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Abstract. Let T be a ∗-n-paranormal operator on a complex Banach space X . In this paper we show that T is

isoloid and if α,β are distinct eigen-values of T , then ker(T −αI)⊥ker(T −β I). Also we show that if the dual

space X ∗ is uniformly convex and (T −αI)xk −→ 0 for (xk, fk) ∈Π(X ), then (T −αI)∗ fk −→ 0.
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1. Introduction

F. F. Bonsall and J. Duncan published books [2] and [3] concerning Banach spaces and spec-

tral properties of Banach space operators. K. Mattila in [6] studied spectral properties of Ba-

nach space operators. In [5] she studied proper boundary points of the spectrum. In [4] M.

Chō and S. Ôta introduced n-paranormal and ∗-n-paranormal operators on Banach spaces and

studied properties of eigen-value of the spectrum. In [7] A. Uchiyama and K. Tanahashi studied

spectral properties of ∗-paranormal Hilbert space operators. P. Aiena in [1] studied spectral

properties of polynomially paranormal Banach space operators. In [9] L. Zhang, A. Uchiyama
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and K. Tanahashi and M. Chō showed that a polynomially *-paranormal operator T on a com-

plex Hilbert space is isoloid (That is, an isolated point of the spectrum is an eigen-value.) and

the spectral mapping theorem holds for the essential approximate point spectrum of T . In this

paper we study spectral properties of ∗-n-paranormal Banach space operators.

2. Preliminaries

Let X be a complex Banach space and T ∈ B(X ). Let Π(X ) be

Π(X ) = {(x, f ) ∈X ×X ∗ : ‖ f‖= f (x) = ‖x‖= 1},

where X ∗ is the dual space of X . We define the numerical range V (T ) of T by

V (T ) = { f (T x) : (x, f ) ∈Π(X )}.

It is well known that following inclusion relations hold

coσ(T ) ⊂ V (T ) ⊂ {z ∈ C : |z| ≤ ‖T‖},

where coσ(T ),V (T ) and ‖T‖ are the convex hull of the spectrum σ(T ), the closure of V (T )

and the norm of T , respectively. See Theorem 19.4 of [3].

Definition 1.

(1) T is said to be n-paranormal if ‖T x‖n ≤ ‖T nx‖ · ‖x‖n−1 for all x ∈X .

(2) T is said to be ∗-n-paranormal if ‖T ∗ f‖n ≤ ‖T nx‖ for all (x, f ) ∈Π(X ), where T ∗ is

the dual operator of T .

2-Paranormal operators are simply called paranormal. We denote the sets of all n-paranormal

operators and ∗-n-paranormal operators by P(n) and S(n), respectively. In [4] M. Chō and S.

Ôta proved that S(n)⊂P(n+1) for every n ∈ N and P(2)⊂
∞⋂

n=3

P(n) =P(3)
⋂

P(4).

Definition 2. Let A and B be subspaces of X . A is orthogonal to B ( denoted A⊥B ) if

‖a‖ ≤ ‖a+b‖ (a ∈ A,b ∈ B).
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3. Main results

Let ker(T ) and R(T ) be the kernel and the range of T , respectively. Then it is well known that

ker(T )⊥R(T ) if and only if there exists (x, f ) ∈ Π(X ) such that x ∈ ker(T ) and f ∈ ker(T ∗).

See Lemma 20.3 of [3].

By the definition of (2) it is clear that if T is ∗-n-paranormal and T x = 0 (‖x‖= 1), then, for

any f ∈X ∗ such that (x, f ) ∈Π(X ), T ∗ f = 0.

Hence we have the following result.

Theorem 1. Let T,S be ∗-n-paranormal operators. Then
(

ker(T )
⋂

ker(S)
)
⊥M , where M

is the smallest subspace containing R(T ) and R(S).

See page 14 of [6].

Next proposition is important in this paper. The paper [7] is for Hilbert space operators. But

following results hold for Banach space operators.

Proposition 1 (Proposition 1 and Theorem 1, [7]). Let T be an n-paranormal operator on

X .

(1) T is normaloid, that is, ‖T‖= r(T ) (the spectral radius of T ).

(2) If T is invertible, then ‖T−1‖ ≤ r(T−1)
n(n−1)

2 · r(T )
(n+1)(n−2)

2 .

In [1] P. Aiena showed following result for paranormal operators.

Theorem 2. Let T be an n-paranormal operator on X . If σ(T ) = {α}, then T = αI.

Proof. If α = 0, then ‖T‖= r(T ) = 0. Hence T = 0. We assume α 6= 0. Let S =
1
α

T . Then S is

invertible n-paranormal, ‖S‖= 1 and σ(S) = {1}. By Proposition 1, we have ‖S−1‖= 1. Hence

‖Sn‖ ≤ ‖S‖n ≤ 1 and ‖S−n‖ ≤ ‖S−1‖n ≤ 1 for n ∈ N. Hence S = I and T = αI by Theorem 1

of [8]. This completes the proof.

Definition 3. T is said to be polynomially n-paranormal (∗-n-paranormal) if there exists a

non-constant polynomial p(x) such that p(T ) is n-paranormal (∗-n-paranormal).

Theorem 3. Let T be a polynomially n-paranormal operator on X . If σ(T ) = {α}, then

T −αI is nilpotent.
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Proof. Let p(x) be a polynomial such that p(T ) is n-paranormal. Let

p(x)− p(α) = a(x−α)k · (x−α1) · · ·(x−αm),

where α j 6= α for all j = 1,2, ...,m and a 6= 0. Since p(T ) is n-paranormal and σ(p(T )) =

{p(α)}, we have p(T ) = p(α)I by Theorem 2. Hence

p(T )− p(α)I = a(T −αI)k · (T −α1I) · · ·(T −αmI) = 0.

Since all T −α jI ( j = 1,2, ...,m) are invertible, we have (T −αI)k = 0. This completes the

proof.

If T is ∗-n-paranormal, then T is (n+ 1)-paranormal by Theorem 6 of [4]. Hence we have

following corollary.

Corollary 1. For T ∈ B(X ), let σ(T ) = {α}.

(1) If T be a ∗-n-paranormal operator, then T = αI.

(2) If T be a polynomially ∗-n-paranormal operator, then T −αI is nilpotent.

Theorem 4. Let T be a ∗-n-paranormal (n-paranormal) operator on X . If M is a closed

invariant subspace for T , then T∣∣M is ∗-n-paranormal (n-paranormal).

Proof. Let T be ∗-n-paranormal on X and (x, f )∈Π(M ). By the Hahn-Banach theorem, there

exists g ∈X ∗ such that g∣∣M = f and ‖g‖= ‖ f‖. Hence (x,g) ∈Π(X ) and

((
T∣∣M

)∗
f
)
(x) = f

(
T∣∣M x

)
= f (T x) = g(T x) = (T ∗g)(x),

and so

‖
(

T∣∣M
)∗

f‖n ≤ ‖T ∗g‖n ≤ ‖T nx‖= ‖
(

T∣∣M
)n

x‖.

It is easy to see that if T is n-paranormal, then T∣∣M is n-paranormal. This completes the proof.

Theorem 5. Let T be an n-paranormal operator on X . Then T is isoloid.

Proof. Let α be an isolated point of σ(T ) and P be the spectral projection associated with α .

Since then T∣∣P(M )
is n-paranormal by Theorem 4 and σ(T∣∣P(M )

) = {α}, T∣∣P(M )
= αI. Hence

α is an eigen-value of T . This completes the proof.
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If T is ∗-n-paranormal, then T is (n+ 1)-paranormal. Hence the following corollary is direct

from Theorem 5 and Corollary 1.

Corollary 2. If T is ∗-n-paranormal, then T is isoloid.

Theorem 6. Let T be an operator on X and satisfy one of the following statements. If α is an

isolated point of σ(T ), then α is a pole of the resolvent, that is, T is polaroid.

(1) T is n-paranormal.

(2) T is ∗-n-paranormal.

(3) T is polynomially n-paranormal.

(4) T is polynomially ∗-n-paranormal.

Proof. Proof is same with Theorem 1.3 of [1].

An operator T is called hereditarily polaroid if any restriction to an invariant closed subspace

is polaroid. Hence, the following result is clear.

Theorem 7. Polynomially n-paranormal operators on X are hereditarily polaroid.

Definition 4. α ∈ σ(T ) is said to be proper boundary point of σ(T ) if there exists a bounded

sequence {αn} ⊂ ρ(T ) (the resolvent set of T ) such that ‖(α−αn)(T −αnI)−1‖ −→ 1.

Proposition 2 (Lemma 1, [5]). If α ∈ ∂V (T )
⋂

σ(T ), then α is a proper boundary point of

σ(T ), where ∂V (T ) is the boundary of V (T ).

Proposition 3 (Proposition 3.7, [6]). If 0 is a proper boundary point of σ(T ) and T x = 0 with

‖x‖= 1, then 1≤ ‖x+Ty‖ for every y ∈X . That is, ker(T ) ⊥ R(T ).

Theorem 8. Let T be n-paranormal operators on X . If α,β are distinct eigenvalues of T , then

ker(T −αI) ⊥ ker(T −β I).

For the proof of Theorem 8 we prepare lemmas. For the completeness, we give proofs.

For an eigen-value α of T , let K(α) = {x ∈X : T x = αx}.

Lemma 1. Let T ∈ B(X ). Let α,β be distinct eigen-values of T . Then

K(α)+K(β ) = {x+ y : x ∈ K(α),y ∈ K(β )} is a closed subspace.
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Proof. Let M = K(α)+K(β ). Then it is easy M is a subspace. We show M is closed. Let

xn + yn→ z, where xn ∈ K(α),yn ∈ K(β ). Then

(T −αI)(xn + yn) = (β −α)yn→ (T −αI)z.

Since K(β ) is closed and (β −α)yn ∈ K(β ), this implies (T −αI)z ∈ K(β ). Similarly

(T −β I)z ∈ K(α). Thus

z =
(T −β I)z

α−β
− (T −αI)z

α−β
∈ K(α)+K(β ).

Hence M is closed. This completes the proof.

Lemma 2. Let T ∈ B(X ) and α,β be distinct eigen-values of T . If M = K(α)+K(β ), then

σ(T∣∣M ) = {α,β}.

Proof. By Lemma 1, M is a closed invariant subspace for T and it is obvious that

α,β ∈ σp(T∣∣M )⊂ σ(T∣∣M ).

We show T∣∣M −λ I is bijective if λ 6= α,β . Let (T∣∣M −λ I)(x+ y) = 0 where x ∈ K(α) and

y ∈ K(β ). Then (α−λ )x+(β −λ )y = 0.

Since K(α) and K(β ) are linear independent, x = 0 and y = 0. Hence T∣∣M −λ is injective.

Let x ∈ K(α) and y ∈ K(β ). Then
x

α−λ
∈ K(α) and

y
β −λ

∈ K(β ). Since

(T∣∣M −λ I)
(

x
α−λ

+
y

β −λ

)
= x+ y,

T∣∣M −λ I is surjective. Hence σ(T∣∣M ) = {α,β}. This completes the proof.

Proof of Theorem 8. We may assume that |α| ≥ |β |. Let M = K(α)+K(β ). Then M is a

closed subspace and invariant for T by Lemma 1. Hence it holds σ(T∣∣M ) = {α,β} by Lemma

2. Since T∣∣M is ∗-n-paranormal by Theorem 4, T∣∣M is normaloid by Proposition 1. Hence

‖T∣∣M ‖= |α| and

α ∈ σ(T∣∣M )⊂V (T∣∣M )⊂ {z ∈ C : |z| ≤ |α|}.
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Therefore, α ∈ ∂V (T∣∣M )
⋂

σ(T∣∣M ). So we have ker(T −αI) ⊥ R(T −αI) by Proposition 3.

Let x ∈ ker(T −αI) and y ∈ ker(T −β I) such that ‖x‖= 1. Then

1≤ ‖x+(β −α)−1(T −αI)y‖= ‖x+ y+(β −α)−1(T −β I)y‖= ‖x+ y‖.

Therefore, ker(T −αI) ⊥ ker(T −β I). This completes the proof.

Since a ∗-n-paranormal operator T is (n+1)-paranormal, we have following corollary.

Corollary 3. Let T be ∗-n-paranormal operators on X . If α,β are distinct eigen-values of T ,

then ker(T −αI) ⊥ ker(T −β I).

In [4] M. Chō and Ôta proved that if X ∗ is strictly convex and T x = αx for some (x, f ) ∈

Π(X ), then T ∗ f = α f (Theorem 15, [4]). Finally we extend this result for an approximate

point spectrum of T on a uniformly convex space.

Definition 5. A Banach space X is said to be uniformly convex if and only if for each ε > 0

there exists δ > 0 such that if ‖x‖= ‖y‖= 1 and ‖x− y‖ ≥ ε , then

‖x+ y‖ ≤ 2(1−δ ).

By the definition of uniformly convexity, it holds that if lim‖xk‖= lim‖yk‖= 1 and

lim(‖xk‖+‖yk‖) = 2, then lim(‖xk− yk‖) = 0,

Theorem 9. Let the dual space X ∗ be uniformly convex and T be ∗-n-paranormal on X .

If (T −αI)xk −→ 0 for (xk, fk) ∈Π(X ), then (T −αI)∗ fk −→ 0.

Proof. If α = 0, ‖T ∗ fk‖n ≤ ‖T nxk‖ and hence lim
k→∞
‖T ∗ fk‖= 0. So we may show the theorem

for α 6= 0. Since
1
α

T is ∗-n-paranormal, we may assume α = 1. Hence we show that if

(T − I)xk −→ 0, then (T − I)∗ fk −→ 0. Since T is ∗-n-paranormal, it holds

‖T ∗ fk‖n ≤ ‖T nxk‖ −→ 1.

Hence limsup‖T ∗ fk‖ ≤ 1. Since fk(T xk)−→ 1, it holds

2≥ lim sup(‖T ∗ fk‖+‖ fk‖) ≥ liminf(‖T ∗ fk‖+‖ fk‖)

≥ liminf(‖T ∗ fk + fk‖) ≥ liminf |(T ∗ fk + fk)(xk)| −→ 2.
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Hence lim(‖T ∗ fk‖+‖ fk‖) = 2 and lim ‖T ∗ fk‖ = 1.

Since

2≥ limsup(‖T ∗ fk‖+‖ fk‖) ≥ limsup(‖T ∗ fk + fk‖)

≥ liminf(‖T ∗ fk + fk‖) ≥ liminf |(T ∗ fk + fk)(xk)| −→ 2,

we have lim ‖T ∗ fk + fk‖ = 2.

Since it is clear that lim‖T ∗ fk‖= lim‖ fk‖= 1, by uniformly convexity it holds

lim ‖T ∗ fk− fk‖ = 0, i.e., (T − I)∗ fk −→ 0.

This completes the proof.

Since uniformly convex space is reflexive, following corollary is clear.

Corollary 4. Let X be uniformly convex and T ∈ B(X ). If T ∗ is ∗-n-paranormal on X ∗ and

(T −αI)∗ fk −→ 0 for (xk, fk) ∈Π(X ), then (T −αI)xk −→ 0.
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