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Abstract. In computerized tomography an image must be recovered from data given by the Radon

transform of the image. This data is usually in the form of sampled values of the transform. In this paper

we have proved some convergence results in generalized Sobolev space using the sampling properties of

the prolate spheroidal wavelets which are superier to other wavelets. Our generalized Sobolev space

generalized the various spaces such as Schwartz space, Hormander space [5] and space studied by Pathak

[10].
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1. Introduction

The prolate spheroidal wave functions (PSWFs) are those that are most highly lo-

calized simultaneously in both the time and frequency domain. This fact was discovered

in a series of papers [7],[8],[3]-[15]. Since then the study of PSWFs has been an active area
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of research in both electrical engineering and mathematics. The PSWFs were previous-

ly known as solutions of Sturm-Liouville problem, from which many of their properties

could be derived. The associated prolate spheroidal wavelets (PS wavelets) have been

introduced by G.G. Walter and Xiaoping Shen [18]. Pollak and Landau discovered the

connection between PSWFs and the energy concentration problem during the 1960’s. The

PSWFs were shown to be an important tool for analyzing some problems raised in signal

processing and telecommunications [9].

Walter and Shen [18] have proposed new wavelets based on PSWFs. This wavelet fam-

ily can be used in place of sinc function S(t) = sinπt
πt

to recover bandlimited signals from

their sampled values and possess the same maximum energy concentration property. The

corrsponding wavelet scaling function is just the first PSWF with bandwidth π. While

these are not orthogonal to their integer translates, they do constitute a Riesz basis of

the space of π-bandlimited signals. Shepp and Zhang [12] have used PSWFs to obtain a

fast algorithm for recovering a magnetic resonance image (MRI) from its sampled values

in the frequency domain. Their prolate wavelets are not ones considered here, but rather

are multidimensional spheroidal wave functions. Their approach was close to optimal for

imaging of brain activity.

We shall use the PS wavelets to recover the image function of an object from the sampled

values of its Radon transform. To solve this fundamental problem, wavelet-based methods

have been used (see[1,3,4,16,17]) but none has the combination of good time and frequency

response arising with the PS wavelets. It has been noticed that approximation based on

these wavelets possesses the analytic properties of the original function, something which

no other wavelet systems do. Since the PSWFs do not have a closed integral forms. The

author obtained it in this paper by introducing a procedure that only calls for the values

of PSWFs at integers. To find these values an alternative method has been proposed

for computing them without using the traditional Legendre polynomial approximations

to PSWFs. Here in this paper we have obtained a convergence theorem in generalized
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Sobolev space.

The work in this proper is organized as follows. Section 1, gives the introductory ex-

position of the topic. Section 2, deals with some properties of prolate spheroidal wave

functions and associated PS wavelets. In Section 3, a brief introduction of computerized

tomography has been given, Finally in Section 4, we have proved a convergence theorem

in generalized Sobolev space which is more than the Schwartz space and the spaces used

by Hormander[5] and Pathak [10].

2. Prolate Spheroidal Wave Functions and Associated Wavelets

In this section, we have given some related properties of the prolate spheroidal wave

functions and the associated PS wavelets.

In order to recover an image from the sampled values of its Radon transform, the band

limited functions play a significant role since the frequencies in such an image must be

bounded. By Shannon sampling theorem [11] each function in the space βπ of π-band

limited functions can be represented as

f(t) = Σκf(κ)S(t− κ)

where S(t) is the sinc function S(t) = sinπt
πt

. Since the sinc function has a very slow decay

therefore above formula is not adequate for recovering signals with finite time duration.

One of the natural solutions is to consider the set of prolate spheroidal wave functions

{φn(t)}which form the orthonormal basis of Bπ and are highly concentrated in a time

interval [−τ, τ ].

The PSWFs are also characterized as :

1. {φn} have maximum energy concentration among all π−band limited functions in

the interval [−τ, τ ], i.e., φo is the function such that
∫∞
−∞ |φo(t)|

2dt = 1 and
∫ τ
−τ |f(t)|2dt

is maximized for f = φo; φ1 is the function orthogonal to φowith the same property; φ2 is ...
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2. {φn} are the eigenfunctions of a differential operator

(τ 2 − t2)d
2φn
dt2
− 2t

dφn
dt
− π2t2φn = µnφn, n = 0, 1, 2, ...

where µn are the eigenvalues.

3. {φn} are the eigenfunctions of an integral operator∫ τ

−τ
φn(x)S(t− x)dx = λnφn(t), n = 0, 1, 2, ....

It is also noted that each of φn has exactly n zeroes in the concentration interval [−τ, τ ]

and the Fourier transform of φn is given by

φ̂n(ω) = (−1)n
√

2τ

λn
φn(

ωτ

π
)χπ(ω),

where χπ(ω) is the characteristic function of the interval [−π, π].

The PS-wavelets were introduced in [18] and have as their scaling function φ = φo/φ̂o(o).

It was shown that integer translates of this scaling function {φ(t− n)}form a Riesz basis

of the space Bπ whatever the value of τ , just as the PSWFs do. By changing the scale

by factors of 2, we obtain a multi resolution analysis (MRA){Vm} of subspaces of L2(R),

where f(t) ∈ Vm if and only if f(2−mt) ∈ Vo. An MRA will have the following properties:

1. ...⊆ Vm−1 ⊆ ... ⊆ L2(R),

2. ¯∪Vm = L2(R),

3. ∩Vm = {0}.

Here Vm = B2mπ, the Paley- Wiener space of 2mπ-band limited functions; a functionf in

L2(R) may be approximated at the scale m by the series approximation of the form

fm(t) =
∞∑

n=−∞

anmφ(2mt− n).

Several methods of calculating the coefficients anm were studied in [18]. One is obtained

by using a biorthogonal series and an integral formula. The other method, which we shall
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use have for the most part, avoids integration and uses only the point value f(2−mn)2−m

for anm. Both methods were shown to converge to f uniformly as m→∞ on the real line

for f is an appropriate Sobolev space. The former, has a more rapid rate of convergence,

whereas the latter avoids Gibbs’ phenomenon. This phenomenon, involving the overshoot

at points of discontinuity, is present in Fourier approximation as well as in all standard

wavelet approximations. It is particularly troublesome in image since it causes ripple

effects at discontinuities of the image. The absence of Gibbs’ phenomenon is one reason

to use these wavelets in computerized Tomography.

3. Computerized Tomography

In computerized tomography, the cross-sectional image of an object in the form of

a two-dimensional density function is reconstructed from data collected when the object

is illuminated by X-ray beams from many different angles. As X-rays pass through the

object they are attended at different rates by tissues with different densities; measurements

obtained at an angle θ are recorded in the form of sampled values of the projection function

Pθ(t). Let f(x, y) denote the density function of the object which is often called the image

function, or the object function. The projection function along the line of exposure

t = x cos θ + y sin θ is given by the line integral

Pθ(t) =

∫ ∫
R2

f(x, y)δ(x cos θ + y sin θ − t)dxdy,

where δ is the one-dimensional Dirac delta-function, and Pθ(t) is the Radon transform of

f(x, y).

In order to recover f from Pθ relies on the Fourier Slice Theorem [12]

P̂θ(w) = f̂(w cos θ, w sin θ),

where P̂θ and f̂ denote the Fourier transform of Pθ and f . In other words, the one-

dimensional Fourier transform of the projection function gives the two-dimensional Fourier

transform of the object function along a radial line. If projection is known at enough
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angles, the object function can be recovered by using an approximation to the inverse

Fourier transform

f(x, y) =
1

(2π)2

∫ π

0

∫ ∞
−∞

P̂θ(w)eiw(x cos θ+y sin θ)|w|dwdθ,

=
1

2π

∫ π

0

Qθ(t)dθ,

where t = x cos θ + y sin θ and Q is the output of a filter with transfer function |w|, i.e.,

Q̂θ(w) = P̂θ(w)|w|,

followed by an averaging operator. To make inversion of Q̂ possible, |w| is usually multi-

plied by a smoothing window.

Since f(x, y) has compact support, it cannot be band limited at the same time. However,

it can belong to a Sobolev space since this would merely require that Q̂θ(w) decrease

more rapidly than a negative power of w as w → ±∞. Such functions, can be uniformly

approximated by band limited functions in Vm = B2mπ

4. Approximation in Generalized Sobolev Space

First we recall some definitions and properties of certain function and distribution

spaces given in [2]. Let M be the set of continuous and real valued functions v on R

satisfying the following conditions:

1. 0 = v(o) ≤ v(ξ + η) ≤ v(ξ) + v(η); ξ, η ∈ R,

2.
∫∞
0

v(ξ)dξ
(1+|ξ|)n+1 <∞,

3. v(ξ) ≥ a+ b log(1 + |ξ|), ξ ∈ R,

for some real number a and positive real number b. We denote by Mc the set of all

v ∈M satisfying condition v(ξ) = Ω(|ξ|) with a concave function Ω on [0,∞).
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Let v ∈ Mc and Sv be the set of all functions φ ∈ L1(R) with the property that φ

and φ̂ ∈ C∞ and for each index γ and each non-negative α∗ we have

pγ,α∗(φ) = sup
x∈R

eα
∗v(x)|Dαφ(x)| <∞,

qγ,α∗(φ) = sup
ξ∈R

eα
∗v(ξ)|Dαφ̂(ξ)| <∞.

The topology of Sv is defined by the semi-norms pγ,α∗ and qγ,α∗ . The dual of Sv is denoted

by S
′
v, the elements of which are called ultra-distributions. It is interesting to mention

here that for v(ξ) = log(1 + |ξ|), Sv is reduced to the Schwartz space.

We denote the space Dv the set of all φ in L1(R) such that φ has compact support

and ||φ||β∗ <∞ for all β∗ > 0 and

||φ||β∗ =

∫
R

|φ̂(ξ)|eβ∗v(ξ)dξ.

Also Kv is defined to be the set of positive functions κ in R with

κ(ξ + η) ≤ eβ
∗v(−ξ)κ(η)

for all ξ, η ∈ R. Let v ∈ Mc, κ ∈ Kv and 1 ≤ p < ∞. Then generalized Sobolev space

Hv
p,κ(R) is defined to be the space of all ultra-distributions f ∈ S ′v such that

||f ||p,κ = (

∫
R

|κ(ξ)f̂(ξ)|pdξ)1/p <∞

and

||f ||∞,κ = ess supκ(ξ)|f̂(ξ)|.

Remark 4.1.The space Hv
p,κ is a generalization of the Hormander Space [5] and reduces

to the space Hp,κ(R) for v = log(1 + |ξ|). For κ(ξ) = esv(ξ) and 1 ≤ p <∞, Hv
p,κ = Hs,p

v ,

the generalized Sobolev space studied by Pathak[10].
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The approximation of a projection function Pθ(t) by the sampling series at the scale

of interest m is of the form

(4.1) Pθ,m(t) =
∞∑

n=−∞

Pθ(n2−m)φ(2mt− n)

where φ is the scaling function of the PS-wavelet. To avoid any integrations involving φ

we approximate the filtered projection Qθ(t) by the series

(4.2) Qθ,m(t) =
+∞∑

κ=−∞

aκφ(2mt− κ)

where the coefficients aκ are given by aκ =< Qθ(t), φ̃(2mt− κ) > with φ̃ being a function

biorthogonal to φ. Then we have

aκ =
1

2π
〈|w|P̂θ(w), 2−m ˆ̃φ(2−mw)e−iwκ2

−m〉

=
2−2m

2π

∫ ∞
−∞

[ΣnPθ(n2−m)φ̂(2−mw)e−iwn2
−m

]|w| ˆ̃φ(2−mw)e−iwκ2
−m

dw

=
2−2m

2π

+∞∑
n=−∞

Pθ(n2−m)

∫ 2mπ

−2mπ
|w|e−iw(n+κ)2−m

dw

=
1

2π

+∞∑
n=−∞

Pθ(n2−m)g(n, κ)

where

g(n, κ) = 2−2m
∫ 2mπ

−2mπ
|w|e−iw(n+κ)2−m

dw

=


π2, n+ κ = 0;

0, n+ κ is even;

− 4
(n+κ)2

, n+ κ is odd.

Then the approximation (4.2) gives

Qθ,m(t) = Σκ[ΣnPθ(n2−m)g(n, κ)]φ(2mt− κ)

=
∑
n

Pθ(n2−m)bn(t)
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where the weight functions bn(t) are given by

bn(t) =
∞∑

κ=−∞

g(n, κ)φ(2mt− κ).

We now prove a convergence theorem in generalized Sobolev space.

Theorem 4.1. Let Pθ(t) have compact support and Pθ(t) ∈ Hv
p,κ(R), the generalized

Sobolev space, for 1 ≤ p < ∞, let the approximation Pθ(t) be given by a series of the

form(4.1), then Pθ,m(t)→ Pθ(t) uniformly in Hv
p.κ for θ ∈ [0, 2π] and t ∈ R as m→∞.

Proof. We have

‖ Pθ,m(t)− Pθ(t) ‖pp,κ =

∫
R

|(P̂θ,m(ξ)− P̂θ(ξ))κ(ξ)|pdξ

=

∫
R

|(
∞∑

n=−∞

2−mPθ(n2−m)φ̂(ξ2−m)e−iξn2
−m − P̂θ(ξ))κ(ξ)|pdξ

=

∫
R

|(
∞∑

n=−∞

P̂θ(ξ + 2m+1πκ)φ̂(2−mξ)− P̂θ(ξ))κ(ξ)|pdξ

=

∫
R

|P̂θ(ξ)|p|φ̂(2−mξ)− 1|p|κ(ξ)|pdξ +

∫
R

φ̂(2−mξ)∑
κ6=0

|P̂θ(ξ + 2πκ2m)|p.|κ(ξ)|pdξ

= I + II.

Since φ̂ is continuous near the origin the I integral is dominated by∫ −2mδ
−∞

2p|P̂θ(ξ)|p|κ(ξ)|pdξ +

∫ 2mδ

−2mδ
|P̂θ(ξ)|p|φ̂(2−mξ)− 1|p|κ(ξ)|pdξ +

∫ ∞
2mδ

2p|P̂θ(ξ)|p|κ(ξ)|pdξ.

Here δ is the number such that |φ̂(2−mξ) − 1|p < ε for |2−mξ| < δ and we have used the

fact that ||φ̂||∞∞,κ = 1. The middle integral here is dominated by

ε

∫ 2mδ

−2mδ
|P̂θ(ξ)|p|κ(ξ)|pdξ < ε

∫
R

|P̂θ(ξ)|p|κ(ξ)|pdξ.

The II integral is dominated by φ̂(0) = 1, satisfies∫ π2m

−π2m
φ̂(2−mξ)(

∑
κ+0

|P̂θ(ξ + 2πκ2m)|p|κ(ξ)|p)dξ
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≤
∫ −π2m
−∞

|P̂θ(ξ)|p|κ(ξ)|pdξ +

∫ ∞
π2m
|P̂θ(ξ)|p|κ(ξ)|pdξ.

Thus taking the limit as m → ∞, all integrals converges to zero except the middle one

which is a multiple of ε. This limit is arbitrarily small and hence the theorem is estab-

lished.

In order to recover f(x, y) we recall that

f(x, y) =
1

π

∫ π

0

Q(x cos θ + y sin θ)dθ.

Therefore we obtain the following approximation to the image function.

(4.3) f(x, y) ≈ 1

2π

∞∑
n=−∞

∫ π

0

Pθ(n2−m)bn(x cos θ + y sin θ)dθ.

Similar theorem as 4.1 can be proved for the image function itself approximated by se-

ries(4.3). We can show the approximation in (4.3) converges uniformly to f(x, y) in

Hv
p,κ(R) for (x, y) ∈ R and m→∞.
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