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Abstract. In this paper, a SEI model for hepatitis B is constructed in a closed population where the susceptibility

depends on the chronological age and the basic reproduction rate R0 is derived. Under suitable (biological and

mathematical) assumptions, it is shown that the disease free equilibrium is globally asymptotically stable (GAS) if

R0 < 1. In other hand R0 > 1 induces that endemic equilibrium is GAS and the system is uniformly persistent.
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1. Introduction

This paper studies a system of equations modelling the dynamic of hepatitis B with age-

dependent susceptibility. Its manisfestations in human body are shown by Hepatitis B antigens

(small spherical particles, tubular forms and a large shelled spherical particles) because of their

association with a high risk of hepatitis[21]. Hepatitis B caused acute hepatitis and severe
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chronic liver disease. Hepatitis is endemic in Africa [3, 19]. According to Pasquini et al.[15]

(with a computer model), Bonzi et al.[1](with an EDOs model), Inaba et al.[7](theoretically

with a PDE) or D. J. Nokes et al.[14](with statistics tools) and L. Zou et al.[22](with PDE

by fitting model to data), age factor is important in epidemiology of disease like hepatitis and

reveals most of time useful informations on the dynamics of the epidemic.

In this study, we consider the following (chronological) age-dependent susceptibility model:

(∂t +∂a)S(t,a) =−m(a)S(t,a)−λ (t,a)S(t,a) , t > 0,a > 0,

S(t,0) = Λ,

dE(t)
dt

=
∫ +∞

0
pλ (t,a)S(t,a)da−µEE(t),

dI(t)
dt

=
∫ +∞

0
qλ (t,a)S(t,a)da−µII(t)+ εE(t)

(1)

posed for t > 0 and a > 0. Here s(t,a) denotes the age-specific number of susceptible, E(t) and

I(t) denotes respectively the age-specific numbers of acute infected (that can be symptomatic

or asymptomatic) and chronic carriers. In addition p is a given real number such that 0 < p≤ 1

while q ≡ 1− p. q represents the age-specific probability to become a chronic carrier when

becoming infected. p denotes the probability to develop an acute infection when getting the

infection. Parameter m(a) > 0 denotes the natural death rate at age a, µI > 0 and µE denotes

the exit rates associated to each infected class. Clearly at each age a, 0≤ m(a)≤ min(µI,µE).

ε > 0 is the transition rate from E to I. Obviously, µE ≥ ε . In some studies (like Kouakep et

al.[8]) authors set µE ≥ µI . The term λ (t,a) corresponds to the age-specific force of infection

and follows the usual law of mass-action, that reads as

λ (t,a) = βI(a)I(t)+βE(a)E(t).

This problem (1) is supplemented together with the boundary conditions:

S(t,0) = Λ≥ 0, (constant influx)

E(0) = E0 ≥ 0,

I(0) = I0 ≥ 0,

(2)
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and initial data

(3) S(0,a) = S0(a).

This model (1) is suggested by Melnik et al.[13] for the age-dependent susceptibility concept

supplemented with Kouakep et al.[8] introducing p and q.

We recall that according to WHO[19], Bonzi et al.[1] and Fall et al.[3], asymptomatic carriers

has a low infectious rate. As a consequence in most part of this work one will assume that

(4) 0≈ βE(a)<< βI(a).

Then

(5) λ (t,a) = βI(a)I(t).

In the above model (1)-(5) in a closed population, we do not take into account possible verti-

cal transmission and we do not consider any control strategy such as vaccination campaign. It

seems to be relevant together the assumption of WHO [19] that considers that vertical trans-

mission of the disease do occur in sub-Saharan Africa, but its influence on the dynamics of the

disease is rather small because the proportion of chronic infections acquired perinatally is low.

Under the above assumption, we assume that the chronological age for the infective classes

do not play an important role. The work is organized as follows. After the presentation of

the main results in Section 2, Section 3 studies the well posedness of the PDE and derives

preliminary results useful to study the long term behaviour of the model. Section 3 deals with

the wellposedness of the model and Section 4 proves the global asymptotic stability (GAS) of

the disease free equilibrium when the basic reproduction number R0 < 1 and GAS-stability of

the endemic equilibrium (EE) with βE small enough to be considered as zero. In Section 5,

these results are verified through numerical simulations extended by a discussion.

2. Main results

The basic reproduction rate is defined by

R0 =
1

µIµE

∫ +∞

0
(ε p+µEq)βI(a)SF(a)da.
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The DFE is defined by

(SF(a),EF , IF) =

(
Λexp

(
−
∫ a

0
m(σ)dσ

)
;0;0

)
.

For endemic equilibrium, we obtain only in the case R0 ≥ 1,

Se(a) = Λexp
(
−
∫ a

0
m(σ)+ IeβI(σ)dσ

)
linked to

1
µIµE

∫ +∞

0
(ε p+µEq)βI(a)Se(a)da = 1.

That means

1
µIµE

∫ +∞

0
(ε p+µEq)βI(a)SF(a)exp

(
−
∫ a

0
IeβI(σ)dσ

)
da = 1.

Assumption 2.1. Assume that the maps a 7→ βi(a) is bounded and uniformly continuous from

[0,+∞) into itself.

The global asymptotic stability of the steady states is resumed in the following Theorem 2.2.:

Theorem 2.2. Assume Assumption 2.1. Then:

• If R0 =
1

µI µE

∫+∞

0 (ε p+µEq)βI(a)SF(a)da < 1, then the DFE, the disease free equilib-

rium is globally asymptotically stable.

• If R0 > 1, then there exists an endemic equilibrium that is globally asymptotically stable

for all S > 0, E > 0, I > 0. Moreover, in that case (R0 > 1) the system is uniformly

persistent.

Remark 2.3. We will see that disease free equilibrium exists whenever R0 > 1 or R0 ≤ 1. But

the endemic equilibrium exists only when R0 ≥ 1.

3. Preliminaries: well posedness of the model (1)–(5)

Let us introduce the Banach space X = L1 (]0;+∞[,R)×R3 and X0 = L1 (]0;+∞),R)×

{0}×R2 endowed with the usual product norm as well as its positive cone X+ defined by:

X+ = L1 (]0;+∞[, [0;+∞[)× [0;+∞[×[0;+∞[×[0;+∞[

with X0+ = X0∩X+.
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We consider also the linear operator A : D(A) ⊂ X → X defined by

A


ϕ

0

αE

αI

=


−ϕ ′−m(.)ϕ

−ϕ(0)

−µEαE

−µIαI


with the non densily domain D(A) =W 1,1 (]0;+∞))×{0}×R×R in X : D(A) = X0 6= X .

Finally let us introduce the nonlinear and Frechet differentiable map F : D(A)→ X defined

by:

F


ϕ

0

αE

αI

=


−βI(.)αIϕ

Λ∫+∞

0 pβI(a)αIϕ(a)da∫+∞

0 qβI(a)αIϕ(a)da+ εαE

 .

Identifying (S(t, .),E(t), I(t)) and u(t) = (S(t, .),0,E(t), I(t))T , one obtains that System (1)-(5)

re-writes as the following non-densely defined Cauchy problem (6):

du(t)
dt

= Au(t)+F(u(t)) , t > 0,(6)

u(0) = (S0(.),0,E0, I0) ∈ X0+.(7)

We first derive that the above abstract Cauchy problem (6)-(7) generates a unique globally

defined and positive semiflow. Moreover A satisfies the Hille-Yosida property. Then standard

methodologies apply to provide the existence and uniqueness of mild solution for system (6)-(7)

(see for instance [11, 12, 18, 2, 8]):

Proposition 3.1. Let Mathematical Assumption 2.1 be satisfied. Then there exists a continuous

semiflow that is bounded dissipative {U(t)}t≥0 on X0+ into itself such that for each x∈ X0+, the

map t→U(t)x is the unique integrated solution of (6)-(7) with initial data x, namely t→U(t)x

satisfies

(i)
∫ t

0 U(s)xds ∈ D(A), ∀t ≥ 0,

(ii) U(t)x = x+A
∫ t

0 U(s)xds+
∫ t

0 F (U (s)x)ds for each t ≥ 0.
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Remark 3.2. One can prove the proposition by using ideas of corollaries 1 and 2 in Melnik et

al.[13].

By using results in Sell and You[17], one can prove that {U(t)}t≥0 is asymptotically smooth.

Then using results of Hale [4, 5], Hale et al.[6], one obtains the following proposition.

Proposition 3.3. Let Mathematical Assumption 2.1 be satisfied. Then there exists a compact

set A ⊂ X0+ such that

(i) A is invariant under the semiflow {U(t)}t≥0.

(ii) A attracts the bounded sets of X0+ under {U(t)}t≥0. This means that for each bounded

set B⊂ X0+ we have

lim
t→+∞

δ (U(t)B,A ) = 0,

where δ is defined as

δ (A,B) = sup
x∈A

inf
y∈B
‖x− y‖.

Moreover A is locally asymptotically stable.

4. Technical materials: global asymptotic stability of steady states

We will widely adapt ideas of Magal et al.[10] and Melnik et al.[13] here with Lyapunov

functionals well defined on A for the global asymptotic stability of DFE and EE.

4.1. Stability of the DFE: R0 < 1

Let G(x) = x− lnx−1 and introduce the positive map defined on R:

V (t) =
∫ +∞

0
SF(a)G

(
S(t,a)
SF(a)

)
da+

ε

ε p+µEq
E(t)+

µE

ε p+µEq
I(t)

is positive definite at the DFE. We evaluate dV (t)
dt as∫ +∞

0
SF(a)G

(
1

SF(a)
− 1

S(t,a)

)
∂S(t,a)

∂ t
da+

ε

ε p+µEq
dE(t)

dt
+

µE

ε p+µEq
dI(t)

dt

with equations of the system 1, one gets for dV (t)
dt :

−
∫ +∞

0
SF(a)

(
S(t,a)
SF(a)

−1
)(

∂aS(t,a)
S(t,a)

+m(a)
)

da+
∫ +∞

0
βI(a)I(t)SF(a)da− µE µI

ε p+µEq
I(t).
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Finally by integrating by part, dV (t)
dt , gives

−
[

SF(a)G
(

S(t,a)
SF(a)

)]
a=+∞

+
∫ +∞

0
∂aSF(a)G

(
S(t,a)
SF(a)

)
da+

µE µI

ε p+µEq
(R0−1) I(t).

Then

dV (t)
dt
≤ µE µI

ε p+µEq
(R0−1) I(t).

Hence by recalling that R0 < 1,

dV (t)
dt
≤ 0.

Finally by global stability Lyapunov-LaSalle theorem [9, 13, 10], the DFE=(SF(a),0,0) is glob-

ally asymptotically stable because the largest invariant set of orbits (S(t,a), I(t),E(t)) verifying
dV (t)

dt = 0 is reduced for all positive t and a, to S(t,a) = SF(a), I(t) = 0 and E(t) = 0 corre-

sponding to the disease free steady state (DFE), (SF(a),0,0).

4.2. Stability of the endemic equilibrium: R0 > 1

Any solution of system (1)-(5) with positive initial condition remains positive indefinitely:

then the system (1)-(5) is uniformly persistent.

Let G(x) = x− lnx−1. The function G has only one extremum which is a global minimum

0 at 1, satisfying G(1) = 0 (see [10]). Then, we will analyse the Lyapunov functional

V (t) =
∫ +∞

0
Se(a)G

(
S(t,a)
Se(a)

)
da+

ε

ε p+µEq
EeG

(
E(t)
Ee

)
+

µE

ε p+µEq
IeG
(

I(t)
Ie

)
.

We notice that V (Se(a),Ee, Ie) = 0 and V is positive definite at EE=(Se(a),Ee, Ie) that provides

the minimum of V . Moreover V is defined for all S > 0, E > 0, I > 0 and

dV (t)
dt

=
∫ +∞

0
Se(a)

(
1

Se(a)
− 1

S(t,a)

)
∂S(t,a)

∂ t
da

+
ε

ε p+µEq
Ee

(
1
Ee
− 1

E(t)

)
dE(t)

dt
+

µE

ε p+µEq
Ie

(
1
Ie
− 1

I(t)

)
dI(t)

dt
.
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By using equations of system (1), and introducing the term βI(a)Ie in the integral, we obtain:

dV (t)
dt

=−
∫ +∞

0
Se(a)

(
S(t,a)
Se(a)

−1
)(

∂aS(t,a)
∂ t

+m(a)+βI(a)Ie

)
da

+
ε p

ε p+µEq

∫ +∞

0
Se(a)

(
S(t,a)
Se(a)

−1
)

βI(a)Ieda

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)

(
IeE(t)
EeI(t)

−1
)

da

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)

(
S(t,a)EeI(t)
Se(a)IeE(t)

−1
)

da.

Finaly by integrating by part:

dV (t)
dt

=−
[

Se(a)G
(

S(t,a)
Se(a)

)]+∞

0
+
∫ +∞

0
∂aSe(a)G

(
S(t,a)
Se(a)

)
da

+
ε p

ε p+µEq

∫ +∞

0
Se(a)

(
S(t,a)
Se(a)

−1
)

βI(a)Ieda

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)

(
IeE(t)
EeI(t)

−1
)

da

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)

(
S(t,a)EeI(t)
Se(a)IeE(t)

−1
)

da.

Moreover, it is clear that:

∫ +∞

0
βI(a)IeSe(a)

(
ln

S(t,a)EeI(t)
Se(a)IeE(t)

+ ln
IeE(t)
EeI(t)

− ln
S(t,a)
Se(a)

)
da = 0.

By adding that value to dV (t)
dt , we get:

dV (t)
dt

=−
[

Se(a)G
(

S(t,a)
Se(a)

)]
a=+∞

+
∫ +∞

0
∂aSe(a)G

(
S(t,a)
Se(a)

)
da

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)G

(
S(t,a)EeI(t)
Se(a)IeE(t)

)
da

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)G

(
IeE(t)
EeI(t)

)
da

+
ε p

ε p+µEq

∫ +∞

0
Se(a)G

(
S(t,a)
Se(a)

)
βI(a)Ieda.
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The previous computations with ∂aSe(a) =−m(a)Se(a)−βI(a)IeSe(a) and Se(0) = S(t,0) = Λ

imply that:

dV (t)
dt

=−
[

Se(a)G
(

S(t,a)
Se(a)

)]
a=+∞

−
∫ +∞

0
m(a)Se(a)G

(
S(t,a)
Se(a)

)
da

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)G

(
S(t,a)EeI(t)
Se(a)IeE(t)

)
da

− ε p
ε p+µEq

∫ +∞

0
βI(a)IeSe(a)G

(
IeE(t)
EeI(t)

)
da

− µEq
ε p+µEq

∫ +∞

0
Se(a)G

(
S(t,a)
Se(a)

)
βI(a)Ieda≤ 0.

Then by global stability Lyapunov-LaSalle theorem [9, 13, 10], the endemic equilibrium (EE)

is globally asymptotically stable because the largest invariant set of orbits (S(t,a), I(t),E(t))

verifying dV (t)
dt = 0 is reduced for all positive t and a, to S(t,a) = Se(a), I(t) = Ie and E(t) = Ee

corresponding to the endemic steady state (Se(a),Ee, Ie).

5. Numerical simulations and Discussion

We denote in tables 1 and 2: ”p” for people(s), ”yr” for year and ”nbb” for ”new born babies”.

We made simulations with the values in tables 1 and 2. We consider the following parameters

for DFE case (R0 < 1):

Age p βI ε µI µE m(a) Λ

[0;A= 60] 1− exp(−0.645) 0.000000008 0.00001 0.2018458 8.1 0.18 10

yr probability (p∗ yr)−1 (p∗ yr)−1 yr−1 yr−1 yr−1 nbb/yr
TABLE 1. Values for R0 < 1
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FIGURE 1. Function S(t,a) with R0 < 1

FIGURE 2. Function t 7→
∫ A

0 S(t,a)da with R0 < 1

For endemic case (R0 > 1), let consider the following table 2.

Age p βI ε µI µE m(a) Λ

[0;A= 60] 1− exp(−0.645) 0.0001 0.1 0.02018458 0.1 0.018 10

yr probability (p∗ yr)−1 (p∗ yr)−1 yr−1 yr−1 yr−1 nbb/yr
TABLE 2. Values for R0 > 1
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FIGURE 3. Function E(t) with R0 < 1

FIGURE 4. Function S(t,a) with R0 > 1
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FIGURE 5. Function t 7→
∫ A

0 S(t,a)da with R0 > 1

FIGURE 6. Function E(t) with R0 > 1

We observe that our computations for stability of DFE and EE are confirmed by simulations.

It is also established that increasing the transmission coefficient βI , increases the basic repro-

duction rate. A better model could consider age-dependent p and q as shown by Nokes et al.

in [14]. In a forthcoming work, we will introduce then age-dependent functions p and q, verti-

cal transmission (because of the contreversal article Sall et al. [16] on WHO’s[20] neglection

of vertical transmission in sub-Saharan Africa), studies of (optimal) vaccination strategies and

immigration by other ways than birth. It is important to see the difference between our work

and those of Melnik et al. [13] for the age-dependent susceptibility concept supplemented with

Kouakep et al. [8] introducing p and q. Melnik et al.[13] do not consider proportions p and q
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FIGURE 7. Function I(t) with R0 > 1

FIGURE 8. Function prevalence with R0 > 1

from S to E-I and Kouakep et al.[8] neglect transition ε from E to I but add ages of infection on

E-I and consider βE in a more general case (not necessarily zero).
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