

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 2, 241-254

ISSN: 1927-5307

OSCILLATION OF IMPULSIVE NEUTRAL DIFFERENTIAL EQUATION WITH SEVERAL POSITIVE AND NEGATIVE COEFFICIENTS

S.PANDIAN ${ }^{1}$, G.PURUSHOTHAMAN ${ }^{2 *}$
${ }^{1}$ College of Arts and Science, Thiruvalluvar University,Vandavasi,Tamilnadu,INDIA
${ }^{2}$ Department of Mathematics, St. Joseph's College of Engineering,Chennai-119, Tamilnadu,INDIA

Abstract

This paper is concerned with the oscillation of solutions of impulsive neutral differential equation with several positive and negative coefficients of the form

$$
\begin{gathered}
{[x(t)-R(t) x(t-\gamma)]^{\prime}+\sum_{i=1}^{m} P_{i}(t) x\left(t-\tau_{i}\right)-\sum_{j=1}^{n} Q_{j}(t) x\left(t-\sigma_{j}\right)=0, \quad t \geq t_{0}, t \neq t_{k}} \\
x\left(t_{k}^{+}\right)=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2,3, \ldots
\end{gathered}
$$

Our results are generalization of some known results in literature.An example is also given to illustrate our results.

Keywords: Oscillation, neutral,impulsive,differential equation,coefficients.
2000 AMS Subject Classification:34A37,34C10

1. Introduction

In recent years, the theory of impulsive differential equations received much attention and a number of papers have been published in this field. This is due to wide possibilities for their applications in control theory, physics, biology,population dynamics, economics,

[^0]etc. For further applications and questions concerning existence and uniqueness of solutions of impulsive differential equations one can refer [1, 2]. Oscillatory properties of linear impulsive differential equations with a single constant delay were studied by Gopalsamy and Zhang [3]. Later papers give more attention to oscillatory behaviour of linear or nonlinear impulsive differential equations include Bainov et al.[4] and Chen et al.[5]. In $[6,7]$, Luo et al. and Graef et al. investigated the oscillation of neutral impulsive differential equations with one or more delays. Recently, in $[8,9,10]$,the authors studied the oscillations of solutions of first order impulsive differential equation with positive and negative coefficients. Motivated by the results of [9], in the present paper we obtain the oscillation of impulsive differential equation with several positive and negative coefficients.

Our results are generalization of some known results in literature.
Consider following impulsive neutral differential equation with several positive and negative coefficients of the form

$$
\begin{gather*}
{[x(t)-R(t) x(t-\gamma)]^{\prime}+\sum_{i=1}^{m} P_{i}(t) x\left(t-\tau_{i}\right)-\sum_{j=1}^{n} Q_{j}(t) x\left(t-\sigma_{j}\right)=0, \quad t \geq t_{0}, t \neq t_{k}} \tag{1.1}\\
x\left(t_{k}^{+}\right)=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2,3, \ldots \tag{1.2}
\end{gather*}
$$

where
(A1) $\gamma>0, \tau_{i}, \sigma_{j} \geq 0$;
(A2) $R \in P C\left(\left[t_{0}, \infty\right),(0, \infty)\right), P_{i}, Q_{j} \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right), i=1,2 \ldots, m$ and $j=$ $1,2 \ldots, n ;$
(A3) $I_{k}(x)$ is continuous in $(-\infty,+\infty)$, and there exist positive numbers b_{k}^{*}, b_{k} such that $b_{k}^{*} \leq \frac{I_{k}(x)}{x} \leq b_{k}$ for $x \neq 0$ and $k=1,2 \ldots \ldots$

2. Preliminaries

Throughout this paper, we always assume that (A1)-(A3) and
(A4) there exists a positive number $p \leq m$ and a partition of the set $\{1,2, \ldots, n\}$ in to p disjoint subsets $J_{1}, J_{2}, \ldots, J_{p}$ such that $l \in J_{i}, \tau_{i} \geq \sigma_{l}$ with

$$
\begin{gathered}
H_{i}(t)=P_{i}(t)-\sum_{l \in J_{i}} Q_{l}\left(t-\tau_{i}+\sigma_{l}\right) \geq 0, \text { for } i=1,2, \ldots p \\
H_{i}(t)=P_{i}(t) \text { for } i=p+1, \ldots m, H_{i}(t) \not \equiv 0 \text { on }\left(t_{k-1}, t_{k}\right](k \geq 1) \text { hold. }
\end{gathered}
$$

Let $\rho=\max \left\{\gamma, \tau_{i}, \sigma_{j}\right\}$ and $\delta=\min \left\{\gamma, \tau_{i}, \sigma_{j}\right\}, 1 \leq i \leq m, 1 \leq j \leq n$. With equations (1.1) and (1.2), one associates an initial condition of the form

$$
\begin{equation*}
x\left(t_{0}+s\right)=\phi(s), s \in[-\rho, 0] \tag{2.1}
\end{equation*}
$$

where $\phi \in P C([-\rho, 0], R)=\{\phi:[-\rho, 0] \rightarrow R$ such that ϕ is continuous everywhere except at the finite number of points η and $\phi\left(\eta^{+}\right)$and $\phi\left(\eta^{-}\right)$exist with $\left.\phi\left(\eta^{+}\right)=\phi\left(\eta^{-}\right)\right\}$.

A real valued function $x(t)$ is said to be a solution of the initial value problem (1.1),(1.2) and (2.1) if
(i) $x(t)=\phi\left(t-t_{0}\right)$ for $t_{0}-\rho \leq t \leq t_{0}, x(t)$ is continuous for $t \geq t_{0}$ and $t \neq t_{k}$, $k=1,2,3, \ldots$
(ii) $[x(t)+R(t) x(t-\gamma)]$ is continuously differentiable for $t>t_{0}, t \neq t_{k}, t \neq t_{k}+\gamma$, $t \neq t_{k}+\tau_{i}, t \neq t_{k}+\sigma_{j}, k=1,2,3, \ldots$ and satisfies (1.1).
(iii) for $t=t_{k}, x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$exist with $x\left(t_{k}^{-}\right)=x\left(t_{k}\right)$ and satisfies (1.2).

A solution of (1.1)-(1.2) is said to be non oscillatory if the solution is eventually positive or eventually negative. Otherwise the solution is said to be oscillatory. Our results generalize the results of [8].

3. Main results

Lemma 3.1. Assume that $b_{0}=1,0<b_{k} \leq 1$ for $k=1,2,3, \ldots$ and

$$
\begin{gather*}
R\left(t_{k}^{+}\right) \geq R\left(t_{k}\right) \text { for } k \in E_{1 k}=\left\{k \geq 1, t_{k}-\gamma \neq t_{\bar{k}}, \bar{k}<k\right\} \tag{3.1}\\
\bar{b}_{k} R\left(t_{k}^{+}\right) \geq R\left(t_{k}\right) \text { for } k \in E_{2 k}=\left\{k \geq 1, t_{k}-\gamma=t_{\bar{k}}, \bar{k}<k\right\} \tag{3.2}
\end{gather*}
$$

where $\bar{b}_{k}=b_{\bar{k}}^{*}$ when $t_{k}-\gamma=t_{\bar{k}}(\bar{k}<k)$. Let $x(t)$ be a solution of (1.1) and (1.2) such that $x(t-\rho)>0$ for $t \geq t_{0}$ and let

$$
\begin{equation*}
z(t)=x(t)-R(t) x(t-\gamma)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \tag{3.3}
\end{equation*}
$$

then $z(t)$ is decreasing in $\left[t_{0}, \infty\right)$ and $z\left(t_{k}^{+}\right) \leq b_{k} z\left(t_{k}\right)$ for $k=1,2,3, \ldots$
Proof. From (1.1) and (3.3) we have

$$
\begin{aligned}
z^{\prime}(t) & =(x(t)-R(t) x(t-\gamma))^{\prime}-\sum_{i=1}^{p} \sum_{l \in J_{i}} Q_{l}(t) x\left(t-\sigma_{l}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} Q_{l}\left(t-\tau_{i}+\sigma_{l}\right) x\left(t-\tau_{l}\right) \\
& =(x(t)-R(t) x(t-\gamma))^{\prime}-\sum_{j=1}^{n} Q_{j}(t) x\left(t-\sigma_{j}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} Q_{l}\left(t-\tau_{i}+\sigma_{l}\right) x\left(t-\tau_{i}\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
z^{\prime}(t)=-\sum_{i=1}^{p} P_{i}(t) x\left(t-\tau_{i}\right)-\sum_{i=p+1}^{m} P_{i}(t) x\left(t-\tau_{i}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} Q_{l}\left(t-\tau_{i}+\sigma_{l}\right) x\left(t-\tau_{i}\right) . \tag{3.4}
\end{equation*}
$$

Using (A4) we get

$$
\begin{equation*}
z^{\prime}(t)=-\sum_{i=1}^{m} H_{i}(t) x\left(t-\tau_{i}\right) \leq 0, t_{k}<t \leq t_{k+1}, k \geq 0 \tag{3.5}
\end{equation*}
$$

From (3.3) it follows that

$$
\begin{equation*}
z\left(t_{k}^{+}\right)=x\left(t_{k}^{+}\right)-R\left(t_{k}^{+}\right) x\left(t_{k}-\gamma\right)^{+}-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \tag{3.6}
\end{equation*}
$$

If $k \in E_{1 k}$, then

$$
\begin{aligned}
z\left(t_{k}^{+}\right) & =I_{k}\left(x\left(t_{k}\right)\right)-R\left(t_{k}^{+}\right) x\left(t_{k}-\gamma\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq b_{k}\left(x\left(t_{k}\right)\right)-R\left(t_{k}\right) x\left(t_{k}-\gamma\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq x\left(t_{k}\right)-R\left(t_{k}\right) x\left(t_{k}-\gamma\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& =z\left(t_{k}\right)
\end{aligned}
$$

If $k \in E_{2 k}$, then

$$
\begin{aligned}
z\left(t_{k}^{+}\right) & =I_{k}\left(x\left(t_{k}\right)\right)-R\left(t_{k}^{+}\right) x\left(t_{k}-\gamma\right)^{+}-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq b_{k}\left(x\left(t_{k}\right)\right)-R\left(t_{k}^{+}\right) x\left(t_{\bar{k}}^{+}\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq x\left(t_{k}\right)-b_{\bar{k}}^{*} R\left(t_{k}^{+}\right) x\left(t_{\bar{k}}\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& =x\left(t_{k}\right)-\bar{b}_{k} R\left(t_{k}^{+}\right) x\left(t_{k}-\gamma\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq x\left(t_{k}\right)-R\left(t_{k}\right) x\left(t_{k}-\gamma\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& =z\left(t_{k}\right)
\end{aligned}
$$

Since $E_{1 k} \cup E_{2 k}=\{1,2,3, \ldots\}$ we get $z\left(t_{k}^{+}\right) \leq z\left(t_{k}\right) k=1,2, \ldots$ This, together with (3.6) implies that $z(t)$ is decreasing in $\left[t_{0}, \infty\right)$.
Finally,since $b_{k} \leq 1$, if $k \in E_{1 k}$, then

$$
\begin{equation*}
R\left(t_{k}^{+}\right) \geq R\left(t_{k}\right) \geq b_{k} R\left(t_{k}\right) \tag{3.7}
\end{equation*}
$$

If follows, from (3.5) and (3.6), that

$$
\begin{aligned}
z\left(t_{k}^{+}\right) & =I_{k}\left(x\left(t_{k}\right)\right)-R\left(t_{k}^{+}\right) x\left(t_{k}-\gamma\right)^{+}-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq b_{k}\left(x\left(t_{k}\right)\right)-b_{k} R\left(t_{k}\right) x\left(t_{k}-\gamma\right)-b_{k} \sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& =b_{k} z\left(t_{k}\right)
\end{aligned}
$$

If $k \in E_{2 k}$, then

$$
\begin{equation*}
\bar{b}_{k} R\left(t_{k}^{+}\right) \geq R\left(t_{k}\right) \geq b_{k} R\left(t_{k}\right) \tag{3.8}
\end{equation*}
$$

Thus, we have from (3.5) and (3.7)

$$
\begin{aligned}
z\left(t_{k}^{+}\right) & =I_{k}\left(x\left(t_{k}\right)\right)-R\left(t_{k}^{+}\right) x\left(t_{k}-\gamma\right)^{+}-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq b_{k} x\left(t_{k}\right)-R\left(t_{k}^{+}\right) x\left(t_{\bar{k}}^{+}\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq b_{k} x\left(t_{k}\right)-b_{\bar{k}}^{*} R\left(t_{k}^{+}\right) x\left(t_{\bar{k}}\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& =b_{k} x\left(t_{k}\right)-\bar{b}_{k} R\left(t_{k}^{+}\right) x\left(t_{k}-\gamma\right)-\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq b_{k} x\left(t_{k}\right)-b_{k} R\left(t_{k}\right) x\left(t_{k}-\gamma\right)-b_{k} \sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}-\tau_{i}+\sigma_{l}}^{t_{k}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& =b_{k} z\left(t_{k}\right)
\end{aligned}
$$

Therefore, $z\left(t_{k}^{+}\right) \leq b_{k} z\left(t_{k}^{+}\right), k=1,2, \ldots$ and so the proof is complete.
Lemma 3.2. Let the hypothesis of Lemma 3.1 hold and $z(t)$ is defined by (3.3). Furthermore, suppose that

$$
\begin{equation*}
R(t)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) d s \leq 1, t \geq t_{0} \tag{3.9}
\end{equation*}
$$

If $x(t)$ be a solution of (1.1) and (1.2) such that $x(t-\rho)>0$ for $t \geq t_{0}$, then $z(t)>0$ for $t \geq t_{0}$.

Proof. Firstly we claim that $z\left(t_{k}\right) \geq 0$ for $k=1,2, \ldots$. If this is not the case, then there exists some $m \geq 1$ such that $z\left(t_{m}\right)=-\mu<0$. By Lemma 3.1, $z(t)$ is decreasing on $\left[t_{0}, \infty\right)$, therefore $z(t) \leq-\mu<0$ for $t \geq t_{m}$. From (3.3) we have

$$
\begin{equation*}
x(t) \leq-\mu+R(t) x(t-\gamma)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \tag{3.10}
\end{equation*}
$$

We consider the following two possible cases.
Case (1):
If $\lim _{t \rightarrow \infty} \sup x(t)=+\infty$. Then there exists a sequence of points $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $a_{n} \geq$ $t_{m}+\rho, \lim _{n \rightarrow \infty} x\left(a_{n}\right)=+\infty$ and $x\left(a_{n}\right)=\max \left\{x(t), t_{m} \leq t \leq a_{n}\right\}$. From (3.3) and (3.10) we
obtain

$$
\begin{aligned}
x\left(a_{n}\right) & \leq-\mu+R\left(a_{n}\right) x\left(a_{n}-\gamma\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{a_{n}-\tau_{i}+\sigma_{l}}^{a_{n}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \leq-\mu+\left[R\left(a_{n}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{a_{n}-\tau_{i}+\sigma_{l}}^{a_{n}} Q_{l}(s) d s\right] x\left(a_{n}\right) \\
& \leq-\mu+x\left(a_{n}\right), \text { which is a contradiction. }
\end{aligned}
$$

Case (2):

If $\lim _{t \rightarrow \infty} \sup x(t)=L<+\infty$. Choose a sequence of points $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} x\left(a_{n}\right)=$ L and $x\left(\xi_{n}\right)=\max \left\{x(s): a_{n}-\rho \leq s \leq a_{n}-\delta\right\}$. Then $\xi_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\lim _{n \rightarrow \infty} \sup x\left(\xi_{n}\right) \leq L$. Thus we have,

$$
\begin{aligned}
x\left(a_{n}\right) & \leq-\mu+\left[R\left(a_{n}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{a_{n}-\tau_{i}+\sigma_{l}}^{a_{n}} Q_{l}(s) d s\right] x\left(\xi_{n}\right) \\
& \leq-\mu+x\left(\xi_{n}\right)
\end{aligned}
$$

taking the superior limit as $n \rightarrow \infty$, we get $L \leq-\mu+L$, which is also a contradiction. Combining case (1) and case (2), we see that $z\left(t_{k}\right) \geq 0$ for $k \geq 1$. Therefore, from (3.5), $z\left(t_{0}\right) \geq 0$.

To prove $z(t)>0$ for $t \geq t_{0}$, we first prove that $z\left(t_{k}\right)>0,(k \geq 0)$. If it is not true, then there exists some $\bar{m} \geq 0$ such that $z\left(t_{\bar{m}}\right)=0$. Thus from (3.5) we have

$$
\begin{aligned}
z\left(t_{\bar{m}+1}\right) & =z\left(t_{\bar{m}}^{+}\right)-\int_{t_{m}}^{t_{\bar{m}+1}} \sum_{i=1}^{m} H_{i}(s) x\left(s-\tau_{i}\right) d s \\
& \leq z\left(t_{\bar{m}}\right)-\int_{t_{\bar{m}}}^{t_{\bar{m}+1}} \sum_{i=1}^{m} H_{i}(s) x\left(s-\tau_{i}\right) d s<0
\end{aligned}
$$

This contradiction shows that $z\left(t_{k}\right)>0(k \geq 0)$. Therefore, from (3.5), we have $z(t) \geq$ $z\left(t_{k+1}\right)>0, \quad t \in\left(t_{k}, t_{k+1}\right],(k \geq 0)$. So, $z(t)>0$ for $t \geq t_{0}$. The proof is complete.

Lemma 3.3. Let all the assumptions of Lemma 3.1 hold. Suppose that

$$
R(t)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) d s \geq 1, t \geq t_{0}
$$

Furthermore, assume that the impulsive differential inequality

$$
\begin{gather*}
y^{\prime \prime}(t)+\rho^{-1} \sum_{i=1}^{m} H_{i}(t) y(t) \leq 0, \quad t \geq T+\rho, t \neq t_{k} \\
y\left(t_{k}^{+}\right)=y\left(t_{k}\right), \quad k=1,2, \ldots \tag{3.12}\\
y\left(t_{k}^{+}\right)=b_{k} y^{\prime}\left(t_{k}\right), \quad k=1,2, \ldots
\end{gather*}
$$

has no eventually positive solution. If $x(t)$ is a solution of (1.1) and (1.2) such that $x(t-\rho)>0$ for $t \geq t_{0}$, then $z(t)$ eventually negative.

Proof. By Lemma 3.1, $z(t)$ is decreasing for $t \geq t_{0}$. If $z(t)$ is not eventually negative, then $z(t)$ is eventually positive. Let $t_{1}>t_{0}+\rho$ be such that $x(t-\rho)>0, z(t)>0$ for $t \geq t_{1}$. Set $M=2^{-1} \min \left\{x(t): t_{1}-\rho \leq t \leq t_{1}\right\}$, then $M>0$ for $t_{1}-\rho \leq t \leq t_{1}$. We claim that

$$
\begin{equation*}
x(t)>M, \quad t \geq t_{1} \tag{3.13}
\end{equation*}
$$

If (3.13) does not hold, then there exists a $t^{*}>t_{1}$ such that $x\left(t^{*}\right)=M$ and $x(t)>M$ for $t_{1}-\rho \leq t<t^{*}$. From (3.3), we have

$$
\begin{aligned}
M=x\left(t^{*}\right) & =z\left(t^{*}\right)+R\left(t^{*}\right) x\left(t^{*}-\gamma\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t^{*}-\tau_{i}+\sigma_{l}}^{t^{*}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& >\left[R\left(t^{*}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t^{*}-\tau_{i}+\sigma_{l}}^{t^{*}} Q_{l}(s) d s\right] M \geq M
\end{aligned}
$$

which is contradiction and so (3.13) holds. Noting that $z\left(t_{1}^{+}\right) \geq z\left(t_{2}\right)>0$ and from (3.7) and (3.8) it follows that

$$
\begin{aligned}
x\left(t_{1}^{+}\right) & >z\left(t_{1}^{+}\right)+R\left(t_{1}^{+}\right) x\left(t_{1}-\gamma\right)^{+}+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{1}-\tau_{i}+\sigma_{l}}^{t_{1}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& >R\left(t_{1}^{+}\right) x\left(t_{1}-\gamma\right)^{+}+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{1}-\tau_{i}+\sigma_{l}}^{t_{1}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& >\left(R\left(t_{1}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{1}-\tau_{i}+\sigma_{l}}^{t_{1}} Q_{l}(s) d s\right) M \geq M .
\end{aligned}
$$

Repeating the above argument, by induction, we obtain

$$
x(t)>M, \quad t \geq t_{0}-\rho
$$

$$
x\left(t_{k}^{+}\right) \geq M, \quad k=1,2, \ldots
$$

Because $z(t)>0$ and $z(t)$ is decreasing, $\lim _{t \rightarrow \infty} z(t)$ exists.
Let $\lim _{t \rightarrow \infty} z(t)=a$. There are two possible cases.

Case (1):

$a=0$. Let $T_{1}>t_{1}$ such that $z(t) \leq \frac{M}{2}$ for $t \geq T_{1}$. Then for any $\bar{t}>T_{1}$ we have

$$
\frac{1}{\rho} \int_{\bar{t}}^{t+\rho} z(u) d u \leq M<x(t), \quad t \in[\bar{t}, \bar{t}+\rho] .
$$

Case (2):

$a>0$, then $z(t) \geq a$ for $t \geq t_{0}$. From (3.3) and (3.11) we get

$$
\begin{aligned}
x(t) & \geq a+R(t) x(t-\gamma)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \geq a+\left(R(t)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) d s\right) M \geq a+M, \quad t \geq t_{0}
\end{aligned}
$$

By induction, it is easy to see that $x(t) \geq n a+M$ for $t \geq t_{0}+(n-1) \rho$ $(n=1,2,3, \ldots)$ and so $\lim _{t \rightarrow \infty} x(t)=\infty$, which implies that there exists a $T>T_{1}$ such that

$$
\frac{1}{\rho} \int_{T}^{t+\rho} z(u) d u \leq 2 z(t)<x(t), \quad t \in[T, T+\rho]
$$

Combining case 1 and case 2 , we see that

$$
x(t)>\frac{1}{\rho} \int_{T}^{t+\rho} z(u) d u, \quad t \in[T, T+\rho] .
$$

Let $k^{*}=\min \left\{k>0, t_{k}>T+\rho\right\}$, we claim that

$$
\begin{equation*}
x(t)>\frac{1}{\rho} \int_{T}^{t+\rho} z(u) d u, \quad t \in\left[T+\rho, t_{k^{*}}\right] . \tag{3.14}
\end{equation*}
$$

Otherwise, there exists a $t^{*} \in\left(T+\rho, t_{k^{*}}\right]$ such that

$$
\begin{gathered}
x\left(t^{*}\right)=\frac{1}{\rho} \int_{T}^{t^{*}+\rho} z(u) d u \\
x(t)>\frac{1}{\rho} \int_{T}^{t+\rho} z(u) d u, \quad t \in\left[T+\rho, t_{k^{*}}\right] .
\end{gathered}
$$

Then from (3.3) we have

$$
\begin{aligned}
& \frac{1}{\rho} \int_{T}^{t^{*}+\rho} \quad z(u) d u=x\left(t^{*}\right)=z\left(t^{*}\right)+R\left(t^{*}\right) x\left(t^{*}-\gamma\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t^{*}-\tau_{i}+\sigma_{l}}^{t^{*}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \quad \geq \frac{1}{\rho} \int_{t^{*}}^{t^{*}+\rho} z(u) d u+\left(R\left(t^{*}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t^{*}-\tau_{i}+\sigma_{l}}^{t^{*}} Q_{l}(s) d s\right) \frac{1}{\rho} \int_{T}^{t^{*}} z(u) d u \\
& \quad \geq \frac{1}{\rho} \int_{T}^{t^{*}+\rho} z(u) d u .
\end{aligned}
$$

This is a contradiction and so (3.14) holds. Thus, if $k^{*} \in E_{1 k}$, we have

$$
\begin{aligned}
x\left(t_{k^{*}}^{+}\right) & \geq z\left(t_{k^{*}}^{+}\right)+R\left(t_{k^{*}}^{+}\right) x\left(t_{k^{*}}^{+}-\gamma\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k}^{*}-\tau_{i}+\sigma_{l}}^{t_{k}^{*}} Q_{l}(s) x\left(s-\sigma_{l}\right) d s \\
& \geq \frac{1}{\rho} \int_{t_{k^{*}}}^{t_{k^{*}+\rho}} z(u) d u+\left(R\left(t_{k^{*}}\right)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t_{k^{*}-\tau_{i}+\sigma_{l}}^{t_{k^{*}}}}^{t_{l}} Q_{l}(s) d s\right) \frac{1}{\rho} \int_{T}^{t_{k^{*}}} z(u) d u \\
& \geq \frac{1}{\rho} \int_{T}^{t_{k^{*}}+\rho} z(u) d u .
\end{aligned}
$$

Similarly, when $k^{*} \in E_{2 k}$, we have also

$$
x\left(t_{k^{*}}^{+}\right) \geq \frac{1}{\rho} \int_{T}^{t_{k^{*}}+\rho} z(u) d u
$$

Repeating the above procedure, by induction, we can see that

$$
\begin{equation*}
x(t)>\frac{1}{\rho} \int_{T}^{t+\rho} z(u) d u, \quad t \geq T \tag{3.15}
\end{equation*}
$$

Thus, for $t>T+\rho$, we obtain

$$
x\left(t-\tau_{i}\right)>\frac{1}{\rho} \int_{T}^{t+\rho-\tau_{i}} z(u) d u \geq \frac{1}{\rho} \int_{T}^{t} z(u) d u, \quad i=1,2, \ldots, m .
$$

By (3.5) and (3.15) we get

$$
z^{\prime}(t) \leq-\frac{1}{\rho} \sum_{i=1}^{m} H_{i}(t) \int_{T}^{t} z(u) d u \leq 0, \quad t>T+\rho, \quad t \neq t_{k}
$$

Let $y(t)=\int_{T}^{t} z(u) d u$ then $y\left(t_{k}^{+}\right)=y\left(t_{k}\right)$

$$
y^{\prime}\left(t_{k}^{+}\right)=\frac{1}{\rho} z\left(t_{k}^{+}\right) \leq \frac{1}{\rho} b_{k} z\left(t_{k}\right)=b_{k} y^{\prime}\left(t_{k}\right), \text { for } k=1,2,3, \ldots
$$

Thus $y(t)>0$ for $t>T+\rho$ and $y(t)$ satisfies (3.12) which contradicts the assumption that (3.12) has no eventually positive solution. So $z(t)$ is eventually negative. The proof is complete.

Lemma 3.4. Consider the impulsive differential inequality

$$
\begin{gather*}
y^{\prime \prime}(t)+G(t) y(t) \leq 0, \quad t \geq t_{0}, t \neq t_{k} \\
y\left(t_{k}^{+}\right) \geq y\left(t_{k}\right), \quad k=1,2,3, \ldots \\
y^{\prime}\left(t_{k}^{+}\right) \leq c_{k} y^{\prime}\left(t_{k}\right), \quad k=1,2,3, \ldots \tag{3.16}
\end{gather*}
$$

where $0 \leq t_{0}<t_{1}<t_{2}<\cdots<t_{k}<\ldots$ are fixed points with $\lim _{k \rightarrow \infty} t_{k}=\infty$,

$$
\begin{gathered}
G(t) \in P C\left(\left[t_{0}, \infty\right), R^{+}\right] \text {and } c_{k}>0 . \text { If } \\
\sum_{i=0}^{\infty} \int_{t_{i}}^{t_{i+1}} \frac{1}{c_{0} c_{1} \ldots c_{i}} G(t) d t=\infty, \text { where } c_{o}=1
\end{gathered}
$$

Then inequality (3.16) has no solution $y(t)$ such that $y(t)>0$ for $t \geq t_{0}$.
Proof. Proof of this Lemma follows form the similar arguments to that of Theorem 1 in [5] by letting $\phi(x)=x$. We omit the details.

Theorem 3.5. Assume that all the conditions of Lemma 3.1. hold and

$$
\begin{equation*}
R(t)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) d s \equiv 1, t \geq t_{0} \tag{3.17}
\end{equation*}
$$

Further assume that (3.12) has no eventually positive solution, then every solution of (1.1) and (1.2) oscillates.

Proof. Suppose that (1.1) and (1.2) has a non oscillatory solution $x(t)$. Without the loss of generality, we assume that $x(t-\rho)>0$ for $t \geq t_{0}$. Then by Lemma 3.2, $z(t)>0$ for $t \geq t_{0}$, while Lemma 3.3 implies $z(t)<0$. This is a contradiction and hence every solution of (1.1) and (1.2) oscillates.

From Lemma 3.4. and Theorem 3.5 it is easy to see that the following Theorem 3.6 is true.

Theorem 3.6. Let all the conditions of Lemma 3.1 and (3.17) hold.If

$$
\begin{equation*}
\int_{t_{0}+\rho}^{t_{r}} G(t) d t+\sum_{j=0}^{\infty} \frac{1}{b_{r} b_{r+1} \ldots b_{r+j}} \int_{t_{r+j}}^{t_{r+j+1}} G(t) d t=\infty \tag{3.18}
\end{equation*}
$$

where $G(t)=\rho^{-1} \sum_{i=1}^{m} H_{i}(t), \quad r=\min \left\{k \geq 1, t_{k}>t_{0}+\rho\right\}$, then every solution of (1.1) and (1.2) oscillates.

Proof. By Lemma 3.4. and condition (3.18), the second order impulsive differential inequality (3.16) has no positive solution. Therefore by theorem 3.5, every solution of (1.1) and (1.2) oscillates.

Corollary 3.7. Assume that there exists a constant $\beta>0$ such that

$$
\begin{equation*}
\frac{1}{b_{k}} \geq\left(\frac{t_{k+1}}{t_{k}}\right)^{\beta}, \quad k=1,2, \ldots \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} t^{\beta} G(t) d t=+\infty \tag{3.20}
\end{equation*}
$$

then every solution of (1.1) and (1.2) oscillates.
Proof. From (3.19), we have

$$
\begin{aligned}
\int_{t_{0}+\rho}^{t_{r}} G(t) d t & +\sum_{j=0}^{\infty} \frac{1}{b_{r} b_{r+1} \ldots b_{r+j}} \int_{t_{r+j}}^{t_{r+j+1}} G(t) d t \\
& \geq \frac{1}{b_{r}} \int_{t_{r}}^{t_{r+1}} G(t) d t+\cdots+\frac{1}{b_{r} b_{r+1} \ldots b_{r+n}} \int_{t_{r+n}}^{t_{r+n+1}} G(t) d t \\
& \geq \frac{1}{t_{r}^{\beta}}\left(\int_{t_{r}}^{t_{r+1}} t_{r+1}^{\beta} G(t) d t+\cdots+\int_{t_{r+n}}^{t_{r+n+1}} t_{r+n+1}^{\beta} G(t) d t\right) \\
& \geq \frac{1}{t_{r}^{\beta}}\left(\int_{t_{r}}^{t_{r+1}} t^{\beta} G(t) d t+\cdots+\int_{t_{r+n}}^{t_{r+n+1}} t^{\beta} G(t) d t\right) \\
& =\frac{1}{t_{r}^{\beta}} \int_{t_{r}}^{t_{r+n+1}} t^{\beta} G(t) d t .
\end{aligned}
$$

Let $n \rightarrow+\infty$.It follows from (3.20) we see that (3.18) holds.By Theorem 3.6. we get that all solutions of (1.1)- (1.2) oscillate.

Remark 3.8. When $m=1$ and $n=1$ the results of this paper reduce to the results of [8].

Example 4.1. Consider the impulsive neutral differential equation

$$
\begin{gather*}
{[x(t)-0.5 x(t-2)]^{\prime}+\left(\frac{3}{8}+\frac{1}{t}\right) x(t-3)-\frac{1}{4} x(t-2)-\frac{1}{8} x(t-1)=0, \quad t \geq 4, t \neq k} \tag{4.1}\\
x\left(k^{+}\right)=\frac{k}{k+1} x(k), \quad k=5,6, \ldots \tag{4.2}
\end{gather*}
$$

Here $t_{k}=k, m=1, n=2, p=1, J_{1}=\{1,2\}, \gamma=\frac{1}{2}, \tau_{1}=3, \sigma_{1}=2, \sigma_{2}=1, R(t)=\frac{1}{2}$, $P_{1}(t)=\frac{3}{8}+\frac{1}{t}, Q_{1}(t)=\frac{1}{4}$ and $Q_{2}(t)=\frac{1}{8}$. Clearly (A1)-(A3)hold.

$$
\begin{aligned}
H_{1}(t) & =P_{1}(t)-\sum_{l \in\{1,2\}} Q_{l}\left(t-\tau_{1}+\sigma_{l}\right) \\
& =P_{1}(t)-Q_{l}\left(t-\tau_{1}+\sigma_{l}\right)-Q_{2}\left(t-\tau_{1}+\sigma_{2}\right) \\
& =\frac{3}{8}+\frac{1}{t}-\frac{1}{4}-\frac{1}{8}=\frac{1}{t} \geq 0, \quad t \geq 4
\end{aligned}
$$

Therefore, $H_{i}(t)=P_{i}(t)-\sum_{l \in J_{i}} Q_{l}\left(t-\tau_{i}+\sigma_{l}\right) \geq 0$, for $i=1,2 \ldots, p$ holds.

$$
\begin{aligned}
R(t)+\sum_{i=1}^{p} \sum_{l \in J_{i}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) d s & =0.5+\sum_{i=1}^{1} \sum_{l \in J_{1}} \int_{t-\tau_{i}+\sigma_{l}}^{t} Q_{l}(s) d s \\
& =0.5+\sum_{l \in\{1,2\}} \int_{t-\tau_{1}+\sigma_{l}}^{t} Q_{l}(s) d s \\
& =0.5+\int_{t-\tau_{1}+\sigma_{1}}^{t} Q_{1}(s) d s+\int_{t-\tau_{1}+\sigma_{2}}^{t} Q_{2}(s) d s \\
& =0.5+\int_{t-1}^{t} \frac{1}{4} d s+\int_{t-2}^{t} \frac{1}{8} d s=1
\end{aligned}
$$

Take $\beta=1, \frac{1}{b_{k}}=\frac{k+1}{k}=\frac{t_{k+1}}{t_{k}}=\left(\frac{t_{k+1}}{t_{k}}\right)^{\beta}$.

$$
\begin{aligned}
\int_{t_{r}}^{\infty} t^{\beta} G(t) d t= & \int_{4}^{\infty} t \frac{1}{\rho} \sum_{i=1}^{m} H_{i}(t) d t \\
& =\frac{1}{\rho} \int_{4}^{\infty} t \frac{1}{t} d t=\frac{1}{\rho} \int_{4}^{\infty} d t=\infty
\end{aligned}
$$

By Corollary 3.7, all solutions of (4.1) and (4.2) oscillate.

References

[1] V. Lakshimikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[2] A.M. Samoilenko, A.V. Perestynk, Differential Equations with Impulsive Effect, Visca Skola, Kive, 1987.
[3] K. Gopalsamy, B.G. Zhang, On delay differential equations with impulses, J. Math. Anal. Appl. 139 (1989), 110-122.
[4] D.D Bainov, M.B. Dinitrova, A.B. Dishilev, Oscillation of the solutions of impusive differential equations and inequalities with a retarded argument, Rocky Mountain J.Math. 28 (1998), 25-40.
[5] Y. Chen, W. Feng, Oscillation of second order nonlinear ODE with impulses, J.Math. Anal. Appl. 210 (1997), 150-169.
[6] Z. Luo, J.H. Shen, Oscillation for solutions of nonlinear neutral differential equation with impulses, Comput. Math. Appl. 42 (2001), 1285-1292.
[7] J.R. Graef, J.H. Shen, I.P. Stavroulakis,Oscillation of impulsive neutral delay differential equations, J. Math. Anal. Appl. 268 (2002), 310-333.
[8] Zh. G. Luo, X.Y. Lin, J.H. Shen, Oscillation of impulsive neutral differential equations with positive and negative coefficients, Indian J.Pure Appl. Math. 7 (2000), 753-766.
[9] J.H. Shen, Z. Zou, Oscillation criteria for first order impulsive differential equations with positive and negative coefficients, J.Comp.Appl.Math. 217 (2008), 28-37.
[10] S.Pandian, G.Purushothaman, Oscillation criteria for a first order impulsive neutral differential eqaution with Positive and negative coefficients, Far East J.Mathematical Sci. 51 No.2(2011), 127140.

[^0]: *Corresponding author
 E-mail addresses: pandianapr51@gmail.com (S.Pandian),gpmanphd@gmail.com (G.Purushothaman).
 Received January 19, 2012

