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Abstract. Probabilistic fixed point theory has developed substantially during the last two decades. In

this paper we define a new contraction in probabilistic metric spaces which are spaces in which distribution

functions play the role of the metric. We have shown that under two separate conditions the mapping

has a fixed point. Two illustrative examples are given.
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1. Introduction

Fixed point theory is one of the most active branches of modern analysis. In 1922, S.

Banach proved the well known Banach contraction mapping principle in metric spaces.

Sehgal and Bharucha-Reid [34] generalized this concept to probabilistic metric spaces in

1972. Probabilistic metric spaces are probabilistic generalization of metric spaces. The

inherent flexibility of these spaces allows us to extend the contraction mapping princi-

ple in more than one inequivalent ways. Hicks [13] established another generalization of
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contraction mapping principles in probabilistic metric spaces. This extension is known

as C-contraction. Subsequently, fixed point theory in probabilistic metric spaces has de-

veloped in extensive way. Hadzic and Pap have given a comprehensive survey of this

development upto 2001 in [12]. Some of the references in Menger spaces of more recent

times may be noted in [24, 27, 28] and [29].

Khan, Swaleh and Sessa [23] introduced a new type of contraction in metric spaces in

1984. They had used a control function to prove their result. This control function is

known as ‘altering distance function’. After this paper many authors have used altering

distance function to get fixed point results. Here we mention a few of these results in

[26, 30] and [31]. Recently, Choudhury and Das [1] extend the concept of altering distance

function in the context of Menger spaces. The idea of control function in Menger spaces

opened the possibility of proving new fixed point and coincidence point results. Some of

the recent results where this control function has been used in Menger spaces may be seen

in [2, 3, 9, 10] and [25].

Another type of fixed point results appeared in the literature due to R. Kannan [15, 16].

Now we give the definition of Kannan type mappings.

Definition 1.1. [15, 16] Let (X, d) be a metric space and f be a mapping on X. The

mapping f is called a Kannan type mapping if there exists 0 ≤ α < 1
2

such that

d(fx, fy) ≤ α[d(x, fx) + d(y, fy)] for all x, y ∈ X. (1.1)

Kannan proved that every mappings satisfying (1.1) have a unique fixed point. This

type of mappings are a class of contractive mappings which are different from the Ba-

nach contraction. A difference between Banach contraction mappings and Kannan type

mappings is that Banach contraction mappings are always continuous but Kannan type

mappings are not necessarily continuous. After the appearance of Kannan’s paper in

[15, 16], many authors created contractive conditions not requiring the continuity of the

mappings and established fixed point results of such mappings. Now this line of research

has a vast literature. Another reason for the importance of Kannan type mappings is
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that it characterizes completeness which the Banach contraction does not. It has been

shown in [35, 36] that the necessary existence of fixed points for Kannan type mappings

implies that the corresponding metric space is complete. The same is not true for Banach

contractions. There is an example of an incomplete metric space where every contraction

has a fixed point [7]. Kannan type mappings, its generalizations and extensions in various

spaces have been considered in a large number of works, some of which may be noted in

[4, 6, 14, 19, 20, 21, 32] and [35]. There are also similarities between Banach and Kannan

type contractions. One is referred to [20] and [21] for similarity between contraction and

Kannan type mappings.

In recent years cyclic contraction and cyclic contractive type mapping have appeared

in several works.

Definition 1.2. Let A and B be two non-empty sets. A cyclic mapping is a mapping

T : A
⋃
B → A

⋃
B which satisfies:

TA ⊆ B and TB ⊆ A.

This line of research was initiated by Kirk, Srinivasan and Veeramani [22], where they,

amongst other results, established the following generalization of the contraction mapping

principle.

Theorem 1.1. [22] Let A and B be two non-empty closed subsets of a complete metric

space X and suppose f : X → X satisfies:

(1) fA ⊆ B and fB ⊆ A,

(2) d(fx, fy) ≤ kd(x, y) for all x ∈ A and y ∈ B where k ∈ (0, 1).

Then f has a unique fixed point in A
⋂
B.

The problems of cyclic contractions have been strongly associated with proximity point

problems. Some other results dealing with cyclic contractions and proximity point prob-

lems may be noted in [8, 11, 17, 37, 38] and [39].
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A generalization of cyclic mapping is p-cyclic mapping. The definition is the following:

Definition 1.3. Let {Ai}pi=1 be non-empty sets. A p-cyclic mapping is a mapping T :⋃p
i=1Ai →

⋃p
i=1Ai which satisfies the following conditions :

(i) TAi ⊆ Ai+1 for 1 ≤ i < p, TAp ⊆ A1.

In this case where p = 2, this reduces to cyclic mappings. Some fixed point results of

p-cyclic maps have been obtained in [17, 18, 37]. In this paper we are interested in the

fixed point properties of p-cyclic mappings in probabilistic metric spaces. In the following

we describe the space briefly and to the extent of our requirement. Several aspects of this

space has been described comprehensively by Schweizer and Sklar [33].

Definition 1.4. [12, 33] A mapping F : R→ R+ is called a distribution function if it is

non-decreasing and left continuous with inf
t∈R

F (t) = 0 and sup
t∈R

F (t) = 1, where R is the

set of real numbers and R+ denotes the set of non-negative real numbers.

Definition 1.5. t-norm [12, 33]

A t-norm is a function ∆ : [0, 1] × [0, 1] → [0, 1] which satisfies the following conditions

for all a, b, c, d ∈ [0, 1]

(i) ∆(1, a) = a,

(ii) ∆(a, b) = ∆(b, a),

(iii) ∆(c, d) ≥ ∆(a, b) whenever c ≥ a and d ≥ b,

(iv) ∆(∆(a, b), c) = ∆(a,∆(b, c)).

Definition 1.6. Hadzic type t-norm [12]

A t-norm ∆ is said to be Hadzic type t-norm if the family {∆p}p∈N of its iterates, defined

for each s ∈ (0, 1) as

∆0(s) = 1, ∆p+1(s) = ∆(∆p(s), s) for all p ≥ 0,

is equi-continuous at s = 1, that is, given λ > 0 there exits η(λ) ∈ (0, 1) such that

1 ≥ s > η(λ)⇒ ∆p(s) ≥ 1− λ for all p ≥ 0.
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Definition 1.7. Menger space [12, 33]

A Menger space is a triplet (X,F,∆), where X is a non empty set, F is a function defined

on X ×X to the set of distribution functions and ∆ is a t-norm, such that the following

are satisfied:

(i) Fx,y(0) = 0 for all x, y ∈ X,

(ii) Fx,y(s) = 1 for all s > 0 if and only if x = y,

(iii) Fx,y(s) = Fy,x(s) for all x, y ∈ X, s > 0 and

(iv) Fx,y(u+ v) ≥ ∆ (Fx,z(u), Fz,y(v)) for all u, v ≥ 0 and x, y, z ∈ X.

An interpretation of Fx,y(t) is that it is the probability of the event that the distance

between the points x and y is less than t. A metric space becomes a Menger space if we

write Fx,y(t) = H(t− d(x, y)) where H is the Heaviside function given by

H(t) = 1, if t > 0,

= 0, if t ≤ 0.

Definition 1.8. [12, 33] A sequence {xn} ⊂ X is said to converge to some point x ∈ X

if given ε > 0, λ > 0 we can find a positive integer Nε,λ such that for all n > Nε,λ

Fxn,x(ε) ≥ 1− λ. (1.2)

Definition 1.9. [12, 33] A sequence {xn} is said to be a Cauchy sequence in X if given

ε > 0, λ > 0 there exists a positive integer Nε,λ such that

Fxn,xm(ε) ≥ 1− λ for all m,n > Nε,λ. (1.3)

Definition 1.8 and 1.9 can be equivalently written by replacing ‘≥’ with ‘>’ in (1.2)

and (1.3) respectively. More often than not, they are written in that way. We have given

them in the present form for our convenience in the proofs of our theorems.

Definition 1.10. [12, 33] A Menger space (X,F,∆) is said to be complete if every Cauchy

sequence is convergent in X.
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In [1] Choudhury and Das extended the concept of altering distance function in the

context of Menger spaces and gave the following definition of φ-function.

Definition 1.11. Φ-function [1]

A function φ : R→ R+ is said to be a Φ-function if it satisfies the following conditions:

(i) φ(t) = 0 if and only if t = 0,

(ii) φ(t) is strictly monotone increasing and φ(t)→∞ as t→∞,

(iii) φ is left continuous in (0,∞),

(iv) φ is continuous at 0.

It has been shown in [1] that a φ-function can generate altering distance function. A

cyclic contraction principle in Menger spaces have been proved with the help of φ function

by the present authors in [5].

Theorem 1.2. [5] Let (X,F,∆) be a complete Menger space where ∆ is the minimum t-

norm and let there exist two closed subsets A and B of X where A
⋂
B is nonempty such

that the mapping T : A
⋃
B → A

⋃
B satisfies the following conditions :

(i) TA ⊆ B and TB ⊆ A,

(ii) FTx,Ty(φ(ct)) ≥ Fx,y(φ(t))

for all x ∈ A and y ∈ B where c ∈ (0, 1) and t > 0. Then T has a unique fixed point in

A
⋂
B.

It has been shown that the Theorem 1.2 contains Theorem 1.1.

We will make use of the following function in our theorems.

Definition 1.12. Ψ-function [4]

A function ψ : [0, 1]× [0, 1]→ [0, 1] is said to be a Ψ-function if

(i) ψ-is monotone increasing and continuous,



FIXED POINTS OF P-CYCLIC KANNAN TYPE CONTRACTIONS 571

(ii) ψ(x, x) ≥ x for all 0 < x < 1,

(iii) ψ(1, 1) = 1, ψ(0, 0) = 0.

2. Main Result

In this section we have two theorems and two examples.

Theorem 2.1. Let (X,F,∆) be a complete Menger space with a Hadzic type t- norm ∆

such that whenever xn → x and yn → y, Fxn,yn(t) → Fx,y(t). Let {Ai}pi=1 be non-empty

closed subsets of X and the mapping T :
⋃p
i=1Ai →

⋃p
i=1Ai is a p-cyclic mapping, that

is,

TAi ⊆ Ai+1 for 1 ≤ i < p, TAp ⊆ A1 (2.1)

and is such that

FTx,Ty(t) > ψ(Fx,Tx(
t1
a

), Fy,Ty(
t2
b

)) (2.2)

whenever x ∈ Ai and y ∈ Ai+1 for 1 ≤ i < p

and

FTz,Tw(t) > ψ(Fz,Tz(
t1
a

), Fw,Tw( t2
b

)) (2.3)

whenever z ∈ Ap and w ∈ A1

for t1, t2, t > 0 with t = t1 + t2, a, b > 0 with 0 < a+ b < 1 and ψ is a Ψ-function. Then⋂p
i=1Ai is non-empty and T has a unique fixed point in

⋂p
i=1Ai.

Proof. Let x0 be any arbitrary point in A1. Now we define the sequence {xn}∞n=0 in X

by xn = Txn−1, n ∈ N where N is the set of natural numbers.

By (2.1), we have

xo ∈ A1, x1 ∈ A2, x2 ∈ A3,......,xp−1 ∈ Ap and in general xnp ∈ A1, xnp+1 ∈ A2,.......,

xnp+(p−1) ∈ Ap for all n ≥ 0.

Now, for t, t1, t2 > 0 with t = t1 + t2, we have

Fxn+1,xn(t) = FTxn,Txn−1(t)

= FTxn−1,Txn(t)

> ψ(Fxn−1,Txn−1(
t1
a

), Fxn,Txn( t2
b

)) ( since xn−1 ∈ An, xn ∈ An+1 )

= ψ(Fxn−1,xn( t1
a

), Fxn,xn+1(
t2
b

)). (2.4)
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Let t1 = at
a+b

, t2 = bt
a+b

and c = a+ b, then obviously we have 0 < c < 1. (2.5)

Then, we have from (2.4),

Fxn+1,xn(t) > ψ(Fxn−1,xn( t
c
), Fxn,xn+1(

t
c
)). (2.6)

We now claim that for all t > 0, n ≥ 0,

Fxn,xn+1(
t
c
) ≥ Fxn−1,xn( t

c
). (2.7)

If possible, let for some s > 0, and some n ≥ 0,

Fxn,xn+1(
s
c
) < Fxn−1,xn( s

c
), then we have from (2.6),

Fxn+1,xn(s) > ψ(Fxn,xn+1(
s
c
), Fxn,xn+1(

s
c
))

= ψ(Fxn+1,xn( s
c
), Fxn+1,xn( s

c
))

≥ Fxn+1,xn( s
c
)

≥ Fxn+1,xn(s),

which is a contradiction, since 0 < c < 1 and F is non-decreasing.

Therefore, for all t > 0, n ≥ 0, (2.7) holds.

Now using (2.7), we have from (2.6), for all t > 0,

Fxn+1,xn(t) > ψ(Fxn−1,xn( t
c
), Fxn,xn+1(

t
c
))

≥ ψ(Fxn−1,xn( t
c
), Fxn−1,xn( t

c
))

= ψ(Fxn,xn−1(
t
c
), Fxn,xn−1(

t
c
))

≥ Fxn,xn−1(
t
c
). (2.8)

By repeated applications of this inequality, for all t > 0, n ≥ 0, we obtain

Fxn,xn+1(t) > Fx0,x1(
t
cn

). (2.9)

Taking limit as n→∞ on both sides, for all t > 0, we have

lim
n→∞

Fxn+1,xn(t) = 1. (2.10)

Again, by repeated applications of (2.8), it follows that for all t > 0, n ≥ 0 and each i ≥ 1,

Fxn+i,xn+i+1
(t) > Fxn,xn+1(

t
ci

). (2.11)

We next prove that {xn} is a Cauchy sequence (Definition 1.9), that is, we prove that for

arbitrary ε > 0 and 0 < λ < 1, there exists N(ε, λ) such that

Fxn,xm(ε) ≥ 1− λ for all n,m ≥ N(ε, λ).

Without loss of generality we can assume that m > n.
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Now,

ε = ε1−c
1−c > ε(1− c)(1 + c+ c2 + .........+ cm−n−1).

Then, by the monotone increasing property of F , we have

Fxn,xm(ε) ≥ Fxn,xm(ε(1− c)(1 + c+ c2 + .........+ cm−n−1)),

that is,

Fxn,xm(ε) ≥ ∆(Fxn,xn+1(ε(1− c)),∆(Fxn+1,xn+2(εc(1− c)),∆(.........,

∆(Fxm−2,xm−1(εc
m−n−2(1− c)), Fxm−1,xm(εcm−n−1(1− c)))......))). (2.12)

Putting t = (1− c)εci in (2.11), we get

Fxn+i,xn+i+1
((1− c)εci) > Fxn,xn+1((1− c)ε).

Then, by (2.12), we have

Fxn,xm(ε) ≥ ∆(Fxn,xn+1(ε(1− c)),∆(Fxn,xn+1(ε(1− c)),∆(.........,

∆(Fxn,xn+1(ε(1− c)), Fxn,xn+1(ε(1− c)))......))),

that is,

Fxn,xm(ε) ≥ ∆(m−n)Fxn,xn+1(ε(1− c)). (2.13)

Since the t-norm ∆ is a Hadzic type t-norm, the family {∆p} of its iterates is equi-

continuous at the point s = 1, that is, there exists η(λ) ∈ (0, 1) such that for all m > n,

∆(m−n)(s) ≥ 1− λ whenever η(λ) < s ≤ 1. (2.14)

Since, Fx0,x1(t)→ 1 as t→∞ and 0 < c < 1, there exists an positive integer N(ε, λ) such

that

Fx0,x1(
(1−c)ε
cn

) > η(λ) for all n ≥ N(ε, λ). (2.15)

From (2.15) and (2.11), with n = 0, i = n and t = (1− c)ε, we get

Fxn,xn+1(ε(1− c)) > Fx0,x1(
(1−c)ε
cn

) > η(λ) for all n ≥ N(ε, λ).

Then, from (2.14) with s = Fxn,xn+1(ε(1− c)), we have

∆(m−n)(Fxn,xn+1(ε(1− c))) ≥ 1− λ.

It then follows from (2.13) that

Fxn,xm(ε) ≥ 1− λ for all m,n ≥ N(ε, λ).

Thus {xn} is a Cauchy sequence.

Since X is complete, we have
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lim
n→∞

xn = z. (2.16)

By the construction of the sequence {xn}, we have xp ∈ A1, x2p ∈ A1, ........xnp ∈ A1.

Therefore the subsequence {xnp} of {xn} which belongs to A1 also converges to z in A1,

since A1 is closed. Similarly subsequence {xnp+1} belongs to A2 also converges to z in A2.

Since A3, A4, ........,Ap are closed sets, similarly we get z ∈ A3, A4,........,Ap. Therefore

z ∈ A1

⋂
A2

⋂
A3......

⋂
Ap.

Now, we prove that Tz = z.

Putting x = xn, y = z in (2.2), for all t > 0, we have

FTxn,T z(t) > ψ(Fxn,Txn( t1
a

), Fz,Tz(
t2
b

)) (xn ∈ An+1, z ∈ An+2).

Now, using (2.5), for all t > 0, we get

FTxn,T z(t) > ψ(Fxn,Txn( t
c
), Fz,Tz(

t
c
)). (2.17)

Taking limit as n→∞ in (2.17), for all t > 0, we have

Fz,Tz(t) ≥ ψ(Fz,z(
t
c
), Fz,Tz(

t
c
))

= ψ(1, Fz,Tz(
t
c
))

≥ ψ(Fz,Tz(
t
c
), Fz,Tz(

t
c
))

≥ Fz,Tz(
t
c
). (2.18)

(since by our assumption xn → x, yn → y implies Fxn,yn → Fx,y)

By repeated applications of (2.18) n times, for all t > 0, we obtain

Fz,Tz(t) ≥ Fz,Tz(
t
cn

).

Taking limit as n→∞ on both sides, for all t > 0,

Fz,Tz(t) ≥ lim
n→∞

Fz,Tz(
t

cn
) = 1,

which implies

Fz,Tz(t) = 1.

Thus z = Tz.

To prove the uniqueness of the fixed point, let us take v ∈ A1

⋂
A2

⋂
A3......

⋂
Ap be an-

other fixed point of T , that is, Tv = v.

Now,
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Fz,v(t) = FTz,Tv(t)

> ψ(Fz,Tz(
t1
a

), Fv,Tv(
t2
b

))

= ψ(Fz,z(
t1
a

), Fv,v(
t2
b

))

= ψ(1, 1) = 1,

which implies that z = v, that is, the fixed point is unique.

We prove our next theorem with the help of the control function φ and using the

minimum t-norm instead of Hadzic type t-norm. It is important to note that to prove our

result we can not follow the same argument as in Theorem 2.1.

Theorem 2.2. Let (X,F,∆) be a complete Menger space where ∆ is the minimum t-

norm. Let {Ai}pi=1 be non-empty closed subsets of X and the mapping T :
⋃p
i=1Ai →⋃p

i=1Ai is a p-cyclic mapping, that is,

TAi ⊆ Ai+1 for 1 ≤ i < p, TAp ⊆ A1 (2.19)

and is such that

FTx,Ty(φ(t)) > ψ(Fx,Tx(φ( t1
a

)), Fy,Ty(φ( t2
b

))) (2.20)

whenever x ∈ Ai, y ∈ Aj and 1 ≤ i, j ≤ p, i 6= j, t1, t2, t > 0 with t = t1 + t2, a, b > 0

with 0 < a+ b < 1, ψ is a Ψ-function and φ is a Φ-function. Then
⋂p
i=1Ai is non-empty

and T has a unique fixed point in
⋂p
i=1Ai.

Proof. Let x0 be any arbitrary point in A1. Now we define the sequence {xn}∞n=0 in X

by xn = Txn−1, n ∈ N where N is the set of natural numbers.

By (2.19), we have

xo ∈ A1, x1 ∈ A2, x2 ∈ A3,......,xp−1 ∈ Ap and in general xnp ∈ A1, xnp+1 ∈ A2,.......,

xnp+(p−1) ∈ Ap for all n ≥ 0.

Now, for t, t1, t2 > 0 with t = t1 + t2, we have

Fxn+1,xn(φ(t)) = FTxn,Txn−1(φ(t))

= FTxn−1,Txn(φ(t))

> ψ(Fxn−1,Txn−1(φ( t1
a

)), Fxn,Txn(φ( t2
b

))) ( xn−1 ∈ An, xn ∈ An+1 )
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= ψ(Fxn−1,xn(φ( t1
a

)), Fxn,xn+1(φ( t2
b

))). (2.21)

Let t1 = at
a+b

, t2 = bt
a+b

and c = a+ b, then obviously we have 0 < c < 1. (2.22)

Then, we have from (2.21),

Fxn+1,xn(φ(t)) > ψ(Fxn−1,xn(φ( t
c
)), Fxn,xn+1(φ( t

c
))). (2.23)

We now claim that for all t > 0, n ≥ 0

Fxn,xn+1(φ( t
c
)) ≥ Fxn−1,xn(φ( t

c
)). (2.24)

If possible, let for some s > 0, and some n ≥ 0,

Fxn,xn+1(φ( s
c
)) < Fxn−1,xn(φ( s

c
)), then we have from (2.23),

Fxn+1,xn(φ(s)) > ψ(Fxn,xn+1(φ( s
c
)), Fxn,xn+1(φ( s

c
)))

= ψ(Fxn+1,xn(φ( s
c
)), Fxn+1,xn(φ( s

c
)))

≥ Fxn+1,xn(φ( s
c
))

≥ Fxn+1,xn(φ(s)),

which is a contradiction, since 0 < c < 1, φ is strictly increasing and F is non-decreasing.

Therefore, for all t > 0 and n ≥ 0, (2.24) holds.

Now, using (2.24) in (2.23) and by the properties of ψ, for all t > 0, n ≥ 0, we have

Fxn+1,xn(φ(t)) > ψ(Fxn−1,xn(φ( t
c
)), Fxn,xn+1(φ( t

c
)))

≥ ψ(Fxn−1,xn(φ( t
c
)), Fxn−1,xn(φ( t

c
)))

= ψ(Fxn,xn−1(φ( t
c
)), Fxn,xn−1(φ( t

c
)))

≥ Fxn,xn−1(φ( t
c
)). (2.25)

By repeated applications of (2.25), for all t > 0, n ≥ 0, we have

Fxn+1,xn(φ(t)) > Fx1,x0(φ( t
cn

)). (2.26)

Taking limit as n→∞ on both sides of (2.26), for all t > 0, we obtain

lim
n→∞

Fxn+1,xn(φ(t)) = 1. (2.27)

Again, by virtue of a property of φ, given s > 0 we can find t > 0 such that s > φ(t).

Thus the above limit implies that for all s > 0,

lim
n→∞

Fxn,xn+1(s) = 1. (2.28)
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We next prove that {xn} is a Cauchy sequence. If possible, let {xn} be not a Cauchy

sequence. Then there exist ε > 0 and 0 < λ < 1 for which we can find subsequences

{xm(k)} and {xn(k)} of {xn} with n(k) > m(k) > k such that

Fxm(k),xn(k)
(ε) < 1− λ. (2.29)

We take n(k) corresponding to m(k) to be the smallest integer satisfying (2.29) so that

Fxm(k),xn(k)−1
(ε) ≥ 1− λ. (2.30)

If ε1 < ε, then we have

Fxm(k),xn(k)
(ε1) ≤ Fxm(k),xn(k)

(ε).

We conclude that it is possible to construct {xm(k)} and {xn(k)} with n(k) > m(k) > k

and satisfying (2.29) and (2.30) whenever ε is replaced by a smaller positive value. As φ

is continuous at 0 and strictly monotone increasing with φ(0) = 0, it is possible to obtain

ε2 > 0 such that φ(ε2) < ε.

Then, by the above argument, it is possible to obtain an increasing sequence of integers

{m(k)} and {n(k)} with n(k) > m(k) > k such that

Fxm(k),xn(k)
(φ(ε2)) < 1− λ (2.31)

and

Fxm(k),xn(k)−1
(φ(ε2)) ≥ 1− λ. (2.32)

By (2.31), we get

1− λ > Fxm(k),xn(k)
(φ(ε2))

= FTxm(k)−1,Txn(k)−1
(φ(ε2))

> ψ(Fxm(k)−1,Txm(k)−1
(φ( t1

a
)), Fxn(k)−1,Txn(k)−1

(φ( t2
b

)))

= ψ(Fxm(k)−1,xm(k)
(φ( t1

a
)), Fxn(k)−1,xn(k)

(φ( t2
b

))). (2.33)

(since xm(k)−1 ∈ Am(k) and xn(k)−1 ∈ An(k), m(k) 6= n(k) )

By (2.28), for sufficiently large k and by virtue of property of φ we have

Fxm(k)−1,xm(k)
(φ( t1

a
)) ≥ 1− λ (2.34)

and

Fxn(k)−1,xn(k)
(φ( t2

b
)) ≥ 1− λ. (2.35)



578 BINAYAK S. CHOUDHURY, KRISHNAPADA DAS∗ AND SAMIR KUMAR BHANDARI

Using (2.34) and (2.35) in (2.33), we have

1− λ > ψ(1− λ, 1− λ) ≥ 1− λ,

which is a contradiction.

Thus {xn} is a Cauchy sequence.

Since X is complete, we have

lim
n→∞

xn = z. (2.36)

By the construction of the sequence {xn}, we have xp ∈ A1, x2p ∈ A1, ........xnp ∈ A1.

Therefore the subsequence {xnp} of {xn} which belongs to A1 also converges to z in A1,

since A1 is closed. Similarly subsequence {xnp+1} belongs to A2 also converges to z in A2.

Since A3, A4, ........,Ap are closed sets, similarly we get z ∈ A3, A4,........,Ap. Therefore

z ∈ A1

⋂
A2

⋂
A3......

⋂
Ap.

Now, we prove that Tz = z.

Putting x = xn, y = z in the inequality (2.20), for all t > 0, we have

FTxn,T z(φ(t)) > ψ(Fxn,Txn(φ( t1
a

)), Fz,Tz(φ( t2
b

))).

(xn ∈ An+1, z ∈ Ai, where n+ 1 6= i)

Now, using (2.22), for all t > 0, we get

FTxn,T z(φ(t)) > ψ(Fxn,Txn(φ( t
c
)), Fz,Tz(φ( t

c
))).

Taking liminf as n → ∞ on both sides of the above inequality, for all t > 0, and by the

properties of φ, we have

lim inf
n→∞

FTxn,T z(φ(t)) ≥ ψ(lim inf
n→∞

Fxn,Txn(φ(
t

c
)), Fz,Tz(φ( t

c
))),

that is,

Fz,Tz(φ(t)) ≥ ψ(Fz,z(φ( t
c
)), Fz,Tz(φ( t

c
))) (by (2.36))

= ψ(1, Fz,Tz(φ( t
c
)))

≥ ψ(Fz,Tz(φ( t
c
)), Fz,Tz(φ( t

c
)))
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≥ Fz,Tz(φ( t
c
)).

By repeated applications of the above inequality for all t > 0 we have

Fz,Tz(φ(t)) ≥ Fz,Tz(φ( t
cn

)).

Now, taking limit n→∞ on both sides for all t > 0, we have

Fz,Tz(φ(t)) ≥ lim
n→∞

Fz,Tz(φ(
t

cn
)) = 1.

Then, by the property of φ, we get z = Tz.

To prove the uniqueness of the fixed point, let us take v ∈ A1

⋂
A2

⋂
A3......

⋂
Ap be

another fixed point of T , that is, Tv = v.

Now,

Fz,v(φ(t)) = FTz,Tv(φ(t))

> ψ(Fz,Tz(φ( t1
a

)), Fv,Tv(φ( t2
b

)))

= ψ(Fz,z(φ( t1
a

)), Fv,v(φ( t2
b

)))

= ψ(1, 1) = 1.

Again, by the properties of φ we can conclude that z = v.

Therefore z ∈ A1

⋂
A2

⋂
A3......

⋂
Ap is a unique fixed point of T .

Taking two non-empty sets A and B of X we get the following corollary.

Corollary 2.1. Let (X,F,∆) be a complete Menger space where ∆ is the minimum

t- norm and let there exist two closed subsets A and B of X such that the mapping

T : A
⋃
B → A

⋃
B satisfies the following conditions :

(i) TA ⊆ B and TB ⊆ A, (2.37)

(ii) FTx,Ty(φ(t)) > ψ(Fx,Tx(φ( t1
a

)), Fy,Ty(φ( t2
b

))) (2.38)

for all x ∈ A and y ∈ B, t1, t2, t > 0 with t = t1 + t2, a, b > 0 with 0 < a + b < 1, ψ is

a Ψ-function and φ is a Φ-function. Then A
⋂
B is nonempty and T has a unique fixed

point in A
⋂
B.
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Now, we give the following example to illustrate Theorem 2.1 for p = 2.

Example 2.1. Let X = {x1, x2, x3}, A1 = {x1, x2}, A2 = {x1, x3}, ∆(a, b) = min(a, b)

and Fx, y(t) be defined as:

Fx1, x2(t) =


0, if t ≤ 0,

0.75, if 0 < t ≤ 2,

1, if t > 2.

Fx1, x3(t) =


0, if t ≤ 0,

0.90, if 0 < t ≤ 1,

1, if t > 1.

Fx2, x3(t) =


0, if t ≤ 0,

0.75, if 0 < t ≤ 2,

1, if t > 2.

Then (X,F,∆) be a complete Menger space. If we define a mapping T : A1

⋃
A2 →

A1

⋃
A2 satisfies all the conditions of Theorem 2.1 by taking Tx1 = x1, Tx2 = x3, Tx3 = x1

with ψ(x, y) = min{x, y}, a = 0.85, b = 0.10. Here x1 is the unique fixed point of T in

A1

⋂
A2.

Now we give the following example to illustrate our Theorem 2.2 for p = 3.

Example 2.2. Let X = {x1, x2, x3, x4}, p = 3 and A1 = {x2, x3}, A2 = {x2, x1},

A3 = {x2, x4}. Also we take the t-norm ∆(a, b) = min(a, b) and Fx, y(t) be defined

as:

Fx1, x2(t) = Fx1, x3(t) = Fx1, x4(t) = Fx2, x4(t) = Fx3, x4(t) =


0, if t ≤ 0,

0.60, if 0 < t < 8,

1, if t ≥ 8.

Fx2, x3(t) =

 0, if t ≤ 0,

1, if t > 0.
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Then (X,F,∆) be a complete Menger space. If we define T :
⋃3
i=1Ai →

⋃3
i=1Ai satisfies

all the conditions of Theorem 2.2 by taking Tx1 = x2, Tx2 = x2, Tx3 = x2, Tx4 = x3 with

φ(t) = t, ψ(x, y) = min{x, y}, a = 0.10, b = 0.85. Here x2 is the unique fixed point of T

in
⋂3
i=1Ai.
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