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Abstract. The object of the present paper is to derive the integral representation for classes involving the notion of

(m,n)-symmetrical functions with bounded boundary rotation and bounded radius rotation. Some more properties

like radius of univalent and starlike are also investigated.
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1. Introduction-preliminaries

Let A denote the class of functions of form

(1) f (z) = z+
∞

∑
n=2

anzn,

which are analytic in the open unit disk U = {z : z ∈C and |z|< 1}. Let S denote the subclass

of A consisting of all functions which are univalent in U . We also denote by S ∗,K the

familiar subclasses of it consisting of functions which are respectively starlike and convex in
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U . It is known that f (z) ∈S ∗ if and only if

f (z) = z exp
{∫ z

0
− log(1− ze−it)dm(t)

}
,

for some m(t) ∈M2.

Pinchuk [1] generalized the class S ∗ by allowing m(t) to range over the class Mk. More pre-

cisely a function f (z) is said to be in the class Uk if f (z) = z exp
{∫ z

0 − log(1− ze−it)dm(t)
}
,

m(t) ∈Mk i.e, m(t) is a real valued function of bounded variation on [0,2π] satisfying the con-

ditions.

(2)
∫ 2π

0
dm(t) = 2,

∫ 2π

0
|dm(t)| ≤ k.

Geometrically the condition is that the total variation of the angle which the radius vector

f (reiθ ) makes whit the positive real axis is bounded above by πk as z describes the circle

|z|= r for |z|< 1. Thus Uk the class of functions with radius rotation bounded by πk. Similarly

Vk denotes the class of functions f defined on U which map conformally onto a image domain

of boundary rotation at most kπ . Hence f (z) ∈Vk, if and only if

f ′(z) = exp
∫ 2π

0
− log(1− ze−it)dm(t), m(t) ∈Mk.

It is easy to see that U2 is the class of starlike functions and V2 is the class of convex functions.

Let Pk denote the class of functions which are analytic in U and have the representation

(3) p(z) =
1
2

∫ 2π

0

1+ ze−it

1− ze−it dm(t),

where m(t) ∈ Mk. Clearly we have p2 = p and f ∈ Uk and Vk if and only if z f ′
f and 1+ z f ′′

f ′

belong to Pk. For p ∈Pk, then it has the following properties

(1) p(0) = 1,

(2)
∫ 2π

0 |ℜ{p(z)}|dθ ≤ kπ , where k ≥ 2 and z = reiθ ,0≤ r < 1.

Liczberski and Polubinki [4] introduce the notion of (m,n)-symmetrical functions (n= 1,2,3, ...,m=

0,1, ..,n−1) which is generalization of notions of even odd and n symmetrical functions. They

also generalized the known result that each function defined in symmetrical subset can be u-

niquely represented as the sum of an even function and odd function.
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Definition 1.1. Let ε = (e
2πi
n ) and m = 0,1,2, ..,n− 1 where n ≥ 2 is a natural number. A

function f : U 7→ C is called (m,n)-symmetrical if

f (εz) = ε
m f (z), z ∈U .

The family of all (m,n)-symmetrical functions is denoted be S (m,n) . S (0,2), S (1,2) and

S (1,n) are respectively the classes of even, odd and n-symmetric functions. We have the fol-

lowing decomposition theorem.

Theorem 1.2. [4] For every mapping f : U 7→ C, there exists exactly the sequence of (m,n)-

symmetrical functions fm,n,

f (z) =
n−1

∑
m=0

fm,n(z),

where

(4) fm,n(z) =
1
n

n−1

∑
v=0

ε
−vm f (εvz).

( f ∈A ; n = 1,2, ...;m = 0,1,2, ...,n−1).

The following identities follow directly from (4)

(5) f ′m,n(z) =
1
n

n−1

∑
v=0

ε
v−vm f ′(εvz), f ′′m,n(z) =

1
n

n−1

∑
v=0

ε
2v−vm f ′′(εvz),

(6) fm,n(ε
vz) = ε

vm fm,n(z), f ′m,n(ε
vz) = ε

vm−v f ′m,n(z).

Definition 1.3. Let Uk(m,n) denote the class of functions f ∈A satisfies f (0) = 0, f ′(0) = 1

and,
z f ′(z)
fm,n(z)

∈Pk,

where fm,n(z) is defined by (4).

Definition 1.4. Let Vk(m,n) denote the class of functions f ∈A satisfies f (0) = 0, f ′(0) = 1

and
(z f ′(z))′

f ′m,n(z)
∈Pk,

where fm,n(z) is defined by (4).
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Remark 1.5. f ∈ Vk(m,n) if and only if z f ′ ∈ Uk(m,n). Spacial cases

(i) For k = 1,m = 1 we get Singh and Tygel in [8].

(ii)For m = n = 1 we get paatero in [2].

(iii)For k = 2,m = 1,n = 2 we get Sakaguchi in [13].

In our paper, we also need the the following lemmas.

Lemma 1.6. [3] Suppose p(z) ∈Pk. Then

ℜ

{
zp′(z)
p(z)

}
≥ −r(k−4r+ kr2)

(1− r2)(1− kr+ r2)
, wher|z|= r,k ≥ 4

and

|z|< R0 =
k−
√

k2−4
2

. For2≤ k ≤ 4,

ℜ

{
zp′(z)
p(z)

}
≥ −2kr+(8−4k+ k2)r2−2kr3

2(1− r2)(1− kr+ r2)
.

The above inequality is sharp for function p(z) = 1−kz+z2

1−z2 .

2. Main results

Theorem 2.1. A function f ∈A belongs to Uk(m,n), then

(7) fm,n(z) = z exp

{
−1

n

n−1

∑
v=0

∫ 2π

0
log(1− ze

−i(t− 2πv
n )

m )dm(t)

}
.

where fm,n(z) is defined by (4) and m(t) is defined (2).

Proof. Suppose that f ∈ Uk(m,n). It follows that

(8)
z f ′(z)
fm,n(z)

= pm(z),

where

(9) pm(z) =
1
2

∫ 2π

0

1+ ze−it
m

1− ze−it
m

dm(t).

Substituting z by εv
mz in (8) respectively

zεv
m f ′(εv

mz)
fm,n(εv

mz)
= pm(ε

v
mz).(10)
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Then

zεv−vm
m f ′(εv

mz)
fm,n(z)

=
1
2

∫ 2π

0

1+ zεv
me−it

m

1− zεv
me−it

m
dm(t),(11)

or

zεv−vm
m f ′(εv

mz)
fm,n(z)

=
1
2

∫ 2π

0

1+ ze
−i(t− 2πv

n )
m

1− ze
−i(t− 2πv

n )
m

dm(t).(12)

Let (v = 0,1,2, ....n−1) in (12) and summing them we get

f ′m,n(z)
fm,n(z)

− 1
z
=

1
2nz

n−1

∑
v=0

∫ 2π

0

1+ ze
−i(t− 2πv

n )
m

1− ze
−i(t− 2πv

n )
m

dm(t)− 1
z
,(13)

by integral (13) we have

log
(

fm,n(z)
z

)
=

1
n

n−1

∑
v=0

∫ 2π

0
− log[1− ze

−i(t− 2πv
n )

m ]dm(t),(14)

from (14) we get (7). Hence the proof is complete.

Theorem 2.2. A function f ∈A belongs to Uk(m,n), then

f (z) =
1
2

∫ z

0

{
exp

[
−1

n

n−1

∑
v=0

∫ 2π

0
log(1− ye

−i(t− 2πv
n )

m )dm(t)

]
.
∫ 2π

0

1+ ye−it
m

1− ye−it
m

dm(t)

}
dy(15)

where fm,n(z) is defined by (4) and m(t) is defined (2).

Proof. Suppose that f ∈ Uk(m,n). It follows that

z f ′(z)
fm,n(z)

= pm(z).(16)

Then

z f ′(z) = fm,n(z)pm(z).

By using Theorem 2.1, we get

f ′(z) = exp

{
−1

n

n−1

∑
v=0

∫ 2π

0
log(1− ze

−i(t− 2πv
n )

m )dm(t)

}
.
1
2

∫ 2π

0

1+ ze−it
m

1− ze−it
m

dm(t),(17)

from (17) we get (15). Hence the proof is complete.

Corollary 2.3. For m = 1 and n = 1 in Theorem 2.1 we get Paatero [2].

By using the same method in Theorem 2.1, we have the following corollaries.
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Corollary 2.4. A function f ∈A belongs to Vk(m,n), then

f ′m,n(z) = exp

{
−1

n

n−1

∑
v=0

∫ 2π

0
log(1− ze

−i(t− 2πv
n )

m )dm(t)

}
,(18)

where fm,n(z) is defined by (4) and m(t) is defined (2).

Corollary 2.5. A function f ∈A belongs to Vk(m,n). Then

f ′(z) =
1
2z

∫ z

0

{
exp

[
−1

n

n−1

∑
v=0

∫ 2π

0
log(1− ye

−i(t− 2πv
n )

m )dm(t)

]∫ 2π

0

1+ ye−it
m

1− ye−it
m

dm(t)

}
dy,(19)

where fm,n(z) is defined by (4) and m(t) is defined (2).

Theorem 2.6. A function f ∈A belongs to Uk(m,n). Then fm,n(z) in Uk.

Proof. Suppose that f ∈ Uk(m,n). It follows that

z f ′(z)
fm,n(z)

= pm(z).(20)

Substituting z by εv
mz in (20) respectively

zεv
m f ′(εv

mz)
fm,n(εv

mz)
= pm(ε

v
mz).(21)

Now let (v = 0,1,2, ....n−1) in (21) and summing them we get

z f ′m,n(z)
fm,n(z)

=
1
n

m−1

∑
v=0

pm(ε
v
mz).(22)

It is vivid that 1
n ∑

m−1
v=0 pm(ε

v
mz) be bongs to Pk. Hence the proof is complete.

Theorem 2.7. Let f ∈ Uk(m,n) and let F(z) = z f ′(z). Then F(z) is starlike for |z|< r2, where

r2 is the least positive root of the equation

1−3kr+(k2 +6)r2−3kr3 + r4 = 0,

where |z| = r and k ≥ 4. For 2 ≤ k ≤ 4, then F(z) is starlike for |z| < r3 where r3 is the least

positive root of the equation

2−6kr+(12−4k+3k2)r2−4kr3 +2r4 = 0.

However the bound r3 is not sharp when 2≤ k < 4.



500 FUAD. S. M. AL SARARI, S. LATHA

Proof. Let f ∈ Uk(m,n). Then

F(z) = zexp

{
−1

n

n−1

∑
v=0

∫ 2π

0
log(1− ze

−i(t− 2πv
n )

m )dm(t)

}
.pm(z).

It follows that

zF ′(z)
F(z)

= 1+
1
n

n−1

∑
v=0

∫ 2π

0

ze
−i(t− 2πv

n )
m

1− ze
−i(t− 2πv

n
m )

dm(t)+
zp′m(z)
pm(z)

,(23)

or

zF ′(z)
F(z)

=
1
n

n−1

∑
v=0

pm(ε
v
mz)+

zp′m(z)
pm(z)

.(24)

Hence

ℜ

{
zF ′(z)
F(z)

}
= ℜ

{
1
n

n−1

∑
v=0

pm(ε
v
mz)

}
+ℜ

{
zp′m(z)
pm(z)

}
.(25)

Therefore, we have

ℜ

{
zp′m(z)
pm(z)

}
≥ −r(k−4r+ kr2)

(1− r2)(1− kr+ r2)
, where |z|= r,k ≥ 4,

and

ℜ

{
1
n

n−1

∑
v=0

pm(ε
v
mz)

}
≥ 1− kr+ r2

(1− r2)
, where |z|= r,k ≥ 4.

Then

ℜ

{
zF ′(z)
F(z)

}
≥ 1− kr+ r2

(1− r2)
+
−r(k−4r+ kr2)

(1− r2)(1− kr+ r2)

≥ (1− kr+ r2)2− r(k−4r+ kr2)

(1− r2)(1− kr+ r2)
,

where |z|= r < R0 =
k−
√

k2−4
2 . Hence ℜ

{
zF ′(z)
F(z)

}
≥ 0 provided Q(r) = 1−3kr+(k2 +6)r2−

3kr3 + r4 > 0. The equation Q(r) = 0 has a unique positive root in (0,R0). For 2 ≤ k ≤ 4, by

using (25), we have

ℜ

{
zF ′(z)
F(z)

}
≥ 1− kr+ r2

(1− r2)
+
−2kr+(8−4k+ k2)r2−2kr3

2(1− r2)(1− kr+ r2)
,

where |z|= r < R0 =
k−
√

k2−4
2 . Hence ℜ

{
zF ′(z)
F(z)

}
> 0 provided

D(r) = 2−6kr+(12−4k+3k2)r2−4kr3 +2r4 > 0.

Also D(r) = 0 has a root in (0,R0).
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Corollary 2.8. Let f ∈ Uk(m,n). Then f is convex for |z| < r2, where r2 is the least positive

root of the equation

1−3kr+(k2 +6)r2−3kr3 + r4 = 0,

where |z| = r and k ≥ 4. For 2 ≤ k ≤ 4, then f (z) is convex for |z| < r3, where r3 is the least

positive root of the equation

2−6kr+(12−4k+3k2)r2−4kr3 +2r4 = 0.

However the bound r3 is not sharp when 2≤ k < 4.

Theorem 2.9. Let f ∈ Uk(m,n) and let F(z) =
∫ z

0
{− fm,n(t) fm,n(−t)}

1
2

t dt. Then F(z) is in Vk.

Proof. Since f ∈ Uk(m,n), we have

F ′(z) =
{− fm,n(z) fm,n(−z)} 1

2

z
,

and

fm,n(z) = z exp

{
−1

n

n−1

∑
v=0

∫ 2π

0
log(1− ze

−i(t− 2πv
n )

m )dm(t)

}
.

Then
(zF ′(z))′

F ′(z)
= 1+

1
2n

n−1

∑
v=0

∫ 2π

0

ze
−i(t− 2πv

n )
m

1− ze
−i(t− 2πv

n )
m

dm(t)− 1
2n

n−1

∑
v=0

∫ 2π

0

ze
−i(t− 2πv

n )
m

1+ ze
−i(t− 2πv

n )
m

dm(t)

or
(zF ′(z))′

F ′(z)
=

1
2

1
n

n−1

∑
v=0

∫ 2π

0

1+ ze
−i(t− 2πv

n )
m

1− ze
−i(t− 2πv

n )
m

dm(t)+
1
n

n−1

∑
v=0

∫ 2π

0

1− ze
−i(t− 2πv

n )
m

1+ ze
−i(t− 2πv

n )
m

dm(t)


=

1
2

{
1
n

n−1

∑
v=0

pm(ε
v
mz)+

1
n

n−1

∑
v=0

pm(−ε
v
mz)

}
.

Since pm(z) ∈Pk so 1
n ∑

n−1
v=0 pm(ε

v
mz) also in Pk, by setting q(z) = 1

n ∑
n−1
v=0 pm(ε

v
mz),

we have
(zF ′(z))′

F ′(z)
=

1
2
{q(z)+q(−z)} where q(z) ∈Pk,

=
1
2

{(
k+2

4

)
q1(z)−

(
k−2

4

)
q2(z)

}
+

1
2

{(
k+2

4

)
q1(−z)−

(
k−2

4

)
q2(−z)

}

(zF ′(z))′

F ′(z)
=

(
k+2

4

){
q1(z)+q1(−z)

2

}
−
(

k−2
4

){
q2(z)+q2(−z)

2

}
,
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where qi(z) ∈P2, i = 1,2, also qi(z)+qi(−z)
2 ∈P2, i = 1,2. Hence

(zF ′(z))′

F ′(z)
=

(
k+2

4

)
w1(z)−

(
k−2

4

)
w2(z),

where wi(z) ∈P2, i = 1,2. Hence

(zF ′(z))′

F ′(z)
∈Pk,

which means F(z) ∈Vk.
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