C(d)) = md + 1$, $h + 0(C, \mathcal{I}_{A \cup S}(d)) = 0$, and $h^1(C, \mathcal{I}_E(d)) = 0$ for every $E \subset C$ such that $\sharp(E) \leq md + 1$, Lemma 2.1 gives that $\langle \nu_d(A) \rangle \cap \langle \nu_d(A) \rangle$ is a unique point, P, and $\langle \nu_d(A) \rangle \cap \langle \nu_d(S') \rangle = \langle \nu_d(A') \rangle \cap \langle \nu_d(S) \rangle$ for any $A' \subsetneq A$ and any $S' \subsetneq S$.

Proof of Theorem 1.1. Assume $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle \neq \langle \nu_d(A \cap S) \rangle$. Since S and A are in linearly general position in \mathbb{P}^m and $\sharp(A) \leq md + 1$, $\sharp(S) \leq md + 1$, we have $h^1(\mathbb{P}^m, \mathcal{I}_A(d)) = h^1(\mathbb{P}^m, \mathcal{I}_S(d)) = 0$ ([12], Theorem 3.2). Hence our assumption is equivalent to $h^1(\mathbb{P}^m, \mathcal{I}_{A\cup S}(d)) > 0$ (Lemma 2.1). $\sharp(A \cup S) \leq dm + 1$, the set $A \cup S$ is not in linearly general position ([12], Theorem 3.2). Set $W_0 := A \cup S$. Let $M_1 \subset \mathbb{P}^m$ be a hyperplane such that $\sharp(W_0 \cap M_1)$ is maximal. Set $W_1 := W_0 \setminus (W_0 \cap M_1)$. Fix an integer $i \geq 2$ and assume to have defined the sets W_j and the hyperplane $M_j \subset \mathbb{P}^m$ for all j < i. Let $M_i \subset \mathbb{P}^m$ be a hyperplane such that $\sharp(M_i \cap W_{i-1})$ is maximal. Set $W_i := W_{i-1} \setminus (W_{i-1} \cap M_i), w_i := \sharp(W_i) \text{ and } b_i = \sharp(M_i \cap W_{i-1}).$ Hence $w_0 = \sharp(A \cup S),$ $w_{i-1} = w_i + b_i$ for all i > 0, and $b_i \ge b_j$ for all $i \ge j$. Since $h^1(\mathbb{P}^m, \mathcal{I}_{A \cup S}(d)) > 0$ (Lemma 2.1), there is an integer $i \geq 1$ such that $h^1(M_i, \mathcal{I}_{M_i \cap W_{i-1}}(d+1-i)) > 0$. Call k the minimal such integer. Notice that if $b_j \leq m-1$, then $b_i = 0$ for all i > j. Hence $b_i = 0$ for all $i > \lfloor w_0/m \rfloor$. Hence $b_{d+2} = 0$ and $b_{d+1} \leq 1$. Since $h^1(\mathbb{P}^m, \mathcal{I}_E) = 0$ if $\sharp(E) \leq 1$, we have $k \leq d$. Since both A and S are in linearly general position, then $\sharp(A \cap M_k) \leq m$, $\sharp(S \cap M_k) \leq m$ and both $A \cap M_k$ and $S \cap M_k$ are linearly independent in M_k . Lemma 2.4 with r = m - 1, $E = A \cap M_k$ and $F = S \cap M_k$ gives $k \ge d - 1$. Since $A \cup S$ is not in linearly general position, we have $b_1 \ge m + 1$. Since $b_i \ge m$ if $b_{i+1} > 0$, we have $b_i \ge m$ for $2 \le i \le k-2$. Hence $\sharp(A \cup S) \ge m+1+(k-2)m+b_k$. Fix an integer $i \ge 1$ such that $b_{i+1} > 0$. Since M_i contains the maximal number of points of W_{i-1} , either W_{i-1} is in linearly general position in \mathbb{P}^m or $b_i \geq m+1$. If W_{i-1} is in linearly general position in \mathbb{P}^m , then all its subsets W_j , $j \geq i$, are in linearly general position in \mathbb{P}^m . Hence either $M_k \cap W_{k-1}$ is in linearly general position in M_k or $b_i \ge m+1$ for all $i \in \{1, \ldots, k-1\}$.

(a) Here we assume that $M_k \cap W_{k-1}$ is in linearly general position in M_k . Since $h^1(M_k, \mathcal{I}_{W_{k-1} \cap M_k}(d+1-k)) > 0$, we get $b_k \ge (m-1)(d+1-k) + 2$ ([12], Theorem

3.2). First assume k = d - 1. Since $b_{d-1} \ge 2m$ and $b_i \ge b_{d-1}$ for all $i \le d - 1$, we get $\sharp(A \cup S) \ge 2m(d-1) > md + 1$, a contradiction. For k = d we get $b_d \ge m + 1$ and hence $\sharp(A \cup S) \ge (m+1)d$, a contradiction.

(b) In this step we assume that $M_k \cap W_{k-1}$ is not in linearly general position in M_k .

(b1) First assume k = d. Since $M_d \cap W_{d-1}$ is not in linearly general position, we have $b_d \ge 3$. Hence $\sharp(A \cup S) \ge (m+1)(d-1) + 3 > md + 1$ (since d > m).

(b2) Now assume k = d - 1. Hence $h^1(M_{d-1}, \mathcal{I}_{M_{d-1}} \cap W_{d-2}(2)) > 0$. Applying Lemma 2.6 with r = m - 1 and $E = M_{d-1} \cap W_{d-2}$ we get the linear subspace $U \subseteq M_{d-1}$ such that $\sharp((A \cup S) \cap U) \ge \dim(U) + 3$. Since b_1 is at least the maximal integer $\sharp(F \cap (A \cup S))$, where F is a hyperplane containing U, we have $b_1 \ge m+3$. If there is linear subspace V such that $\sharp(V \cap W_1) \ge \dim(V) + 3$, then $b_2 \ge m+3$ (or $b_3 = 0$). If there is no such linear subspace then we may take the hyperplanes so that W_{d-1} has no linear subspace U as above. And so on. Hence we get $b_i \ge m+3$ for $1 \le i \le d-2$. Hence $\sharp(A \cup S) \ge (m+3)(d-2) + b_{d-1}$. Since $b_{d-1} \ge 4$ and d > m we get $\sharp(A \cup S) \ge md+2$, a contradiction.

Proof of Theorem 1.2. Take $A \subset \mathbb{P}^m$ such that $\nu_d(A)$ computes sr(P). If $sr(P) = \sharp(S)$, then assume $A \neq S$. It is sufficient to prove that these assumptions give a contradiction. We have $\sharp(A \cup S) \leq 3d + 1$ with strict inequality if d is even. Set $W := A \cup S$ and $\rho_0 := \sharp(W)$. We assumed $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$. Since $\nu_d(A)$ computes sr(P), then $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$. Hence $h^1(\mathbb{P}^m, \mathcal{I}_W(d)) > 0$ ([2], Lemma 1). If $\sharp(S) \leq d+1$, then the statement is a particular case of [2], Theorem 2. Hence we may assume $\sharp(S) \geq d+2$.

(a) Let $H_1 \subset \mathbb{P}^m$ be a hyperplane such that $\rho_1 := \sharp(W \cap H_1)$ is maximal. Set $W_0 := W$ and $W_1 := W_0 \setminus W_0 \cap H_1$. For every integer $i \geq 2$ define inductively the subsets W_i of W, the hyperplane $H_i \subset \mathbb{P}^m$ and the integer ρ_i in the following way. Fix an integer $i \geq 2$ and assume that W_{i-1} is defined. Let $H_i \subset \mathbb{P}^m$ be any hyperplane such that $\rho_i := \sharp(W_{i-1} \cap H_i)$ is maximal. Set $W_i := W_{i-1} \setminus W_{i-1} \cap H_i$. Hence $W_{i+1} \subseteq W_i$ for all i, $\sharp(W_i) = \rho_0 - \sum_{h=1}^i \rho_h$ for all $i \geq 1$. The maximality condition implies that the sequence $\{\rho_i\}_{i\geq 1}$ is non-increasing and $\rho_0 \geq \sum_{i\geq 1} \rho_i$. Hence $W_{i+1} = W_i \Leftrightarrow \rho_i = 0 \Leftrightarrow \rho_h = 0$ for all $h \geq i$. Since $W_i = W_{i-1} \setminus W_{i-1} \cap H_i$, for all integers t, i with $i \geq 1$ we have the following

exact sequence of sheaves (often called the Castelnuovo's sequence)

(2)
$$0 \to \mathcal{I}_{W_i}(t-1) \to \mathcal{I}_{W_{i-1}}(t) \to \mathcal{I}_{W_{i-1}\cap H_i, H_i}(t) \to 0$$

Since $W_i = \emptyset$ for all $i \gg 0$ (say for all $i \ge \rho_0$)) and $h^1(\mathbb{P}^n, \mathcal{I}_W(d)) > 0$, there is an integer $i \ge 1$ such that $h^1(H_i, \mathcal{I}_{W_{i-1}\cap H_i, H_i}(d+1-i)) > 0$. Call i_0 the minimal such integer. Since $\rho_0 \le 3d+1$ and $h^1(\mathbb{P}^m, \mathcal{I}_W(d)) > 0$, W is not in linearly general position ([12], Theorem 3.2). Hence $\rho_1 \ge m+1$. By the maximality of each ρ_i we get that either $W_{i-1} \cap H_i$ spans H_i (and hence $\rho_{i-1} \ge m$) or $W_{i-1} \subset H_i$ and hence $\rho_j = 0$ for all $j \ge i_0$. Since $\sharp(A \cup S) \le 3d+1 < m(d-1)$, we have $i_0 \le d$. Hence $d+1-i_0 > 0$. By [3], Lemma 34, we have $\rho_{i_0} \ge d+3-i_0$ and equality holds if and only if $W_{i_0-1} \cap H_i$ is contained in a line. Since the sequence $\{\rho_i\}_{i\ge 1}$ is non-increasing, we get $i_0(d+3-i_0) \le \rho_0$. Since $\rho_0 \le 3d+1$ and the function $t \mapsto t(d+3-t)$ is strictly increasing for t < (d+3)/2 and strictly decreasing for t > (d+3)/2, we get that either $i_0 \in \{1, 2, 3\}$ or $i_0 \ge d-3$ (for t = 4 we need $d \ge 5$).

(b) Here we assume $i_0 = 1$ and $\rho_1 \leq 2d + 1$. There is a line $L \subset H_1$ such that $\sharp(W \cap L) \geq d + 2$ ([3], Lemma 34). Since S is in linearly general position, we have $\sharp(S \cap L) \leq 2. \text{ Hence } \sharp(A \cap L) \geq d. \text{ Set } S' := S \setminus L \text{ and } A' := A \setminus S \cap L. \text{ Since } P \in \langle \nu_d(A) \rangle$ and $P \notin \langle A \setminus L \cap A \rangle$, the set $\langle \{P\} \cup \nu_d(A \setminus A \cap L) \rangle \cap \langle \nu_d(A) \rangle$ is a unique point; call P_1 this point. Since $P \in \langle \nu_d(A \setminus A \cap L) \cup \{P_1\} \rangle$, $P_1 \in \langle \nu_d(A \cap L) \rangle$, and A computes sr(P), the set $\nu_d(A \cap L)$ computes $sr(P_1)$. Since $\nu_d(A \cap L) \subset \nu_d(L)$, then $P_1 \in \langle \nu_d(L) \rangle$ and $A \cap L$ computes the symmetric rank of P_1 with respect to the rational normal curve $\nu_d(L)$ ([14], Proposition 3.1, [15]). Hence $\sharp(A \cap L) \leq d$ ([8], [15], Theorem 4.1, [3], Theorem 34). Since we knew the opposite inequality, we get $\sharp(A \cap L) = d$. Hence P_1 has border rank 2 ([8], [15], Theorem 4.1, [3], Theorem 34). Hence there is a degree two 0-dimensional scheme $Z \subset L$ such that $P_1 \in \langle \nu_d(Z) \rangle$ ([6], Lemma 2.1.5, or [3], Proposition 11). Hence $P \in \langle \nu_d(Z \cup (A')) \rangle$. Since $\sharp(A) \leq \sharp(S) \leq 3d + 1$, we get $\deg(Z \cup A') + \sharp(S) \leq 3d + 1 + 2 - d \leq 2d + 3$. If $\deg(Z \cup A') + \sharp(S) \leq 2d + 1$ (e.g., if $\sharp(A) + \sharp(S) \leq 3d - 1$), then we may repeat the proof of [2], Theorem 1, applied to $\mathcal{Z} := \nu_d(Z \cup A')$ and to $\mathcal{S} := \nu_d(S)$, and obtain a contradiction, because no line contains at least $\lceil (d+2)/2 \rceil$ points of S. Hence we could assume $\sharp(A) + \sharp(S) \geq 3d$. First assume $h^1(\mathcal{I}_{A'\cup S'}(d-1)) = 0$. For a general hyperplane M containing L we have $\operatorname{Res}_M(Z \cup A' \cup S) = A' \cup S'$. From the Castelnuovo's sequence with respect to M we get that $\langle \nu_d(Z \cup A') \rangle \cap \langle \nu_d(S) \rangle$ is the linear span of $\langle \nu_d(Z) \rangle \cap \langle \nu_d(S \cap L) \rangle$ and of $\nu_d(A' \cap S') \rangle$. Since $S \cap L$ is reduced, either $Z_{red} \in S \cap L$ or $\sharp(S \cap L) \geq d$ or $\langle \nu_d(Z) \rangle \cap \langle \nu_d(S \cap L) \rangle = \emptyset$ ([8]). Since S is in linearly general position and d > 2, we have $\sharp(S \cap L) < d$. Now assume $Z_{red} \subset S \cap L$; we get $\langle \nu_d(Z) \rangle \cap \langle \nu_d(S \cap L) \rangle = \{\nu_d(Z_{red})\}$; hence $P \in \langle Z_{red} \cup S' \rangle$ with $Z_{red} \subset S$; since $P \notin \langle \nu_d(E) \rangle$ for any $E \subsetneq S$, we get $S \cap L = Z_{red}$. Hence $\sharp(A \cap L) \geq d + 1$, a contradiction. Similarly, if $\langle \nu_d(Z) \rangle \cap \langle \nu_d(S \cap L) \rangle = \emptyset$ we get $P \in \langle \nu_d(S') \rangle$ and hence $\sharp(A \cap L) \geq d + 2$, a contradiction.

Now assume $h^1(\mathcal{I}_{A'\cup S'}(d-1)) > 0$. Since $\sharp(A'\cup S') \leq \sharp(A\cup S) - d - 2 \leq 2(d-1) + 1$, there is a line $R \subset \mathbb{P}^m$ such that $\sharp(R \cap (A' \cup S')) \geq d + 1$. Since S' is in linearly general position, we have $\sharp(S'\cap R) \leq 2$. Hence $\sharp(A') \geq d-1$. Hence $\sharp(A) \geq 2d-1$, a contradiction.

(c) Here we assume $i_0 = 1$ and $\rho_1 \ge 2d + 2$. Since S is in linearly general position, we have $\sharp(S \cap H_1) \le m$. Hence $\sharp(A \cap H_1) \ge 2d + 2 - m$. Since $d \ge 2m + 1$, we have 2d + 2 - m > (3d + 1)/2. Hence $\sharp(A) > (3d + 1)/2$, a contradiction.

(d) Here we assume $i_0 = 2$. Hence $\rho_2 \ge d + 1$ ([3], Lemma 34). Since the sequence $\{\rho_j\}_{j\ge 1}$ is non-increasing and $2(2d-1) > 3d+1 \ge \rho_0$, we get $\rho_2 \le 2d-1$. Hence there is a line $L_1 \subset H_2$ such that $\sharp(W_1 \cap L_1) \ge d+1$. If $\sharp(S) \ge 2m+1$, then $\rho_3 \ge \sharp(S) - 2m > 0$, because S is in linearly general position. Hence $W_1 \cap H_2$ spans H_2 . Hence $\rho_2 \ge \deg(W_1 \cap L) + m - 2 \ge m + d - 1$. Since $\rho_1 \ge \rho_2$ and $\sharp(S \cap H_1) \le m$, we also get $\sharp(A \cap (H_1 \cup H_2)) \ge 2d - 2$, a contradiction. Now assume $\sharp(S) \le 2m$. Since d > 2m, the theorem in this case is a particular case of [2], Theorem 2.

(e) Here we assume $i_0 = 3$. Since the sequence $\{\rho_j\}_{j\geq 1}$ is non-increasing and 3(d+1) > 3d+1, we get that $W_2 \cap H_3$ is the union of d collinear points, say on a line L_3 , and hence $\rho_j = 0$ for all j > 3. We get $\rho_0 = 3d + \epsilon$ with $\epsilon \in \{0, 1\}$, $\rho_1 = d + \epsilon$, $\rho_2 = d$ and $\rho_3 = d$. Instead of H_1 we take a hyperplane M_1 containing L_3 and at least m-2 other points of W. Since $m \geq 4$, we get a contradiction.

(f) Here we assume $i_0 \ge d-3$. Recall that the sequence $\{\rho_i\}_{i\ge 1}$ is non-increasing and that $\rho_i \ge m$ if $\rho_{i+1} > 0$. Since $A \cup S$ is not in linearly general position, we have $\rho_1 \ge m+1$.

(f1) If $i_0 \ge d+1$ we get $\rho_0 \ge m+1+m(d-1)+1$, a contradiction.

(f2) Now assume $i_0 = d$. Since $h^1(H_d, \mathcal{I}_{W_d}(1)) > 0$, we get $\rho_d \ge 3$. Hence $\rho_0 \ge m + 1 + m(d-2) + 3$. Since $m \ge 4$, we get $\rho_0 > 3d + 1$, a contradiction.

(f3) Now assume $i_0 = d - 1$. We have $\rho_{d-1} \ge 4$ and either $\rho_{d-1} \ge 6$ or $W_{d-2} \cap H_{d-1}$ contains 4 collinear points ([3], Lemma 34). If $\rho_{d-1} \ge 6$ we get $\rho_0 \ge (m+1) + (d-3)m + 6$; we have $(m+1) + (d-3)m + 6 \ge 3d + 2$ if and only if $m \ge 4$ and $(m-3)d \ge 2m - 5$ (true under our assumptions $d \ge 2m + 1$ and $m \ge 4$). If $\rho_{d-1} \le 5$, then $W_{d-2} \cap H_{d-1}$ contains 4 collinear points. Hence (as in step (b2) of the proof of Theorem 1.1) we easily get $\rho_i \ge m + 2$ for all $i \le d - 2$. Hence $\rho_0 \ge (m+2)(d-2) + 4 \ge 3d + 2$.

(f4) Now assume $i_0 = d - 2$. We have $\rho_{d-2} \ge 5$ and either $\rho_{d-2} \ge 8$ or $W_{d-3} \cap H_{d-2}$ contains 5 collinear points ([3], Lemma 34). If $\rho_{d-2} \ge 8$ we get $\rho_0 \ge (m+1) + (d-4)m + 8$; we have $(m+1) + (d-4)m + 8 \ge 3d + 2$ if and only if $(m-3)d \ge 3m - 7$ (true under our assumptions $m \ge 4$ and $d \ge 2m + 1$). If $\rho_{d-2} \le 7$, then W_{d-3} contains 5 collinear points. As above we get $\rho_i \ge m + 3$ for all $i \le d - 3$. Hence $\rho_0 \ge 5 + (d-2)(m+3)$. We have $5 + (d-2)(m+3) \ge 3d + 2$ if and only if $md - 2m \ge 3$ (true under our assumptions).

(f5) Now assume $i_0 = d - 3$. We have $\rho_{d-3} \ge 6$ and either $\rho_{d-3} \ge 10$ or $W_{d-4} \cap H_{d-3}$ contains 6 collinear points ([3], Lemma 34). If $\rho_{d-3} \ge 10$ we get $\rho_0 \ge (m+1)+(d-5)m+10$; we have $(m+1)+(d-5)m+10 \ge 3d+2$ if and only if $(m-3)d \ge 4m-9$ (true under our assumptions). If $\rho_{d-3} \le 9$, then $W_{d-4} \cap H_{d-3}$ contains 6 collinear points. As above get $\rho_i \ge m+4$ for all $i \le d-4$. Hence $\rho_0 \ge (m+4)(d-4)+6$. We have $(m+4)(d-4)+6 \ge 3d+2$ if and only if $m(d-4) \ge 12 - d$ (true under our assumptions). \Box

3. The proofs of Propositions 1.3, 1.4, 1.5, 1.6

Lemma 3.1. Fix an integer d > 0 and finite sets $A, S \subset \mathbb{P}^m$, $m \ge 2$, such that $\sharp(A) + \sharp(S) \le 2d + 2$ and there is a line $D \subset \mathbb{P}^m$ such that $\sharp((A \cup S) \cap D) \ge d + 2$. Assume $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle \neq \langle \nu_d(A \cap S) \rangle$ and the existence of $P \in \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ such that $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$ and $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$. Then $A \setminus A \cap D = S \setminus A \cap D$, *i.e.*, (A, S, P) is as in case A.

404

Proof. Since $P \notin \langle \nu_d(E) \rangle$ for any $E \subsetneq A$, the set $\nu_d(A)$ is linearly independent. For the same reason $\nu_d(S)$ is linearly independent. Hence $\sharp(A \cap D) \leq d+1$ and $\sharp(S \cap D) \leq d+1$. Hence $(S \setminus S \cap A) \cap D \neq \emptyset$. Set $A' := A \setminus A \cap D$ and $S' := S \setminus S \cap D$. Since $\sharp((A \cup S) \cap D) \geq d+2$, we have $\sharp(A' \cup S') \leq d$. Hence $h^1(\mathcal{I}_{A' \cup S'}(d-1)) = 0$. Hence $\nu_d(A' \cup S')$ is linearly independent. Let $H \subset \mathbb{P}^m$ be a general hyperplane containing D. Since $A \cup S$ is finite and H is general, we have $A' = A \setminus A \cap H$ and $S' = S \setminus S \cap H$. Since $(A \cup S) \cap H = (A \cup S) \cap D$ and the restriction map $H^0(\mathcal{O}_{\mathbb{P}^m}(d)) \to H^0(D, \mathcal{O}_D(d))$ is surjective, the Castelnuovo's sequence (1) with $A' \cup S'$ instead of F gives $h^1(\mathcal{I}_{A \cup S}(d)) = h^1(D, \mathcal{I}_{(A \cup S) \cap D}(d))$. Lemma 2.2 gives that $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ is spanned by its supplementary subspaces $\langle \nu_d(A \cap D) \rangle \cap \langle \nu_d(S \cap D) \rangle$ and $\langle \nu_d(A' \cap S') \rangle$. Since $P \notin \langle \nu_d(E) \rangle$ for any $E \subsetneq A$, we get $A' \cap S' = A'$. For the same reason we get $A' \cap S' = S'$. Hence A' = S'. This completes the proof.

Lemma 3.2. Fix an integer $d \ge 2$, a smooth conic $C \subset \mathbb{P}^m$, $m \ge 2$, and sets $A, S \subset C$ such that $S \cap A = \emptyset$ and $\sharp(A) + \sharp(S) = 2d + 2$. Then $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ is a single point (call it P), and $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$, $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$.

(i) If $\sharp(A) \leq d$, then $sr(A) = \sharp(A)$ and $\mathcal{S}(P) = \{A\}$.

(ii) If $\sharp(A) = d + 1$, then sr(P) = d + 1 and $\dim(\mathcal{S}(d, P)) \ge 1$; if we assume $d \ge 5$, then $\dim(\mathcal{S}(d, P)) = 1$ and every $B \in \mathcal{S}(d, P)$ is contained in C.

Proof. Since dim $(\langle \nu_d(C) \rangle) = 2d$ and $h^1(\mathcal{I}_E(d)) = 0$ for any $E \subseteq C$ (use that C is arithmetically normal), we get $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ is a single point (call it P), and $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$, $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$.

(a) Assume $\sharp(A) \leq d$ and the existence of $B \in \mathcal{S}(P)$ such that $B \neq A$. Hence $h^1(\mathcal{I}_{A\cup B}(d)) > 0$ ([2], Lemma 1). Since $\sharp(A) + \sharp(B) \leq 2d + 1$, there is a line $D \subset \mathbb{P}^m$ such that $\sharp((A \cup B) \cap D) \geq d + 2$. Lemma 3.3 gives $A \setminus A \cap D = B \setminus B \cap D$. Since $\sharp(A \cap D) \leq 2$, we get $\sharp(B) \geq \sharp(B \cap D) + 1 \geq d + 1$, a contradiction.

(b) Now assume $\sharp(A) = d + 1$. As in step (a) we get a contradiction assuming $sr(P) \leq d$. Hence sr(P) = d + 1. Since $\nu_d(C)$ is a degree 2d rational normal curve in $\langle \nu_d(C) \rangle$, it is well-known that the set of all $E \subset C$ computing the symmetric rank of P with respect to $\nu_d(C)$ is one-dimensional. Now assume $d \geq 5$. Take any $B \in \mathcal{S}(P)$ and assume that B is not contained in C. By [14], Proposition 3.1, B spans a plane $U \subseteq \mathbb{P}^m$

and U is the plane spanned by C. Hence in order to obtain a contradiction we may assume m = 2. Set $W := B \cup S$. Since $\sharp(W \cap C) \leq 2d + 1$, we have $h^1(C, \mathcal{I}_{W \cap C}(d)) = 0$. Hence in order to obtain a contradiction it is sufficient to prove $h^1(U, \mathcal{I}_{W \setminus W \cap C}(d-2)) = 0$ (use a Castelnuovo's sequence and [2], Lemma 1). Since $S \subset C$, we have $\sharp(W \setminus W \cap C) \leq d + 1 \leq 2(d-2) + 1$. Hence if $h^1(U, \mathcal{I}_{W \setminus W \cap C}(d-2)) > 0$, then there is a line $D \subset U$ such that $\sharp(D \cap B \setminus D \cap B \cap C) \geq d$. Since $\sharp(B) \leq d + 1$, we have $h^1(U, \mathcal{I}_{B \cap D}(d)) = 0$. Since $\sharp(W \cap C) \leq d + 2 \leq 2(d-2) + 1$, we have $h^1(C, \mathcal{I}_{(W \setminus D) \cap C}(d-2)) = 0$. Since $W \setminus W \cap (C \cup D)$) is at most one point, we have $h^1(U, \mathcal{I}_{W \setminus (W \cap C \cup D)}(d-4)) = 0$. A Castelnuovo's exact sequence gives $h^1(U, \mathcal{I}_{W \setminus W \cap C}(d-2)) = 0$. This completes the proof.

Proof of Proposition 1.5. By Lemma 3.2 it only remains to prove that if sr(P) = d + 1, $B, B_1 \in \mathcal{S}(P)$ and $B \neq B_1$, then $B \cap B_1 = \emptyset$. Assume $B \cap B_1 \neq \emptyset$. Hence $\sharp(B \cup B_1) \leq 2d + 1$. Since $B \cup B_1 \subset C$, we get $h^1(\mathbb{P}^m, \mathcal{I}_{B \cup B_1}(d)) = 0$, contradicting [2], Lemma 1.

Lemma 3.3. Fix $A, S \subset \mathbb{P}^m$, $m \geq 2$, such that $\sharp(A \cup S) \leq 2d + 2$ and $A \cup S$ is not in linearly general position in $\langle A \cup S \rangle$. Assume the existence of $P \in \langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ such that $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$ and $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$. Then (A, S, P) is either as in case A or as in case C.

Proof. First assume m = 2. We repeat the proof of Theorem 1.2. Set $W_0 := A \cup S$ and let $L_1 \subset \mathbb{P}^2$ be any line such that $\sharp(W_0 \cap L_1)$ is maximal. Set $W_1 := W_0 \setminus L_1 \cap W_0$. Define inductively the line L_i , $i \ge 1$, as one of the lines such that $b_i := \sharp(L_i \cap W_{i-1})$ is maximal and set $W_i := W_{i-1} \setminus L_i \cap W_{i-1}$. Notice that if $b_i \le 1$, then $b_j = 0$ for all j > i. Since W_0 is not in linearly general position, we have $b_1 \ge 3$. Hence $b_i = 0$ for $i \ge d+1$, $b_{d+1} \le 1$ and $b_{d+1} = 1$ if and only if $b_i = 2$ for $2 \le i \le d$. Let k be the minimal integer i such that $h^1(L_i, \mathcal{I}_{W_{i-1}\cap L_i}(d+1-i)) > 0$, i.e. such that $b_i \ge d+3-i$ (k exists by [2], Lemma 1). If k = 1, i.e. if $b_1 \ge d+2$, then (A, S, P) is in case A by Lemma 3.1. Assume $k \ge 2$. Since $b_{d+1} \le 1$ and $b_i = 0$ for all $i \ge d+2$, we have $k \le d$. Hence $\sharp(W_0) \ge k(d+3-k) \ge 2(d+1)$ and the last equality holds if and only if k = 2. Assume k = 2. Hence $b_2 \ge d+1$. Since $\sharp(A \cup S) \le 2d+2$, we get $b_1 = b_2 = d+1$ and $b_3 = 0$. Hence $W_1 \subset L_2$. Since $b_2 = b_1$, we must have $L_2 \cap W_1 = L_2 \cap (A \cup S)$, i.e. $L_1 \cap L_2 \notin (A \cup S)$. Hence (A, S, P) is as in case C with respect to the reducible conic $L_1 \cup L_2$.

Now assume m > 2. We repeat the same proof starting from a hyperplane $H_1 \subset \mathbb{P}^m$ such that $\sharp((A \cup S) \cap H_1)$ is maximal. If $A \cup S \subset H_1$, we conclude by induction on m. Now assume $(A \cup S) \cap H_1 \neq H_1$. Hence $\sharp((A \cup S) \cap H_1)) \leq 2d + 1$. First assume $h^1(H_1, \mathcal{I}_{(A \cup S) \cap H_1}(d)) > 0$. By [3], Lemma 34, we have $\sharp((A \cup S) \cap H_1) \geq d + 2$ and there is a line $D \subset H_1$ such that $D \cap (A \cup S) \geq d + 2$. Lemma 3.1 gives that (A, S, P) is as in case A. Now assume $h^1(H_1, \mathcal{I}_{(A \cup S) \cap H_1}(d)) = 0$. We continue as in the case m = 2 using hyperplanes H_i instead of lines L_i . Now the inequality $b_k \geq d + 3 - k$ does not follow from the cohomology of line bundles on $L_k \cong \mathbb{P}^1$, but from [3], Lemma 34. This completes the proof.

Lemma 3.4. Fix an integer $d \ge 2$. Fix lines L_1, L_2 of \mathbb{P}^2 and set $\{Q\} := L_1 \cap L_2$. Fix sets A, S such that $A \cap S = \emptyset$, $Q \notin (A \cup S)$, $A \cup S \subset L_1 \cup L_2$, and $\sharp((A \cup S) \cap L_1) =$ $\sharp((A \cup S) \cap L_2) = d+1$. Then $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ is a single point (call it P), and $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$, $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$.

Proof. Since $L_1 \cup L_2$ is a reducible conic, we have $\dim(\langle \nu_d(L_1 \cup L_2) \rangle) = 2d$. Since $\sharp(A \cap S) \cap L_i) \ge d + 1$, we have $\langle \nu_d(L_i) \rangle \subset \langle \nu_d(A \cup S) \rangle$. Hence $\dim(\langle \nu_d(A \cup S) \rangle) =$ 2d. Since $A \cap S = \emptyset$ and $\sharp(A \cup S) = 2d + 2$, we get $h^1(\mathbb{P}^2, \mathcal{I}_{A \cup S}(d)) = 1$ and that $\langle \nu_d(A) \rangle \cap \langle \nu_d(S) \rangle$ is a single point (call it P). Fix $A' \subsetneq A$. Since $\sharp(A' \cup S) \le 2d + 1$ and no line contains at least d + 2 points of $A' \cup S$, [3], Lemma 34, gives $h^1(\mathbb{P}^2, \mathcal{I}_{A' \cup S}(d)) = 0$, i.e. $\langle \nu_d(A') \rangle \cap \langle \nu_d(S) \rangle = \langle \nu_d(A' \cap S) \rangle = \emptyset$. Hence $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$. Similarly, $P \notin \langle \nu_d(S') \rangle$ for any $S' \subsetneq S$. This completes the proof.

Notice that in the statement of Lemma 3.4 we allow the case $S \subset L_i$, i.e., $A \subset L_{2-i}$.

Proof of Proposition 1.3. By Lemma 3.3 to prove part (a) we may assume that $A \cup S$ is in linearly general position in $U := \langle A \cup S \rangle$. Since $\sharp(A \cup S) < 3d$ and $A \cup S$ is linearly independent in U, [11], theorem 3.8, gives the existence of a smooth plane conic C such that $\sharp(C \cap (A \cup S)) \ge 2d + 2$. Hence $A \cup S \subset C$ and $A \cap S = \emptyset$. Hence (A, S, P) is as in case B. Part (b) in case C is true by Lemma 3.4. The proof of part (b) in case B is similar, but easier, because any $E \subset C$ with $\sharp(E) \le 2d - 1$ satisfies $h^1(\mathbb{P}^m, \mathcal{I}_E(d)) = 0$. \Box

Lemma 3.5. Fix a line $D \subset \mathbb{P}^m$, $m \geq 2$, and a finite set $B \subset \mathbb{P}^m$ such that $\sharp(B \setminus B \cap D) \leq d$. *d.* Then $\langle \nu_d(B) \rangle \cap \langle \nu_d(D) \rangle = \langle \nu_d(B \cap D) \rangle$.

Proof. Fix a general hyperplane $H \subset \mathbb{P}^m$ containing D. Since B is finite and H is general, we have $B \cap H = B \cap D$. Since $\sharp((B \setminus B \cap D) \leq d - 1$, we have $h^1(\mathcal{I}_{B \setminus B \cap D}(d - 1)) = 0$. Hence a Castelnuovo's sequence and linear algebra gives $\langle \nu_d(B \setminus B \cap D) \rangle \cap \langle \nu_d(D) \rangle = \emptyset$. Hence $\langle \nu_d(B) \rangle \cap \langle \nu_d(D) \rangle = \langle \nu_d(B \cap D) \rangle$. This completes the proof.

Proof of Proposition 1.4. Since $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$, $\nu_d(A)$ is linearly independent. For the same reason $\nu_d(S)$ is linearly independent. Since (A, S, P) is as in case A with respect to the line D, we have $E = S \setminus D \cap S$. Since $P \in \langle \nu_d(A) \rangle$ and $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$, the set $\langle \nu_d(E) \cup \{P\} \rangle \cap \langle \nu_d(A \cap D) \rangle$ is a single point and we called it P_1 . Lemma 3.5 gives $\langle \nu_d(E) \rangle \cap \langle \nu_d(D) \rangle = \emptyset$. Hence $\langle \nu_d(E) \cup \{P\} \rangle \cap \langle \nu_d(D) \rangle$ is at most one point. Hence $\langle \nu_d(E) \cup \{P\} \rangle \cap \langle \nu_d(D) \rangle = \{P_1\}$. Taking S instead of A we get $\langle \nu_d(E) \cup \{P\} \rangle \cap \langle \nu_d(S \cap D) \rangle = \{P_1\}$.

(i) In this step we check part (c). Assume $D \neq \overline{D}$. Notice that $D \cup \overline{D}$ is contained in a quadric hypersurface (even if $m \geq 3$ and $D \cap \overline{D} = \emptyset$). Set $G := \overline{A} \setminus \overline{A} \cap \overline{D}$. Using \overline{A} , \overline{S} , \overline{D} , and G instead of A, S, D, and E, we get that $\langle \{P\} \cup G \rangle \cap \langle \nu_d(\overline{D}) \rangle$ is a single point. Call it P_3 . Since $\sharp(E \cup G) \leq d - 1$, we have $h^1(\mathcal{I}_{E \cup G}(d - 2)) = 0$. Hence a Castelnuovo's exact sequence and the fact that $D \cup \overline{D}$ is contained in a quadric hypersurface give $\langle \nu_d(E \cup G) \rangle \cap \langle \nu_d(D \cup \overline{D} \rangle) = \emptyset$. Hence $\langle \{P\} \cup \nu_d(E \cup G) \rangle \cap \langle \nu_d(D \cup \overline{D}) \rangle$) is at most one point. Hence $P_3 = P_1$ and $\langle \{P\} \cup \nu_d(E \cup G) \rangle \cap \langle \nu_d(D \cup \overline{D}) \rangle = \{P_1\}$. Hence $P_1 \in \langle \nu_d(D) \rangle \cap \langle \nu_d(\overline{D} \rangle)$. Since $d \geq 2$, we have $\langle \nu_d(D) \rangle \cap \langle \nu_d(\overline{D} \rangle) = \nu_d(D \cap \overline{D})$. Hence $D \cap \overline{D} \neq \emptyset$ and $\{P_1\} = \nu_d(D \cap \overline{D})$. Hence $sr(P_1) = 1$. Recall that $P_1 \in \langle \nu_d(A \cap D) \rangle$. Since any d + 1 points of $\nu_d(D)$ are linearly independent, we get that either $P_1 \in A \cap D$ or $\sharp(A \cap D) \geq d + 1$. Notice that if $P_1 \in \nu_d(A \cap D)$, then $A \cap D$ is the only point, Q', such that $\nu_d(Q') = P_1$, because $P \in \langle \{P_1\} \cup \nu_d(E) \rangle$ and $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$. Hence the assumption $2 \leq \sharp(A \cap D) \leq d$ made in part (c) is not satisfied.

(ii) In this step we check part (a). Obviously, $sr(P) \leq sr(P_1) + \sharp(E)$. Fix $B \in \mathcal{S}(P)$ and $B_1 \in \mathcal{S}(P_1)$. By a parsimony lemma we have $B_1 \subset D$ ([14], Proposition 3.1, [15],

409

theorem 2.1). Set $M := E \cup B_1$. We have $P \in \langle \nu_d(M) \rangle$. Let M' be a minimal subset of M such that $P \in \langle M \rangle$.

Claim: We have M' = M.

Proof of the Claim: Assume $M' \neq M$. Hence either there is $E' \subsetneq E$ such that $P \in \langle \nu_d(E' \cup B_1) \rangle$ or there is $B' \subsetneq B_1$ such that $P \in \langle \nu_d(E \cup B') \rangle$. First assume the existence of E'. Since $B_1 \subset D$ and $P \notin \langle \nu_d(E) \rangle$, we get $\langle \{P\} \cup \nu_d(E') \rangle \cap \langle \nu_d(D) \rangle \neq \emptyset$. Since $\{P_1\} = \langle \{P\} \cup \nu_d(E) \rangle \cap \langle \nu_d(D) \rangle$, we get $\langle \{P\} \cup \nu_d(E') \rangle \cap \langle \nu_d(D) \rangle = \{P_1\}$. Since $P_1 \in \langle \nu_d(A \cap D) \rangle$, we get $P \in \langle \nu_d(E' \cup (A \cap D) \rangle$. Since $E' \cup (A \cap D) \subsetneq E$, we obtained a contradiction. Now assume the existence of $B' \subsetneq B_1$ such that $P \in \langle \nu_d(E \cup B') \rangle$. Since $\langle \{P\} \cup \nu_d(E) \rangle \cap \langle \nu_d(D) \rangle = \{P_1\}$, we get $P_1 \in \langle \nu_d(B' \cup E) \rangle$. Taking B' minimal and applying [2], Lemma 1, to P_1 we get $h^1(\mathcal{I}_{E \cup B_1 \cup B}(d)) > 0$. Since $E \cup B_1 \cup B = E \cup B$ and $\sharp(E \cup B) \leq 2d + 1$, there is a line $T \subset \mathbb{P}^m$ such that $\sharp(T \cap (E \cup B)) \geq d + 2$. Since $\sharp(E) \leq d - 1$ and $B \subset D$, we have T = D. Since $D \cap E = \emptyset$ and $\sharp(B) < d + 2$, we get a contradiction.

Assume $M \neq B$. Since $P \notin \langle \nu_d(M_1) \rangle$ for any $M_1 \subsetneq M$ by the Claim and B has the same property, [2], Lemma 1, gives $h^1(\mathcal{I}_{M \cup B}(d)) > 0$. Since $B_1 \in \mathcal{S}(P_1)$ and $P_1 \in$ $\langle \nu_d(A \cap D) \rangle \cap \langle \nu_d(A \cap S) \rangle$, we have $\sharp(M) \leq \min\{\sharp(A), \sharp(S)\}$. Since $B \in \mathcal{S}(P)$ and $P \in \langle \nu_d(M) \rangle$, we have $\sharp(B) \leq \sharp(M)$. Hence $\sharp(M \cup B) \leq 2d + 2$.

(ii.1) Here we assume $\sharp(M \cup B) \leq 2d + 1$. Since $h^1(\mathcal{I}_{M \cup B}(d)) > 0$, there is a line $T \subset \mathbb{P}^m$ such that $\sharp(T \cap (M \cup B)) \geq d+2$, $\nu_d(M \cup B \setminus (M \cup B) \cap T)$ is linearly independent and $\langle \nu_d(M \cup B \setminus (M \cup B) \cap T) \rangle \cap \langle \nu_d(T) \rangle = \emptyset$. Lemma 3.1 gives $M \setminus M \cap T = B \setminus B \cap T$. Hence $\sharp(B \cap T) \leq \sharp(M \cap T)$. Assume for the moment T = D. Since $M \setminus M \cap T = B \setminus B \cap T$, we get $E \subseteq B$, say $B = E \sqcup B_2$ with $\sharp(B_2) \leq \sharp(B_1)$ and $B_2 \subset D$. Since $\dim(\langle \nu_d(E \cup D) \rangle) = d + \sharp(E)$ and $B_2 \subset D$, we have $\langle \nu_d(B) \rangle \cap \langle \nu_d(D) \rangle = \langle \nu_d(B_2) \rangle$ (Grassmann's formula). Since $P_1 \in \langle \nu_d(E) \cup \{P\} \rangle$, $\langle \nu_d(E) \cup \{P\} \rangle \subseteq \langle \nu_d(B) \rangle$ and $P_1 \in \langle \nu_d(B) \rangle$, we get $P_1 \in \langle \nu_d(B_2) \rangle$. Since $\sharp(B_1) = sr(P_1)$, we get $B_2 \in \mathcal{S}(P)$. Hence $B \in \Gamma$. Now assume $T \neq D$. Since (B, M, P) is in case A with respect to the line T, step (i) gives a contradiction, unless either $B \cap T$ is a single point or $\sharp(B \cap T) \geq d + 1$. First assume $\sharp(B \cap T) = 1$. Hence $\sharp(M \cap T) \geq d + 1$. Since $\sharp(M \cap D \cap T) \leq 1$ and $\sharp(E) \leq d$, this is

absurd. Now assume $\sharp(B \cap T) \ge d + 1$. Since $\sharp(B) \le \sharp(M) \le \min\{\sharp(A), \sharp(S)\}$, we get $\sharp(A) = \sharp(S) = \sharp(M) = \sharp(B) = d + 1$ and $B \subset T$. Hence $P \in \langle \nu_d(T) \rangle$. Hence $sr(P) \le d$ ([8], [15], Theorem 4.1, or [3], §3). Hence $\sharp(B) \le d$, a contradiction.

(ii.2) Here we assume $\sharp(B \cup M) = 2d + 2$. Since $\sharp(B) \leq \sharp(M) \leq \min\{\sharp(A), \sharp(S)\}$, we have $\sharp(A) = \sharp(S) = \sharp(M) = \sharp(B) = d + 1$, and $M \cap B = \emptyset$. Since $\sharp(M) = \sharp(B)$, we get $M \in \mathcal{S}(P)$.

(iii) Now we check part (b). Set $F := \widetilde{A} \setminus \widetilde{A} \cap D$. Since $\sharp(A) + \sharp(S) \leq 2d + 2$, we have $\sharp(E) \leq d/2$. Similarly we get $\sharp(F) \leq d/2$. Hence $\sharp(E \cup F) \leq d$. We saw at the beginning of the proof that $\langle \{P\} \cup \nu_d(F) \rangle \cap \langle \nu_d(D) \rangle$ is a unique point. We call it P_2 . We saw in step (ii) that $sr(P) = sr(P_2) + \sharp(F)$. Since $\sharp(E \cup F) \leq d$, Lemma 3.5 gives $\dim(\langle \nu_d(E \cup F) \rangle) = \sharp(E \cup F)$ and $\langle \nu_d(E \cup F) \rangle \cap \langle \nu_d(D) \rangle = \emptyset$. Hence $\langle \nu_d(E \cup F) \cup \{P\} \rangle \cap \langle \nu_d(D) \rangle$ is at most one point. Therefore $P_2 = P_1$. Hence $\sharp(F) = \sharp(E)$.

Example 3.6. Fix integers m, d, e such that $m \ge 2, d \ge 2$ and $0 \le e \le d - 1$. Fix a line $D \subset \mathbb{P}^m$, $P_1 \in D$, $S_1 \subset D \setminus \{P_1\}$ such that $\sharp(S_1) = d + 1$ and $E \subset \mathbb{P}^m$ such that $\sharp(E) = e$ (if e = 0 we just take $P = P_1$). Set $A := \{P_1\} \cup E$ and $S = S_1 \cup E$. Since Obviously (A, S, P) is as in case A with respect to the line D. Take a general line $\overline{D} \subset \mathbb{P}^m$ containing P_1 and $\overline{S}_1 \subset \overline{D} \setminus \{P_1\}$ with $\sharp(\overline{S}_1) = d + 1$. We also assume $\overline{S}_1 \cap E = \emptyset$. Set $\overline{A} := A$ and $\overline{S} := E \sqcup \overline{S}_1$. The triple $(\overline{A}, \overline{S}, P)$ is as in case A with respect to the line $\overline{D} \subset \mathbb{P}^m$.

Lemma 3.7. Assume $d \ge 5$. Take (A, S, P) as in case C with respect to the lines L_1 and L_2 . Assume $S \subset L_1$. Set $\{Q\} := L_1 \cap L_2$ and $B := \{Q\} \cup A_1$. Then sr(P) = $\min\{\sharp(S), 2 + d - \sharp(S)\}$. If $\sharp(S) < (d+2)/2$, then $\mathcal{S}(P) = \{S\}$. If $\sharp(S) > (d+2)/2$, then $\mathcal{S}(P) = \{B\}$. If $\sharp(S) = (d+2)/2$, then $sr(P) = \sharp(S)$, $\mathcal{S}(P)$ is one-dimensional and every element of $\mathcal{S}(P)$ is contained in L_1 .

Proof. Since $S \subset L_1$, we have $P \in \langle \nu_d(L_1) \rangle$. By a parsimony lemma ([14], Proposition 3.1, or [5], Theorem 2.1, for a generalization of the non-symmetric one), every element of $\mathcal{S}(P)$ is contained in L_1 . Since $\sharp(A \cap L_2) = d + 1$, we have $\langle \nu_d(A \cap L_2) \rangle = \langle \nu_d(L_2) \rangle$. Since $\langle \nu_d(L_1) \rangle \cap \langle \nu_d(L_2) \rangle = \{\nu_d(Q)\}$ and $\nu_d(A)$ is linearly independent, we get $\langle \nu_d(A) \rangle \cap$ $\langle \nu_d(L_1) \rangle = \langle \nu_d(B) \rangle$. Hence $P \in \langle \nu_d(A) \rangle \cap \langle \nu_d(B) \rangle$. Since $Q \notin (A \cup S)$, we have $\sharp(S) +$

SYMMETRIC RANK

 $\sharp(B) = d+2$. Since any d+1 points of $\nu_d(L_1)$ are linearly independent, all the statements are obvious consequences of Sylvester's theorem ([8], [15], Theorem 4.1, [3], Theorem 23). This completes the proof.

Proof of Proposition 1.6. Assume $sr(P) < \min\{\sharp(A), \sharp(S)\}\$ and fix $P \in \mathcal{S}(P)$. Fix any $E \subset A \cup B$ such that $\sharp(E) = 2d+1$. Since $\sharp(E) \leq 2d+1$ and $\sharp(R \cap E) \leq d+1$ for every line $R \subset \mathbb{P}^m$, then $h^1(\mathcal{I}_E(d)) = 0$ ([3], Lemma 34). Hence $\dim(\langle \nu_d(A) \rangle \cap \langle \nu_d(B) \rangle) \leq 1 +$ $\dim(\langle A \cap B \rangle) = 1 - 1$. Hence $\langle \nu_d(A) \rangle \cap \langle \nu_d(B) \rangle = \{P\}$. Assume $sr(P) < \min\{\sharp(A), \sharp(B)\}$ and take $B \in \mathcal{S}(P)$. Since $P \notin \langle \nu_d(A') \rangle$ for any $A' \subsetneq A$, we have $B \not\subseteq A$. Since $\sharp(A \cup B) \leq 2d + 1$ and $h^1(\mathcal{I}_{A \cup B}(d)) > 0$ ([2], Lemma 1), there is a line D such that $\sharp(D \cap (A \cup B)) \geq d + 2$. Lemma 3.1 gives $B \setminus B \cap D = A \setminus A \cap D$. For the same reason there is a line R such that $B \setminus B \cap R = S \setminus A \cap R$.

(a) First assume R = D. Since $A \cap S = \emptyset$ and $A \setminus A \cap D = B \setminus B \cap D = S \setminus S \cap D$, we get $A \cup S \subset D$, contradicting the assumption $\sharp((A \cup S) \cap L_i) = d + 1$ for all i.

(b) Now assume $R \neq D$ and $\{L_1, L_2\} \neq \{D, R\}$. First assume $D \notin \{L_1, L_2\}$. Therefore $\#(D \cap (L_1 \cup L_2)) \leq 2$. Since $A \subset L_1 \cup L_2$, we get $\#(A \cap D) \leq 2$. Hence $\#(B \cap D) \geq d$. Since $\#(B) < \min\{\#(A), \#(S)\} \leq d+1$, we get #(A) = #(S) = d+1, sr(P) = #(B) = d, and $B = B \cap D$, i.e. $B \subset D$. Assume for the moment $R \in \{L_1, L_2\}$, say $R = L_1$. Since $B \subset D$, $D \neq L_1$ and $\#((B \cup S) \cap D) \geq d+2$, we get $S \subset L_1$. We analyzed this case in Lemma 3.7. Now assume $R \notin \{L_1, L_2\}$. Hence $\#(R \cap S) \leq 2$. Hence $\#(R \cap B) \geq d > 1$. Since $B \subset D$ and $R \neq D$, we get a contradiction.

(c) Now assume $R \neq D$ and $\{L_1, L_2\} = \{D, R\}$, say $L_1 = D$ and $L_2 = R$. Set $B_i := B \cap L_i$, i = 1, 2. Since $A \setminus A \cap D = B \setminus B \cap D$, we get $A_2 = B \setminus (B \cap B_1)$. Hence $B \subset L_1 \cup L_2$. Since $S_1 = S \setminus S \cap R = B \setminus B_2$, we get that either $B = S_1 \cup A_2$ or $B = S_1 \cup A_2 \cup \{Q\}$. We have $\sharp(A_1) + \sharp(S_1) = d + 1$. Since $\sharp(A_1) + \sharp(B_1) \ge d + 2$, we get $B = S_1 \cup A_2 \cup \{Q\}$. Similarly, if $L_1 = R$ and $L_2 = D$, then we get $B = S_2 \cup A_1 \cup \{Q\}$. \Box

References

- [1] E. Ballico, Finite subsets of projective spaces with bad postulation in a fixed degree, preprint.
- [2] E. Ballico, A. Bernardi, Decomposition of homogeneous polynomials with low rank. arXiv:1003.5157, Math. Z. DOI: 10.1007/s00209-011-0907-6

- [3] A. Bernardi, A. Gimigliano, M. Idà. Computing symmetric rank for symmetric tensors. J. Symbolic. Comput. 46 (2011), 34–55.
- [4] J. Brachat, P. Comon, B. Mourrain, E. P. Tsigaridas, Symmetric tensor decomposition. Linear Algebra Appl. 433 (2010), no. 11–12, 1851–1872.
- [5] J. Buczyński and J. M. Landsberg, Ranks of tensors and a generalization of secant varieties. arXiv:0909.4262v4 [math.AG].
- [6] J. Buczyński, A. Ginensky, J. M. Landsberg. Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture. arXiv:1007.0192v3 [math.AG].
- [7] C. Ciliberto. Geometric aspects of polynomial interpolation in more variables and of Waring's problem, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 289–316.
- [8] G. Comas, M. Seiguer, On the rank of a binary form, Found. Comp. Math. 11 (2011), no. 1, 65–78.
- [9] P. Comon, G. H. Golub, L.-H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. 30 (2008) 1254–1279.
- [10] P. Comon, B. Mourrain. Decomposition of quantics in sums of powers of linear forms, Signal Processing, Elsevier 53, 2, 1996.
- [11] A. Couvreur, The dual minimum distance of arbitrary dimensional algebraic-geometric codes, J. Algebra 350 (2012), no. 1, 84–107.
- [12] D. Eisenbud and J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), no. 1, 15–30.
- [13] A. Iarrobino, V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and Steven L. Kleiman.
- [14] L.-H. Lim, V. De Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. 30 (2008), no. 3, 1084–1127.
- [15] J. M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010) no. 3, 339–366.
- [16] K. Ranestad, F. O. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147–181.