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Abstract. In this paper, we investigate a discontinuous Sturm-Liouville problem which has several discontinuities

inside a finite interval and eigenparameter dependent on one of the boundary conditions. We construct Green’s

function and the resolvent operator for this problem and prove theorems about the eigenfunction expansion for

Green’s function and the modified Parseval equality in the special Hilbert space.
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1. Introduction

In this paper, we consider the following Sturm-Liouville equation

(1) τ (u) :=−u′′+q(x)u = λu, x ∈ I

with boundary conditions

(2) B0 (u) := β 1u(θ 0)+β 2u′ (θ 0) = 0,

(3) Bm+1 (u) := λ
(
α
′
1u(θ m+1)−α

′
2u′ (θ m+1)

)
+α1u(θ m+1)−α2u′ (θ m+1) = 0
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and transmission conditions at points of discontinuities θ k,k = 1,m

(4) Tk (u) :=

 u(θ k +0)

u′ (θ k +0)

−Dk

 u(θ k−0)

u′ (θ k−0)

= 0, k = 1,m,

where I := [θ 0,θ 1)∪ (θ 1,θ 2)∪ ...∪ (θ m,θ m+1] ; λ is a complex eigenparameter; the potential

q(x) is given real-valued function which is continuous in each of the intervals [θ 0,θ 1) ,(θ 1,θ 2) , ...,

(θ m,θ m+1] and has finite limit q(±θ k)= limq(x) ,
x→±θ k

(
k = 1,m

)
; β i,α i,α

′
i (i = 1,2) are real num-

bers and |β 1|+ |β 2| 6= 0; ρ := (α ′1α2−α1α ′2) > 0; Dk =

 γ1k γ2k

γ3k γ4k

 γ jk ∈ R
(

j = 1,4
)
,

|Dk|> 0 for k = 1,m and D0 be the 2×2 identity matrix.

Some boundary value problems with transmission conditions arise in heat and mass trans-

fer problems (see [10]) and thermal conduction problems for a thin laminated plate ( i.e., plate

composed by materials with different characteristics piled in the thickness). In these class of

problems, transmission condition across the interface should be added since the plate is lam-

inated (see [16]). Also some problems with transmission conditions which arise in diffraction

problems [17] and in vibrating string problems when the string loaded additionaly with point

masses [14].

The case for Sturm-Liouville problems with one point of discontinuity and eigenparameter

dependent boundary conditions have been investigated in [5,21,2,12,19] , respectively. Even

more recently, these results were extended to transmission conditions at two and a finite points

of discontinuity (see [20,8,7,22] and [4,5,13,18,23] , respectively). In [1,11] , Green’s func-

tion and resolvent operator were constructed and derived asymptotic approximation formulae

for Green’s function. Eigenfunction expansions problem for Sturm-Liouville problems with

one point of discontinuity have been investigated in [9,3,15] . By this paper, these expansion

theorems extend to a Sturm-Liouville problem which has several discontinuities inside a finite

interval.

Operator theoretic interpretation, asymptotic formulas for the eigenvalues and the eigenfunc-

tions for the same problem were given in [6] . We state the results briefly which will use in this

paper. Then we construct Green’s function and the resolvent operator for the problem (1)-(4)
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and prove theorems about the eigenfunction expansion for Green’s function and the modified

Parseval equality in the special Hilbert space.

We construct a special fundamental system of solutions of the equation (1). By virtue of

Theorem 1.5 in [15] we can define two solutions φ λ (x) := φ (x,λ ) and χλ (x) := χ (x,λ ) as

follows:

(5) φ λ (x) =



φ 1λ (x) , x ∈ [θ 0,θ 1)

φ 2λ (x) , x ∈ (θ 1,θ 2)
...

φ (m+1)λ (x) ,x ∈ (θ m,θ m+1]

,χλ (x) =



χ1λ (x) , x ∈ [θ 0,θ 1)

χ2λ (x) , x ∈ (θ 1,θ 2)
...

χ(m+1)λ (x) ,x ∈ (θ m,θ m+1] .

Let us consider the initial value problem

(6) −u′′+q(x)u = λu, x ∈ [θ 0,θ 1] ,

(7) u(θ 0) = β 2, u′ (θ 0) =−β 1,

has a unique solution u= φ 1λ (x) which is an entire function of λ ∈C for each fixed x∈ [θ 0,θ 1] .

Similarly, employing the same method as in proof of Theorem 1.5 in [15] , the problem

(8) −u′′+q(x)u = λu, x ∈ [θ m,θ m+1] ,

(9) u(θ m+1) = λα
′
2 +α2, u′ (θ m+1) = λα

′
1 +α1,

has a unique solution u = χ(m+1)λ (x) which is an entire function of λ ∈ C for each fixed

x ∈ [θ m,θ m+1] .

Now the functions φ (k+1)λ (x) and χkλ (x) are defined in terms of φ kλ (x) and χ(k+1)λ (x)(
k = 1,m

)
respectively, as follows: φ (k+1)λ (x) is a solution of the equation (1) on [θ k,θ k+1] by

the transmission condition

(10)

 u(θ k)

u′ (θ k)

= Dk

 φ k (θ k−0)

φ
′
k (θ k−0)

 ,k = 1,m

and χkλ (x) is a solution of the equation (1) on [θ k−1,θ k] by the transmission condition

(11)

 u(θ k)

u′ (θ k)

= D−1
k

 χk+1 (θ k +0)

χ ′k+1 (θ k +0)

 ,k = 1,m.
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Hence φ λ (x) satisfies the equation (1) on [θ 0,θ m+1] , the boundary condition (2) and the

transmission condition (4), χkλ (x) satisfies the equation (1) on [θ 0,θ m+1] , the boundary condi-

tion (3) and the transmission condition (4). Since the Wronskians W (φ kλ ,χkλ ;x) ,
(
k = 1,m+1

)
are independent of variable x, then the functions ωk (λ ) :=W (φ kλ ,χkλ ;x) ,

(
k = 1,m+1

)
are

the entire functions of parameter λ . Let ω (λ ) := ω1 (λ ) and then we obtain

(12) ωk+1 (λ ) =
k
∏

l=1
|Dl|ω (λ ) , k = 1,m.

We defined the Hilbert space H :=
(

m+1
⊕

k=1
L2 (θ k−1,θ k)

)
⊕C with an inner product

(13) 〈F,G〉H :=
m+1
∑

k=1

1
k
∏

l=1
|Dl−1|

θ k∫
θ k−1

f (x)g(x)dx+
1

ρ |D1D2...Dm|
f1g1,

where F =

 f (x)

f1

 , G =

 g(x)

g1

 ∈H and defined a symmetric operator A in this Hilbert

space such a way that the problem (1)-(4) could be considered as the eigenvalue problem of this

operator. Also we gave in [6] the eigenvalues of the problem (1)-(4) are real, bounded below,

coincide with the zeros of ω (λ ) and two eigenfunctions corresponding to different eigenvalues

are orthogonal.

2. Green’s Function

To study the completeness of the eigenelements of A, and hence the completeness of the

eigenfunctions of the problem (1)-(4), we construct the resolvent of A as well as Green’s func-

tion of the problem (1)-(4). We assume without any loss of generality that λ = 0 is not an eigen-

value of A. Otherwise, from discreteness of eigenvalues, we can find a real number µ such that

µ 6= λ n for all n and replace the eigenparameter λ by λ−µ. Now let λ ∈C not be an eigenvalue

of A and consider the inhomogenous problem for F =

 f (x)

f1

∈H,U =

 u(x)

R′ (u)

∈D(A)

(14) (λ I−A)U = F,

where R(u) = α1u(θ m+1)−α2u′ (θ m+1) , R′ (u) = α ′1u(θ m+1)−α ′2u′ (θ m+1) and I is the iden-

tity operator. Since
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(15) (λ I−A)U = λ

 u(x)

R′ (u)

−
 τ (u)

−R(u)

=

 f (x)

f1


then we have

(16) (λ I− τ)u(x) = f (x) , x ∈ I,

(17) λR′ (u)+R(u) = f1.

Now, we can represent the general solution of (16) in the following form:

(18) u(x,λ ) =



a1φ 1λ (x)+b1χ1λ (x) , x ∈ [θ 0,θ 1)

a2φ 2λ (x)+b2χ2λ (x) , x ∈ (θ 1,θ 2)
...

am+1φ (m+1)λ (x)+bm+1χ(m+1)λ (x) , x ∈ (θ m,θ m+1] .

By applying the method of variation of the constants to (18), thus, the functions ai (x,λ ) ,

bi (x,λ )
(
i = 1,m+1

)
satisfy the linear system of equation

(19)

 a′1 (x,λ )φ 1λ (x)+b′1 (x,λ )χ1λ (x) = 0

a′1 (x,λ )φ
′
1λ

(x)+b′1 (x,λ )χ ′1λ
(x) = f (x)

, x ∈ [θ 0,θ 1)

 a′2 (x,λ )φ 2λ (x)+b′2 (x,λ )χ2λ (x) = 0

a′2 (x,λ )φ
′
2λ

(x)+b′2 (x,λ )χ ′2λ
(x) = f (x)

, x ∈ (θ 1,θ 2)

... a′m+1 (x,λ )φ (m+1)λ (x)+b′m+1 (x,λ )χ(m+1)λ (x) = 0

a′m+1 (x,λ )φ
′
(m+1)λ (x)+b′m+1 (x,λ )χ(m+1)λ (x) = f (x)

, x ∈ (θ m,θ m+1] .
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Since λ is not an eigenvalue and ωk+1 (λ ) 6= 0 (k = 1,m), each of the linear systems in (19)

has a unique solution which leads

(20)


a1 (x,λ ) = 1

ω1(λ )

θ 1∫
x

χ1λ (y) f (y)dy+a1 (λ )

b1 (x,λ ) = 1
ω1(λ )

x∫
θ 0

φ 1λ (y) f (y)dy+b1 (λ )
, x ∈ [θ 0,θ 1)


a2 (x,λ ) = 1

ω2(λ )

θ 2∫
x

χ2λ (y) f (y)dy+a2 (λ )

b2 (x,λ ) = 1
ω2(λ )

x∫
θ 1

φ 2λ (y) f (y)dy+b2 (λ )
, x ∈ (θ 1,θ 2)

...
am+1 (x,λ ) = 1

ωm+1(λ )

θ m+1∫
x

χ(m+1)λ (y) f (y)dy+am+1 (λ )

bm+1 (x,λ ) = 1
ωm+1(λ )

x∫
θ m

φ (m+1)λ (y) f (y)dy+bm+1 (λ )
, x ∈ (θ m,θ m+1]

where ai (λ ) , bi (λ )
(
i = 1,m+1

)
are arbitrary constants. Substituting (20) into (18), then from

(17) and the transmission conditions (4), we obtain

a1 (λ ) =
1

ω2(λ )

θ 2∫
θ 1

χ2λ (y) f (y)dy+ 1
ω3(λ )

θ 3∫
θ 2

χ3λ (y) f (y)dy+ ...+

1
ωm+1(λ )

θ m+1∫
θ m

χ(m+1)λ (y) f (y)dy+ f1
ωm+1(λ )

a2 (λ ) =
1

ω3(λ )

θ 3∫
θ 2

χ3λ (y) f (y)dy+ 1
ω4(λ )

θ 4∫
θ 3

χ4λ (y) f (y)dy+ ...+

1
ωm+1(λ )

θ m+1∫
θ m

χ(m+1)λ (y) f (y)dy+ f1
ωm+1(λ )

...

am (λ ) = 1
ωm+1(λ )

θ m+1∫
θ m

χ(m+1)λ (y) f (y)dy+ f1
ωm+1(λ )

am+1 (λ ) =
f1

ωm+1(λ )
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b1 (λ ) = 0

b2 (λ ) =
1

ω1(λ )

θ 1∫
θ 0

φ 1λ (y) f (y)dy

...

bm (λ ) = 1
ωm−1(λ )

θ m−1∫
θ m−2

φ (m−1)λ (y) f (y)dy+ 1
ωm−2(λ )

θ m−2∫
θ m−3

φ (m−2)λ (y) f (y)dy

+ ...+ 1
ω1(λ )

θ 1∫
θ 0

φ 1λ (y) f (y)dy

bm+1 (λ ) =
1

ωm(λ )

θ m∫
θ m−1

φ mλ (y) f (y)dy+ 1
ωm−1(λ )

θ m−1∫
θ m−2

φ (m−1)λ (y) f (y)dy

+ ...+ 1
ω1(λ )

θ 1∫
θ 0

φ 1λ (y) f (y)dy.

Then we obtain the solution
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(21)

u(x,λ ) =



φ 1λ (x)
ω1(λ )

θ 1∫
x

χ1λ (y) f (y)dy+χ1λ (x)
ω1(λ )

x∫
θ 0

φ 1λ (y) f (y)dy+

φ 1λ (x)
ω2(λ )

θ 2∫
θ 1

χ2λ (y) f (y)dy+φ 1λ (x)
ω3(λ )

θ 3∫
θ 2

χ3λ (y) f (y)dy+ ...+

φ 1λ (x)
ωm+1(λ )

θ m+1∫
θ m

χ(m+1)λ (y) f (y)dy+ f1φ 1λ (x)
ωm+1(λ )

, x ∈ [θ 0,θ 1)

φ 2λ (x)
ω2(λ )

θ 2∫
x

χ2λ (y) f (y)dy+χ2λ (x)
ω2(λ )

x∫
θ 1

φ 2λ (y) f (y)dy+φ 2λ (x)
ω3(λ )

θ 3∫
θ 2

χ3λ (y) f (y)dy+

φ 2λ (x)
ω4(λ )

θ 4∫
θ 3

χ4λ (y) f (y)dy+ ...+
φ 2λ (x)

ωm+1(λ )

θ m+1∫
θ m

χ(m+1)λ (y) f (y)dy+

χ2λ (x)
ω1(λ )

θ 1∫
θ 0

φ 1λ (y) f (y)dy+ f1φ 2λ (x)
ωm+1(λ )

, x ∈(θ 1,θ 2)

...

φ (m+1)λ (x)
ωm+1(λ )

θ m+1∫
x

χ(m+1)λ (y) f (y)dy+
χ(m+1)λ (x)
ωm+1(λ )

x∫
θ m

φ (m+1)λ (y) f (y)dy+

χ(m+1)λ (x)
ωm(λ )

θ m∫
θ m−1

φ mλ (y) f (y)dy+
χ(m+1)λ (x)
ωm−1(λ )

θ m−1∫
θ m−2

φ (m−1)λ (y) f (y)dy+ ...+

χ(m+1)λ (x)
ω1(λ )

θ 1∫
θ 0

φ 1λ (y) f (y)dy+
f1φ (m+1)λ (x)

ωm+1(λ )
, x ∈(θ m,θ m+1] .

Substituting (12) into (21) and from (13), then (21) can be written in the form

(22) u(x,λ ) =
m+1
∑

k=1

1
k
∏

l=1
|Dl−1|

θ k∫
θ k−1

G(x,y;λ ) f (y)dy+
f1φ λ (x)

|D1D2...Dm|ω (λ )
,

where

(23) G(x,y;λ ) =


φ λ (y)χλ (x)

ω (λ )
, θ 0 ≤ y≤ x≤ θ m+1, x,y 6= θ k, k = 1,m

φ λ (x)χλ (y)
ω (λ )

, θ 0 ≤ x≤ y≤ θ m+1, x,y 6= θ k, k = 1,m

is Green’s function of the problem (1)-(4).
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Hence, we have

(24)

U = (λ I−A)−1 F =
m+1
∑

k=1

1
k

∏
l=1
|Dl−1|

θ k∫
θ k−1

G(x,y;λ ) f (y)dy+ f1φ λ (x)
|D1D2...Dm|ω(λ )

R′ (u)


the resolvent of the problem (1)-(4).

Denoting Gx,λ =

 G(x, ·;λ )

R′ (G(x, ·;λ ))

 ,F =

 f (x)

f1

 and from (13) and (24) the resolvent

of the operator can be represented in the form

(25) U =

 〈
Gx,λ ,F

〉
R′
(〈

Gx,λ ,F
〉)
 .

3. Eigenfunction Expansion for Green’s Function and the Modified Parse-
val Equality

In this section, we derive the eigenfunction expansion for Green’s function of the problem

(1)-(4), and establish the modified Parseval equality in the associated Hilbert space H. Without

loss of generality we assume that λ = 0 is not an eigenvalue. Let Gx,0 = G(x,y;0) .

From (25), the solution of the equation AΦ = λΦ can be written in the form

(26) Φ =

 〈
Gx,0,−λΦ

〉
R′
(〈

Gx,0,−λΦ

〉)


and the first component of this solution can be written as

(27) φ (x) =−λ
〈
Gx,0,Φ

〉
.

Theorem 3.1. Let λ n be the eigenvalues of the problem (1)-(4) and Ψn (x) be the corresponding

normalized eigenelements. Then

(28) Gx,0 =−
∞

∑
n=1

Ψn (x)Ψn (y)
λ n

.
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Proof. Let P(x,y) = Gx,0 +
∞

∑
n=1

Ψn(x)Ψn(y)
λ n

. Then P(x,y) is continuous and symmetric. We

assume P(x,y) 6= 0. Then by the Fredholm integral equation, there is a number λ 0 and a function

Φ0 (x) 6= 0 in H such that Φ0 =

 φ 0 (x)

R′ (φ 0)

 and satisfy

(29) φ 0 (x) = λ 0 〈P(x,y) ,Φ0〉 .

Since each Ψn (x) is an eigenelement, we obtain from (27) that

(30) ψn (x)+λ n
〈
Gx,0,Ψn

〉
= 0.

Then, substituting from (30), we obtain

(31)

〈P(x,y) ,Ψm〉=

〈
Gx,0 +

∞

∑
n=1

Ψn(x)Ψn(y)
λ n

,Ψm

〉
=
〈
Gx,0,Ψm

〉
+

∞

∑
n=1

Ψn(x)
λ n
〈Ψn,Ψm〉

=− 1
λ m

Ψm + 1
λ m

Ψm

= 0.

From (29), we get

(32) Φ0 = λ 0

 〈P(x,y) ,Φ0〉

R′ (〈P(x,y) ,Φ0〉)

 .

By the definition of the inner product (13), we get
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(33)

〈Φ0,Ψn〉=
m+1
∑

k=1

1
k

∏
l=1
|Dl−1|

θ k∫
θ k−1

λ 0 〈P(x,y) ,Φ0〉ψn (x)dx+

1
ρ|D1D2...Dm|λ 0R′ (〈P(x,y) ,Φ0〉)R′ (ψn)

= λ 0

m+1
∑

k=1

1
k

∏
l=1
|Dl−1|

θ k∫
θ k−1

m+1
∑

k=1

1
k

∏
l=1
|Dl−1|

θ k∫
θ k−1

P(x,y)φ 0 (y)dy+

1
ρ|D1D2...Dm|R

′ (P(x,y))R′ (φ 0)
}

ψn (x)dx+

1
ρ|D1D2...Dm|

m+1
∑

k=1

1
k

∏
l=1
|Dl−1|

θ k∫
θ k−1

R′ (P(x,y))φ 0 (y)dy+

1
ρ|D1D2...Dm|R

′ (R′ (P(x,y)))R′ (φ 0)
}

R′ (ψn)
}

= λ 0

m+1
∑

k=1

1
k

∏
l=1
|Dl−1|

θ k∫
θ k−1

〈P(x,y) ,Ψn〉φ 0 (y)dy+

1
ρ|D1D2...Dm|R

′ (〈P(x,y) ,Ψn〉)R′ (φ 0)
}
.

Substituting (31) into (33), we obtain

(34) 〈Φ0,Ψn〉= 0.

Then from (29) and (34), we see that

(35)

φ 0 (x) = λ 0 〈P(x,y) ,Φ0〉= λ 0

〈
Gx,0 +

∞

∑
n=1

Ψn(x)Ψn(y)
λ n

,Φ0

〉
= λ 0

〈
Gx,0,Φ0

〉
+λ 0

∞

∑
n=1

Ψn(x)
λ n
〈Ψn,Φ0〉

= λ 0
〈
Gx,0,Φ0

〉
.

This implies Φ0 is the eigenelement of the problem (1)-(4). So from (34) and the completeness

of the eigenfunctions, we know Φ0 = 0. Thus we get a contradiction. Consequently P(x,y) = 0.

The proof is completed.
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Theorem 3.2. Let f ∈ L2 (θ 0,θ m+1) . Then f (x) can be expanded into an absolutely and uni-

formly convergent series of eigenfunctions, that is

(36) f (x) =
∞

∑
n=1


m+1
∑

k=1

1
k
∏

l=1
|Dl−1|

θ k∫
θ k−1

f (y)ψn (y)dy+
1

ρ |D1D2...Dm|
R′ ( f )R′ (ψn)

ψn (x) .

Proof. Let f ∈ L2 (θ 0,θ m+1) . Then F =

 f (x)

R′ ( f )

 ∈D(A) . It follows that the function f (x)

can be written as

(37) f (x) =
〈
Gx,0,−AF

〉
.

Substituting (28) into (37) we get

(38) f (x) =
∞

∑
n=1

Ψn (x)
λ n

〈
Ψn,AF

〉
.

Since the operator A is symmetric (see [6]), we have

(39)
〈
Ψn,AF

〉
= 〈AF,Ψn〉= 〈F,AΨn〉= 〈F,λΨn〉= λ n 〈F,Ψn〉 .

From (38) and (39), we obtain

(40) F =
∞

∑
n=1
〈F,Ψn〉Ψn.

If the equality (40) is written as open and the first component being equal the proof is completed.

Theorem 3.3. Let f ∈ L2 (θ 0,θ m+1) . Then the modified Parseval equality holds, that is

(41) ‖ f‖2
L2(θ 0,θ m+1)

=
∞

∑
n=1
|cn|2

where ‖ f‖2
L2(θ 0,θ m+1)

= 〈 f , f 〉 and cn is

(42) cn =
m+1
∑

k=1

1
k
∏

l=1
|Dl−1|

θ k∫
θ k−1

f (x)ψn (x)dx+
1

ρ |D1D2...Dm|
R′ ( f )R′ (ψn) .
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Proof. For any f ∈ L2 (θ 0,θ m+1) , there exists a sequence { fk}k∈N ⊂ C̃∞
0 converging to f in

L2 (θ 0,θ m+1). Since C̃∞
0 is dense in L2 (θ 0,θ m+1) (see [3]), we find from Theorem 3.2 becomes

(43) fk (x) =
∞

∑
n=1

c(k)n ψn (x) ,

where c(k)n is

(44) c(k)n =
m+1
∑

k=1

1
k
∏

l=1
|Dl−1|

θ k∫
θ k−1

fk (x)ψn (x)dx+
1

ρ |D1D2...Dm|
R′ ( fk)R′ (ψn)

and we get

〈 fk− fl,Ψn〉L2(θ 0,θ m+1)
= c(k)n − c(l)n .

It follows that

(45) ‖ fk− fl‖2
L2(θ 0,θ m+1)

=
∞

∑
n=1

∣∣∣c(k)n − c(l)n

∣∣∣2 .
By the Cauchy-Schwartz inequality, we have∣∣∣cn− c(k)n

∣∣∣= ∣∣∣〈 f − fk,Ψn〉L2(θ 0,θ m+1)

∣∣∣= ‖ fk− fl‖L2(θ 0,θ m+1)
.

Hence lim
k→∞

c(k)n = cn. Since (45), we can write

(46)
N

∑
n=1

∣∣∣c(k)n − c(l)n

∣∣∣2 ≤ ‖ fk− fl‖2
L2(θ 0,θ m+1)

.

Letting k→ ∞, we find the inequality (46) becomes

N

∑
n=1

∣∣∣cn− c(l)n

∣∣∣2 ≤ ‖ f − fl‖2
L2(θ 0,θ m+1)

.

Letting N→ ∞, we have

(47)
∞

∑
n=1

∣∣∣cn− c(l)n

∣∣∣2 ≤ ‖ f − fl‖2
L2(θ 0,θ m+1)

.

Then by the Minkowski inequality

∞

∑
n=1
|cn|2 =

∞

∑
n=1

∣∣∣cn− c(l)n + c(l)n

∣∣∣2 ≤
( ∞

∑
n=1

∣∣∣cn− c(l)n

∣∣∣2)1/2

+

(
∞

∑
n=1

∣∣∣c(l)n

∣∣∣2)1/2
2

< ∞
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and by the Hölder’s inequality∣∣∣∣∣ ∞

∑
n=1
|cn|2−

∞

∑
n=1

∣∣∣c(k)n

∣∣∣2∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
n=1

∣∣∣cn− c(k)n

∣∣∣ ∣∣∣cn + c(k)n

∣∣∣∣∣∣∣∣
≤

(
∞

∑
n=1

∣∣∣cn− c(k)n

∣∣∣2)1/2(
∞

∑
n=1

∣∣∣cn + c(k)n

∣∣∣2)1/2

→ 0, as k→ ∞.

This means lim
k→∞

∞

∑
n=1

∣∣∣c(k)n

∣∣∣2 = ∞

∑
n=1
|cn|2 . Since fk→ f in L2 (θ 0,θ m+1) as k→ ∞,

lim
k→∞

‖ fk‖L2(θ 0,θ m+1)
= ‖ f‖L2(θ 0,θ m+1)

.

Thus, we obtain

‖ f‖2
L2(θ 0,θ m+1)

= lim
k→∞

‖ fk‖2
L2(θ 0,θ m+1)

= lim
k→∞

∞

∑
n=1

∣∣∣c(k)n

∣∣∣2 = ∞

∑
n=1
|cn|2 .

This completes the proof.
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[1] Z. Akdoğan, M. Demirci, O Sh. Mukhtarov, Green function of discontinuous boundary value problem with

transmission conditions, Math. Models Methods Appl. Sci. 30 (2007), 1719-1738.
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