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Abstract. In this paper, we introduce the new concepts of subcompatibility and subsequencial continuity

which are respectively weaker than occasionally weak compatibility and reciprocal continuity. With them,

we establish a common fixed point theorem for four maps. We introduce an example to support our results.

Our results extend the results of [1].
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1. Introduction

In 1992, Dhage[2] introduced the concept of D - metric space. Recently, Mustafa and

Sims[5] shown that most of the results concerning Dhage’s D - metric spaces are invalid.

Therefore, they introduced a improved version of the generalized metric space structure,

which they called it as G - metric spaces. For more details on G - metric spaces, one can

referred to the papers [5]- [8],[10].

Now we give basic definitions and some basic results ([5]-[8]) which are helpful for proving
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our main result.

In 2006, Mustafa and Sims [6] introduced the concept of G-metric spaces as follows:

Definition 1.1.[6] Let X be a nonempty set, and let G : X×X×X → R+ be a function

satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables)

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X, (rectangle inequality)

then the function G is called a generalized metric, or, more specifically a G - metric on

X and the pair (X,G) is called a G - metric space.

Definition 1.2.[6] Let (X,G) be a G-metric space, and let {xn} be a sequence of points

in X, a point x ∈ X is said to be the limit of the sequence {xn} if lim
m,n→∞

G(x, xn, xm) = 0

and one says that sequence {xn} is G-convergent to x.

Thus, that if xn → x or lim
n→∞

xn → x as n →∞ in a G-metric space (X,G) then for each

ε > 0, there exists a positive integer N such that G(x, xn, xm) < ε for all m,n ≥ N.

Now we state some results from the papers ([7]-[9]) which are helpful for proving our main

results.

Proposition 1.1.[7] Let (X,G) be a G - metric space. Then the following are equivalent:

(1) {xn} is G-convergent to x,

(2) G(xn, xn, x)→ 0 as n→∞,

(3) G(xn, x, x)→ 0 as n→∞,

(4) G(xm, xn, x)→ 0 as m,n→∞.

Definition 1.3.[7] Let (X,G) be a G - metric space. A sequence {xn} is called G -

Cauchy if, for each ε > 0 there exists a positive integer N such that G(xn, xm, xl) < ε for
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all n,m, l ≥ N ;

i.e. if G(xn, xm, x1)→ 0 as n,m, l→ N .

Proposition 1.2.[7] If (X,G) is a G - metric space then the following are equivalent:

(1) The sequence {xn} is G - Cauchy,

(2) for each ε > 0 , there exist a positive integer N such that G(xn, xm, xm) < ε for all

n,m ≥ N .

Proposition 1.3.[7] Let (X,G) be a G - metric space. Then the function G(x, y, z) is

jointly continuous in all three of its variables.

Definition 1.4.[7] A G - metric space (X,G) is called a symmetric G - metric space if

G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Proposition 1.4.[7] Every G - metric space (X,G) will defines a metric space (X, dG)

by

(i)dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.

If (X,G) is a symmetric G - metric space, then

(ii) dG(x, y) = 2G(x, y, y) for all x, y ∈ X.

However,if (X,G) is not symmetric, then it follows from the G - metric properties that

(iii) 3/2 G(x, y, y)≤ dG(x, y)≤ 3G(x, y, y) for all x, y ∈ X.

Proposition 1.5.[6] Let (X,G) be a G - metric space. Then the function G(x, y, z) is

jointly continuous in all three of its variables.

Definition 1.5.[6] A G - metric space (X,G) is said to be G-complete if every G-Cauchy

sequence in (X,G) is G-convergent in X.

Proposition 1.6.[6] A G - metric space (X,G) is G - complete if and only if (X, dG) is

a complete metric space.

Proposition 1.7.[6] Let (X,G) be a G - metric space. Then, for any x, y, z, a ∈ X it

follows that:

(i) If G(x, y, z) = 0, then x = y = z,
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(ii) G(x, y, z)≤ G(x, x, y) + G(x, x, z),

(iii) G(x, y, y) ≤ 2G(y, x, x),

(iv) G(x, y, z) ≤ G(x, a, z) + G(a, y, z),

(v) G(x, y, z) ≤ 2
3

(G(x, y, a) + G(x, a, z) + G(a, y, z)),

(vi) G(x, y, z) ≤ (G(x, a, a) + G(y, a, a) + G(z, a, a)).

Definition 1.6. A pair of self mappings (f, g) of a G-metric space (X,G) is said to be

compatible if lim
n→∞

G(fgxn, gfxn, gfxn) = 0, whenever {xn} is a sequence in X such that

lim
n→∞

fxn= lim
n→∞

gxn = z, where z ∈ X .

Definition 1.7.[1] Let f and g be self maps on X, then a point x ∈ X is called a

coincidence point of f and g iff fx = gx. In this case, w = fx = gx is called a point of

coincidence of f and g.

Definition 1.8.[1] Two self mappings f and g on a metric space are said to be weakly

compatible if they commute at the coincidence points i.e., if fu = gu for some u ∈ X,

then fgu = gfu.

It is easy to see that two compatible maps are weakly compatible but converse is not

true.

Definition 1.9[1] Two self mappings f and g of a metric space are said to be occa-

sionally weakly compatible (owc) iff there is a point x ∈ X which is coincidence point of

f and g at which f and g commute.

In this paper, we weaken the above notion by introducing a new concept called sub-

compatibility just as defined by H. Bouhadjera[1] in metric space, as follows:

Definition 1.10. Let (X,G) be a G-metric space. Self maps f and g on X are said to

be subcompatible iff there exists a sequence {xn} in X such that lim
n→∞

fxn= lim
n→∞

gxn = z,

where z ∈ X and satisfy

lim
n→∞

G(fgxn, gfxn, gfxn) = 0.
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Obviously, two owc maps are subcompatible, however the converse is not true in general.

The example below shows that there exist subcompatible maps which are not owc.

Example 1.1. Let X = [0,∞) and G : X ×X ×X → R+ be the G - metric defined

as follows: G(x, y, z) = (|x − y| + |y − z| + |z − x|), for all x, y, z ∈ X. Define f and

g as follows: f(x) = x2, g(x) = x + 2 if x ∈ [0, 4] or (9,∞) and g(x) = x + 12 if

x ∈ (4, 9]. Let {xn} be a sequence in X defined by {xn} = {2 + 1/n} for n = 1, 2, 3, ?

Then, lim
n→∞

fxn= lim
n→∞

gxn = 4,where 4 ∈ X and lim
n→∞

fgxn= lim
n→∞

gfxn = 16.

Thus, lim
n→∞

G(fgxn, gfxn, gfxn) = 0. i.e. f and g are subcompatible. On the other

hand, we have fx = gx iff x = 2 and fg(2) 6= gf(2), hence f and g are not owc.

Now, our second objective is to introduce subsequential continuity in G- metric space

which weaken the concept of reciprocal continuity which was introduced by Pant[9] just

as introduced by H. Bouhadjera[1] in metric space, as follows:

Definition 1.11. Let (X,G) be a G-metric space. Self maps f and g on X are said to

be reciprocally continuous iff lim
n→∞

fgxn= ft and lim
n→∞

gfxn = gt, whenever sequence {xn}

in X such that lim
n→∞

fxn= lim
n→∞

gxn = t, where t ∈ X .

Clearly, any continuous pair is reciprocally continuous but the converse is not true in

general.

Definition 1.12. Let Let (X,G) be a G-metric space. Self maps f and g on X

are said to be subsequentially continuous iff there exist a sequence {xn} in X such that

lim
n→∞

fxn= lim
n→∞

gxn = t, where t ∈ X and satisfy lim
n→∞

fgxn= ft and lim
n→∞

gfxn = gt.

Clearly, if f and g are continuous or reciprocally continuous then they are obvious-

ly subsequentially continuous. The next example shows that there exist subsequential

continuous pairs of maps which are neither continuous nor reciprocally continuous.

Example 1.2. Let and G : X ×X ×X→ R+ be the G - metric defined as follows: X

by G(x, y, z) = (|x− y|+ |y − z|+ |z − x|) , for all x, y, z ∈ X. Define f and gas follows:

f(x) = 1 + x if x ∈ [0, 1] , f(x) = 2x− 1 if x ∈ (1,∞)

and g(x) = −x+ 1 if x ∈ [0, 1), g(x) = 3x− 2 if x ∈ [1,∞)
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Clearly f and g are discontinuous at x = 1. Let {xn} be a sequence in X defined by

xn = {1/n} for n = 1, 2, 3, ... Then, lim
n→∞

fxn= lim
n→∞

gxn = 1, 1 ∈ X

and lim
n→∞

fgxn= 2 = f(1), lim
n→∞

gfxn = g(1).

Therefore, f and g are subsequential continuous. Now, let {xn} be a sequence in X

defined by xn = {1 + 1/n for n = 1, 2, 3, .... Then, lim
n→∞

fxn= lim
n→∞

gxn = 1, 1 ∈ X

and lim
n→∞

fgxn= 1 6= 2 = f(1),

so f and g are not reciprocally continuous.

In this paper, we establish a common fixed point theorem for four maps. Our results

extend the results of [1].

2. Main results

Now, we prove our main theorem using definition of subcompatible and subsequential

continuous maps as follows:

Theorem 2.1. Let f, g, h and k be four self maps of a G-metric space (X,G). If the

pairs (f, h) and (g, k) are subcompatible and subsequentially continuous, then

(a) f and h have a coincidence point;

(b) g and k have a coincidence point.

Further, let Φ : (<+)6 → < be an upper semi-continuous function satisfying the following
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condition:

(i) Φ(u, u, 0, 0, u, u) > 0, for all u > 0 .

We suppose that (f, h) and (g, k) satisfy,

(ii)

Φ(G(fx, gy, gy),G(hx, ky, ky),G(fx, hx, hx),G(gy, ky, ky),G(hx, gy, gy),G(fx, ky, ky))≤0

for all x, y ∈ X.

Then, f , g, h and k have a unique common fixed point.

Proof. Since, the pairs (f, h) and (g, k) are subcompatible and subsequentially continu-

ous, then, there exists two sequences {xn} and {yn} in X such that

lim
n→∞

fxn= lim
n→∞

hxn = z, where z ∈ X and which satisfy

lim
n→∞

G(fhxn, hfxn, hfxn) = G(fz, hz, hz) = 0;

lim
n→∞

gyn= lim
n→∞

kyn = z′, where z′ ∈ X and which satisfy

lim
n→∞

G(gkxn, kgxn, kgxn) = G(gz′, kz′, kz′) = 0.

Therefore, fz = hz and gz′ = kz′ ; that is, z is a coincidence point of f and h and z′

is a coincidence point of g and k.

Now, we prove that z = z′. Indeed, by inequality (ii), we have

Φ(G(fxn, gyn, gyn),G(hxn, kyn, kyn),G(fxn, hxn, hxn),

G(gyn, kyn, kyn),G(hxn, gyn, gyn),G(fxn, kyn, kyn))≤0

Since, Φ is upper semi-continuous, taking the limit as n→∞ yields

Φ(G(z, z′, z′),G(z, z′, z′),G(z, z, z), G(z′, z′, z′),G(z, z′, z′),G(z, z′, z′)) ≤ 0

which contradicts (i) if z 6= z′ . Hence, z = z′.

Also, we claim that fz = z. If fz 6= z, using (ii), we get

Φ(G(fz, gyn, gyn),G(hz, kyn, kyn),G(fz, hz, hz),G(gyn, kyn, kyn),G(hz, gyn, gyn),G(fz, kyn, kyn))≤0

Since, Φ is upper semi-continuous, taking the limit as n→∞ yields
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Φ(G(fz, z, z),G(fz, z, z),G(fz, fz, fz),G(z, z, z),G(fz, z, z),G(fz, z, z))≤0

Φ(G(fz, z, z),G(fz, z, z),0,0,G(fz, z, z),G(fz, z, z))≤0

This contradicts (i). Hence z = fz = hz.

Again, suppose that gz 6= z, using (ii), we get

Φ(G(fz, gz, gz),G(hz, kz, kz),G(fz, hz, hz),G(gz, kz, kz),G(hz, gz, gz),G(fz, kz, kz))≤0

Φ(G(z, gz, gz),G(z, gz, gz),G(z, z, z),G(gz, gz, gz),G(z, gz, gz),G(z, gz, gz)) ≤ 0

Φ(G(z, gz, gz),G(z, gz, gz),0,0,G(z, gz, gz),G(z, gz, gz)) ≤ 0

this contradicts (i), hence z = gz = kz.

Therefore, z = fz = gz = hz = kz; i.e. z is a common fixed point of f, g, h and k.

For Uniqueness: Suppose that there exist another fixed point w of f, g, h and k such

that z 6= w . Then, by condition (ii), we have

Φ(G(fz, gw, gw),G(hz, kw, kw),G(fz, hz, hz),G(gw, kw, kw),G(hz, gw, gw),G(fz, kw, kw))≤0

Φ(G(z, w, w),G(z, w, w),G(z, z, z),G(w,w,w),G(z, w, w),G(z, w, w)) ≤ 0

Φ(G(z, w, w),G(z, w, w),0,0,G(z, w, w),G(z, w, w)) ≤ 0

This contradicts condition (i). Hence, z = w. Therefore, uniqueness follows.

If we put f = g and h = k in Theorem 2.1, we get the next corollary.

Corollary 2.1. Let f and h be self maps of a G-metric space (X,G) such that the pairs

(f, h) is subcompatible and subsequentially continuous, then f and h have a coincidence

point; Further, let Φ : (<+)6 → < be an upper semi-continuous function satisfying the

following condition:

(i) Φ(u, u, 0, 0, u, u) > 0 for all u > 0 .

We suppose that (f, h) satisfy,

(ii)

Φ(G(fx, fy, fy),G(hx, hy, hy),G(fx, hx, hx),G(fy, hy, hy),G(hx, fy, fy),G(fx, hy, hy))≤0

for all x, y ∈ X.
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Then, f and h have a unique common fixed point.

If we put h = k, in Theorem 2.1, we get the following result:

Corollary 2.2. Let f, g and h be three self maps of a G-metric space (X,G). If the pairs

(f, h) and (g, h) are subcompatible and subsequentially continuous, then

(c) f and h have a coincidence point;

(d) g and h have a coincidence point.

Further, let Φ : (<+)6 → < be an upper semi-continuous function satisfying the following

condition:

(i)Φ(u, u, 0, 0, u, u) > 0 for all u > 0.

We suppose that (f, h) and (g, h) satisfy:

(ii)

Φ(G(fx, gy, gy),G(hx, hy, hy),G(fx, hx, hx),G(gy, hy, hy),G(hx, gy, gy),G(fx, hy, hy))≤0

for all x, y ∈ X

Then, f, g and h have a unique common fixed point.

Example 2.1. Define Φ : (<+)6→< by Φ(t1, t2, t3, t4, t5, t6) = t1+t2+t5+t6−10t3−10t4.

Let X = [0, 1/2], define f, h : X→X by f(x) = x and h(x) = x2. Also, define a G-metric

on X by G(x, y, z) = (|x−y|+ |y−z|+ |z−x|). Then Φ, f and h satisfy all the hypotheses

of Corollary 2.2. Thus, f and h have a unique common fixed point. Here, z = 0 is the

only common fixed point.
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