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Abstract. For a ring R with an automorphism α a 4-additive mapping D : R4 −→ R is called a skew 4-derivation

w.r.t. α if it is a α-derivation of R for each argument. Namely it is always an α-derivation of R for the argument

being left once (3) arguments are fixed by (3) elements in R. In the present note, begin with a result of Jung and

Park [5], we prove that if a skew 4-derivation D associated with an automorphism α with trace f of a noncommu-

tative prime ring R under suitable torsion condition satisfying [ f (x),α(x)] = 0 for all x ∈ I, a nonzero ideal of R,

then D = 0.
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1. Introduction

Throughout the paper R will denote a ring with centre Z(R). A ring R is said to be prime (

resp. semiprime) if aRb = (0) implies that either a = 0 or b = 0 ( resp. aRa = (0) implies that

a= 0). We shall write [x,y] the commutator xy−yx. We make extensive use of basic commutator

identities [xy,z] = [x,z]y+x[y,z] and [x,yz] = [x,y]z+y[x,z]. An additive mapping d : R−→ R is

called a derivation if d(xy) = d(x)y+xd(y), for all x,y∈ R. A derivation d is inner if there exists
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an element a∈R such that d(x)= [a,x] for all x∈R. A mapping D(., .) : R×R−→R is said to be

symmetric if D(x,y) =D(y,x), for all x,y∈R. A mapping f : R−→R defined by f (x) =D(x,x),

where D(., .) : R×R−→ R is a symmetric mapping, is called the trace of D. It is obvious that in

the case D(., .) : R×R −→ R is a symmetric mapping which is also biadditive (i.e. additive in

both arguments), the trace f of D satisfies the relation f (x+y) = f (x)+ f (y)+2D(x,y), for all

x,y ∈ R. A biadditive mapping D : R×R−→ R is said to be a biderivation if for every x ∈ R, the

map y 7→D(x,y) as well as if for every y∈R, the map x 7→D(x,y) are derivations of R. G. Maksa

[6] introduced the concept of a symmetric biderivation (see also [7], where an example can be

found). It was shown in [6] that symmetric biderivations are related to general solution of some

functional equations. Some results on symmetric biderivation in prime and semiprime rings can

be found in [1, 2, 8, 9]. The notion of additive commuting mappings is closely connected with

the notion of biderivations. Namely linearizing [x, f (x)] = 0 for all x,y ∈ R, (x,y) 7→ [ f (x),y] is

a biderivation (moreover, all derivations appearing are inner). There has been ongoing interest

concerning the relationship between the commutativity of a ring and the existence of certain

specific types of derivations.

An additive mapping d : R −→ R is called a skew derivation (α-derivation) of R associated

with an automorphism α if d(xy) = d(x)y+α(x)d(y), for all x,y ∈ R. Skew derivations are one

of the natural generalization of usual derivations, when α = I, the identity map on R. A mapping

D : R4 −→ R is said to be 4-additive if its additive in each argument and it is called symmetric if

D(x1,x2,x3,x4) = D(xπ(1),xπ(2),xπ(3),xπ(4)) for all x1, ...,x4 ∈ R and every permutation π ∈ S4.

A 4-additive map D : R4 −→ R is called a skew 4−derivation associated with an automorphism

α if for every x1,x2,x3 ∈ R, the map x 7−→ D(x1,x2,x3,x) is a skew derivation of R associated

with an automorphism α .

Example Let R be a commutative ring, α be an automorphism of R. Suppose d : R −→ R is a

skew derivation of R with an automorphism α . Then a map δ : R4−→R defined as δ (w,x,y,z)=

d(w)d(x)d(y)d(z) for all w,x,y,z ∈ R is a symmetric skew 4-derivation on R associated with

automorphism α .

A trivial generalization of skew n-derivation for n ≥ 1 is defined as follows: A mapping

D : Rn−→ R is said to be n additive if it is additive in each argument and it is called symmetric if

D(x1,x2, ....,xn) =D(xπ(1),xπ(2), .....xπ(n)) for all x1,x2, ...,xn ∈R and every permutation π ∈ Sn.

An n-additive map D : Rn −→ R is called a skew n−derivation associated with automorphism
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α if for every k = 1,2, .,n and all x1,x2, .......xn ∈ R, the map x 7−→ D(x1,xk−1,x,xk+1, ...,xn) is

a skew derivation of R associated with automorphism α . This definition covers both the notion

of skew derivations as well as the notion of skew biderivation. Namely, a skew 1-derivation is a

skew derivation and skew 2-derivation is a skew biderivation.

In 1957, Posner [10] proved a very striking theorem, which states that the existence of a

nonzero centralizing derivation on a prime ring forces the ring to be commutative. This theo-

rem has been extremely influential and it initiated the study of centralizing mappings. Further

Vukman [9] extend above result for biderivations. Recently Jung and Park [5] considered per-

muting 3-derivations on prime and semiprime rings and obtained the following: Let R be a

noncommutative 3-torsion free semiprime ring and let I be a nonzero two sided ideal of R. Sup-

pose that there exists a permuting 3-derivation D : R3 −→ R such that f is centralizing on I.

Then f is commuting on I. Very recently above mentioned results extend by Fosner, A. in [3].

Motivated by all these observations, we prove the following theorems. Moreover, at the end we

present some corollaries and open problems.

2. Main Results

Theorem 2.1 Let R be a 2, 3-torsion free noncommutative prime ring and I be a nonzero ideal

of R. Suppose α is an automorphism of R and D : R4 −→ R is a symmetric skew 4-derivation

associated with α . If f is a trace of D such that [ f (x),α(x)] = 0 for all x ∈ I, then D = 0.

Proof. Let

(1) [ f (x),α(x)] = 0 for all x ∈ I.

Linearization of (1) yields that

(2)

[ f (x),α(x)]+4[D(x,x,x,y),α(x)]+6[D(x,x,y,y),α(x)]+4[D(x,y,y,y),α(x)]

+[ f (y),α(x)]+ [ f (x),α(y)]+4[D(x,x,x,y),α(y)]+6[D(x,x,y,y),α(y)]

+4[D(x,y,y,y),α(y)]+ [ f (y),α(y)] = 0 for all x,y ∈ I.

In view of (1), (2) yields that

(3)

4[D(x,x,x,y),α(x)]+6[D(x,x,y,y),α(x)]+4[D(x,y,y,y),α(x)]

+[ f (y),α(x)]+ [ f (x),α(y)]+4[D(x,x,x,y),α(y)]

+6[D(x,x,y,y),α(y)]+4[D(x,y,y,y),α(y)] = 0 for all x,y ∈ I.
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Replacing y by −y in (3) we find

(4)

−4[D(x,x,x,y),α(x)]+6[D(x,x,y,y),α(x)]−4[D(x,y,y,y),α(x)]

+[ f (y),α(x)]− [ f (x),α(y)]+4[D(x,x,x,y),α(y)]

−6[D(x,x,y,y),α(y)]+4[D(x,y,y,y),α(y)] = 0 for all x,y ∈ I.

Comparing (3) and (4) and using 2-torsion freeness of R we get

(5)
4[D(x,x,x,y),α(x)]+4[D(x,y,y,y),α(x)]

+[ f (x),α(y)]+6[D(x,x,y,y),α(y)] = 0 for all x,y ∈ I.

Substitute y+ z for y in (5) and use (5) to get

(6)
12[D(x,y,z,z),α(x)]+12[D(x,z,y,y),α(x)]+ [D(x,x,y,z),α(y)]+6[D(x,x,z,z),α(y)]

+6[D(x,x,y,y),α(z)]+12[D(x,x,y,z),α(z)] = 0 for all x,y,z ∈ I.

Replacing z by −z in (6) and compare with (6) we obtain

(7)
12[D(x,z,y,y),α(x)]+12[D(x,x,y,z),α(y)]

+6[D(x,x,y,y),α(z)] = 0 for all x,y,z ∈ I.

Substitute y+u for y in (7) and use (7) we get

(8)
24[D(x,z,y,u),α(x)]+12[D(x,x,y,z),α(u)]+12[D(x,x,u,z),α(y)]

+12[D(x,x,y,u),α(z)] = 0 for all u,x,y,z ∈ I.

Since R is 2 and 3 -torsion free and replacing y,u by x in (8), we have

(9) 4[D(x,x,x,z),α(x)]+ [ f (x),α(z)] = 0 for all x,z ∈ I.

Again replace z by zy in (9) and using (9) we obtain

(10)
4[D(x,x,x,z),α(x)]y+4D(x,x,x,z)[y,α(x)]

+4[α(z),α(x)]D(x,x,x,y)+ [ f (x),α(z)]α(y) = 0 for all x,y,z ∈ I.

Substitute x for z in (10) and in view of (1) we find

(11) 4 f (x)[y,α(x)] = 0 for all x,y ∈ I.

Using 2-torsion freeness of R we obtain

(12) f (x)[y,α(x)] = 0 for all x,y ∈ I.

Substitute yz for y to get

(13) f (x)y[z,α(x)] = 0 for all x,y,z ∈ I.
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Primeness of R yields that either f (x) = 0 or [z,α(x)] = 0 for all x ∈ I \Z(R), z ∈ I.

Next we will show that f (x) = 0 for all x ∈ I. Let z ∈ I∩Z(R) and x ∈ I \Z(R). Then

x+ z,x− z ∈ I \Z(R)

and we have

(14) 0 = f (x+ z) = f (z)+4D(x,x,x,z)+4D(x,z,z,z)+6D(x,x,z,z)

and

(15) 0 = f (x− z) = f (z)−4D(x,x,x,z)−4D(x,z,z,z)+6D(x,x,z,z)

Comparing the last two relation and using torsion condition, we get

(16) f (z)+6D(x,x,z,z) = 0.

On suitable linearization and using (16) we arrive at f (x) = 0 for all x ∈ I. Hence we have

D(x,y,z,w) = 0 for all x,y,z,w ∈ I. Substitute rx for x for all x ∈ I, r ∈ R to get

(17) 0 = D(rx,y,z,w) = D(r,y,z,w)x+α(r)D(x,y,z,w) = D(r,y,z,w)x.

This implies that D(r,y,z,w)I = 0 for all y,z,w∈ I, r∈R. Since R is prime we obtain D(r,y,z,w)=

0 for all y,z,w∈ I, r ∈ R. Repeating this process untill we get D(r,s, t, p) = 0 for all r,s, t, p∈ R.

Hence D = 0.

In [8], author proved that: let R be a 2-torsion free semiprime ring. Suppose that there exists

a symmetric biderivation D : R2 −→ R such that D( f (x),x) = 0 for all x ∈ R, where f denotes

the trace of D. Then we have D = 0. We consider the case when the ring is semiprime and

replace symmetric biderivation with symmetric skew 3-derivation. In this sense we obtain the

following:

Theorem 2.2. Let R be a 2, 3-torsion free semiprime ring and D : R3 −→ R be a symmetric

skew 3-derivation of R with trace f such that D( f (x),x,x) = 0 for all x ∈ R. Then D = 0.

Proof. Let

(18) D( f (x),x,x) = 0 for all x ∈ R.
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Linearization yields that

(19)

D( f (x),x,x)+3D(D(x,x,y),x,x)+3D(D(y,y,x),x,x)

+D( f (y),x,x)+2D( f (x),x,y)+6D(D(x,x,y),x,y)

+6D(D(y,y,x),x,y)+2D( f (y),x,y)+D( f (x),y,y)

+3D(D(x,x,y),y,y)+3D(D(y,y,x),y,y)+D( f (y),y,y) = 0 for all x,y ∈ R.

Comparing (18) and (19) we have

(20)

3D(D(x,x,y),x,x)+3D(D(y,y,x),x,x)+D( f (y),x,x)+2D( f (x),x,y)

+6D(D(x,x,y),x,y)+6D(D(y,y,x),x,y)+2D( f (y),x,y)+D( f (x),y,y)

+3D(D(x,x,y),y,y)+3D(D(y,y,x),y,y) = 0 for all x,y ∈ R.

Replace y by −y in (20) to get

(21)

−3D(D(x,x,y),x,x)+3D(D(y,y,x),x,x)+D( f (y),x,x)−2D( f (x),x,y)

+6D(D(x,x,y),x,y)−6D(D(y,y,x),x,y)−2D( f (y),x,y)+D( f (x),y,y)

−3D(D(x,x,y),y,y)+3D(D(y,y,x),y,y) = 0 for all x,y ∈ R.

Subtracting (21) and (20) we obtain

(22)
6D(D(x,x,y),x,x)+2D( f (y),x,x)+4D( f (x),x,y)

+12D(D(y,y,x),x,y)+6D(D(x,x,y),y,y) = 0 for all x,y ∈ R.

Substitute y+ z for y in (22) and use (22) we find

(23)

6D(D(z,z,y),x,x)+6D(D(y,y,z),x,x)+12D(D(y,y,x),x,z)

+12D(D(z,z,x),x,y)+24D(D(y,z,x),x,y)+24D(D(y,z,x),x,z)

+6D(D(x,x,z),y,y)+12D(D(x,x,y),y,z)

+12D(D(x,x,z),y,z)+6D(D(x,x,y),z,z) = 0 for all x,y,z ∈ R.

Replacing y by −y in (23) we have

(24)

−6D(D(z,z,y),x,x)+6D(D(y,y,z),x,x)+12D(D(y,y,x),x,z)

−12D(D(z,z,x),x,y)+24D(D(y,z,x),x,y)−24D(D(y,z,x),x,z)

+6D(D(x,x,z),y,y)+12D(D(x,x,y),y,z)

−12D(D(x,x,z),y,z)−6D(D(x,x,y),z,z) = 0 for all x,y,z ∈ R.

Adding (23)and (24) and using 2-torsion freeness of R we get

(25)
6D(D(y,y,z),x,x)+12D(D(y,y,x),x,z)+24D(D(y,z,x),x,y)

+6D(D(x,x,z),y,y)+12D(D(x,x,y),y,z) = 0 for all x,y,z ∈ R.
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Again replacing z by zw in (25) and using (25) we obtain

(26)

6D(y,y,z)D(w,x,x)+6D(α(z),x,x)D(y,y,w)

+24D(y,z,x)D(w,x,y)+24D(α(z),x,y)D(w,x,y)

+6D(x,z,x)D(w,y,y)+6D(α(z),y,y)D(x,x,w) = 0 for all w,x,y,z ∈ R.

Substitute x for y and use symmetry of D and apply torsion condition to get

(27) D(x,z,x)D(w,x,x)+D(α(z),x,x)D(x,x,w) = 0 for all w,x,z ∈ R.

Since α is an automorphism of R and using torsion freeness of R, we have D(x,z,x)D(w,x,x) =

0 for all w,x,z ∈ R. Using the symmetry of D we get

(28) D(x,x,z)D(w,x,x) = 0 for all w,x,z ∈ R.

Replacing z by zu in (28) and using (28) we have

(29) D(x,x,z)uD(w,x,x) = 0 for all u,w,x,z ∈ R.

Semiprimeness of R yields that D(w,x,x) = 0 for all w,x ∈ R. A suitable linearization implies

that D(w,x,y) = 0 for all w,x,y ∈ R. Hence D = 0.

Theorem 2.3. Let R be a 2, 3-torsion free semiprime ring and I a nonzero ideal of R. If D is a

symmetric skew 3-derivation of R with trace f such that D(I, I, I)⊆ I and D( f (x),x,x) = 0 for

all x ∈ I. Then D = 0.

To prove above theorem we require the following lemma:

Lemma 2.1 [4] If R is a semiprime ring and I is an ideal of R, then I ∩ ann(I) = (0), where

ann(I) denotes the annihilator of I.

Proof of theorem 2.3 Application of Lemma 2.1 and Theorem 2.2 yields the required result.

Corollary 2.1. Let R be a 2, 3-torsion free prime ring and I be a nonzero ideal of R. If

D : R3 −→ R is a symmetric skew 3-derivation of R with trace f such that D( f (x),x,x) = 0 for

all x ∈ I. Then D = 0.

Corollary 2.2. Let R be a 2, 3-torsion free prime ring and I be a nonzero ideal of R. If

D : R3 −→ R is a symmetric 3-derivation of R with trace f such that D( f (x),x,x) = 0 for all

x ∈ I. Then D = 0.
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Conjecture 2.1. Let R be a noncommutative prime ring under suitable torsion restriction and I

be a nonzero ideal of R. Suppose α is automorphism of R and D : Rn −→ R is a symmetric skew

n-derivation associated with α . If f is the trace of D such that [ f (x),α(x)] = 0 for all x ∈ I,

then D = 0.

Conjecture 2.2. Let R be a semiprime ring with suitable torsion restriction and D : Rn −→ R be

a symmetric skew n-derivation of R with trace f such that D( f (x),x,x, ......,x︸ ︷︷ ︸
(n−1)−times

) = 0 for all x ∈ R.

Then D = 0.
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