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Abstract. In this paper, we first define the multiplier operator Jm,δ
c,p,λ in terms of Komatu integral

operator. Then we define new classes of p−valent starlike and convex functions with complex

order. The main object is to obtain coefficient inequalities for functions belonging to the newly

defined classes. Also we get coefficient inequalities for functions in certain subclass satisfying a

nonhomogeneous Cauchy-Euler differential equation. Several particular results (known or new)

of the main theorems are mentioned.
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1. Introduction

Let A(p, n) be the class of functions f(z) of the form

f(z) = zp +
∞∑

k=p+n

akz
k (p, n ∈ N) (1)
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that are analytic and p−valent in the open unit disk U = {z : z ∈ C, | z |< 1}

The generalized Komatu integral operatot Kδc,p : A(p, n) → A(p, n) is defined for δ > 0

and c > −p as

Kδc,pf(z) =
(c+ p)δ

Γ(δ)zc

z∫
0

tc−1
(

log
z

t

)δ−1
f(t)dt, (2)

and K0
c,pf(z) = f(z).

For f(z) ∈ A(p, n), it can be easily verified that

Kδc,pf(z) = zp +
∞∑

k=p+n

(
c+ p

c+ k

)δ
akz

k (3)

Now, in terms of Kδc,p, we introduce the linear multiplier operator Jm,δ
c,p,λ : A(p, n) →

A(p, n) as follows:

J 0,0
c,p,λf(z) = f(z)

J 1,δ
c,p,λf(z) = (1− λ)Kδc,pf(z) +

λz

p
(Kδc,pf(z))

′
= J δ

c,p,λf(z)

J 2,δ
c,p,λf(z) = J δ

c,p,λ(J
1,δ
c,p,λf(z))

· (4)

·

·

Jm,δ
c,p,λf(z) = J δ

c,p,λ(J
m−1,δ
c,p,λ f(z))

for δ > 0, c > −p, λ ≥ 0 and m ∈ N.

If f ∈ A(p, n) is given by (1), then making use of (3) and (4) we conclude that

Jm,δ
c,p,λf(z) = zp +

∞∑
k=p+n

Bk,m(c, p, λ, δ)akz
k, (5)

where

Bk,m(c, p, λ, δ) =

[(
c+ p

c+ k

)δ
(1 +

λ

p
(k − p))

]m
(6)
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Now if f(z), g(z) ∈ A(p, n), where g(z) = zp +
∑∞

k=p+n bkz
k, then the Hadamard product

(or convolution) is defined as

f(z) ∗ g(z) = zp +
∞∑

k=p+n

akbkz
k (7)

It can be easily verified that

(i) z
(
Jm,δ
c,p,λf(z)

)′
= (c+ p)Jm,δ− 1

m
c,p,λ f(z)− cJm,δ

c,p,λf(z)

(ii) Jm+1,δ
c,p,λ f(z) = Jm,δ

c,p,λf(z) ∗ J δ
c,p,λf(z),

(iii)Jm,δ+1
c,p,λ f(z) = Jm,δ

c,p,λf(z) ∗ Kmc,pf(z)

and

(iv) Jm,δ
c,p,λf(z) = [ϕ(z) ∗ . . . ∗ ϕ(z)]︸ ︷︷ ︸ ∗

m−times

Kδmc,p f(z)

where

ϕ(z) = zp
[
1 +

(
1 +

λ

p
(n− 1)

)
zn

1− z
+
λ

p

zn

(1− z)2

]

Remark 1:

(i) J 1,δ
c,p,0 ≡ Kδc,p which is the generalized Komatu integral operator [8]

(ii) J 1,δ
c,1,0 ≡ Pδc which is the integral operator studied by Komatu [9] and Raina and Bapna

[11]

(iii) J 1,δ
1,p,0 ≡ Iδp which is the integral operator studied by Shams et al. [13] and Ebadian

et al. [6]

(iv) J 1,1
c,1,0 ≡ Lc which is the Bernardi-Libra-Livingston integral operator [3]

(v) J 1,δ
1,1,0 ≡ Iδ which is the integral operator studied by Ebadian and Najafzadeh [5].

(vi) Jm,0
c,1,λ ≡ Dmλ which is the generalized Sălăgean operator studied by Al-Oboudi [1].

(vii) Jm,0
c,1,0 ≡ Dm which is the Sălăgean operator [12].

Now, we define the class Sm,δc,λ (β, b, p, n) for functions f ∈ A(p, n) satisfying

Re

1 +
1

b

1

p

z
(
Jm,δ
c,p,λf(z)

)′
Jm,δ
c,p,λf(z)

− 1


 > β (8)
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and the class Vm,δc,λ (β, b, p, n) for functions f ∈ A(p, n) satisfying

Re

1− 1

b
+

1

bp

1 +
z
(
Jm,δ
c,p,λf(z)

)′′
(
Jm,δ
c,p,λf(z)

)′

 > β (9)

where z ∈ U , b ∈ C\{0} , 0 ≤ β < 1 and Jm,δ
c,p,λf(z) is the linear multiplier operator

defined by (4).

Note that f ∈ Vm,δc,λ (β, b, p, n) if and only if 1
p
zf ′(z) ∈ Sm,δc,λ (β, b, p, n).

Now, let us introduce the class SVm,δc,λ (β, b, p, n, µ) of functions f ∈ A(p, n) satisfying

the inequality

Re

1 +
1

b

1

p

z

(
1

1+µ(p−1)

[
µz
(
Jm,δ
c,p,λf(z)

)′
+ (1− µ)Jm,δ

c,p,λf(z)

])′
1

1+µ(p−1)

[
µz
(
Jm,δ
c,p,λf(z)

)′
+ (1− µ)Jm,δ

c,p,λf(z)

] − 1


 > β

(10)

where z ∈ U and Jm,δ
c,p,λf(z) is the linear multiplier operator defined by (4) and where (and

throughout the paper unless otherwise stated), the parameters m,n, p, b, c, δ, λ, β and µ

are constrained as follows:

m,n, p ∈ N, c > −p, b ∈ C\{0}, δ > 0, λ ≥ 0, 0 ≤ β < 1 and 0 ≤ µ < 1.

Remark 2:

(i) SVm,δc,λ (β, b, p, n, 0) = Sm,δc,λ (β, b, p, n)

(ii) SVm,δc,λ (β, b, p, n, 1) = Vm,δc,λ (β, b, p, n)

(iii) SV0,0
c,λ(β, b, 1, 1, µ) = SV1,0

c,0(β, b, 1, 1, µ) ≡ SC(b, µ, β) which is the class defined and

studied by Altintaş et al. [2].

(iv) SV0,0
c,λ(0, b, 1, 1, 0) ≡ S(b) and SV0,0

c,λ(0, b, 1, 1, 1) ≡ C(b) which are the classes studied

by Nasr and Aouf [10].

Now we define the class Em,δc,λ (β, b, p, n, µ, η) for functions f ∈ A(p, n) satisfying the non-

homogeneous Cauchy-Euler differential equation

z2
d2ω

dz2
+ 2(1 + η)z

dω

dz
+ η(1 + η)ω = (p+ η)(p+ 1 + η)g(z) (11)
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where ω = f(z), g(z) ∈ SVm,δc,λ (β, b, p, n, µ), η > −p (η ∈ R) and the other parameters

are constrained as above.

The purpose of the present investigation is to obtain coefficient bounds for the classes

SVm,δc,λ (β, b, p, n, µ) and Em,δc,λ (β, b, p, n, µ, η) , from which we can also get coefficient bounds

for the other mentioned classes.

2. Coefficient Inequalities for the Class SVm,δc,λ (β, b, p, n, µ)

Theorem 2.1. Let the function f ∈ A(p, n) be defined by (1). If the function f belongs

to the class SVm,δc,λ (β, b, p, n, µ) , then

|ap+n| ≤
[1 + µ(p− 1)] 2pm+1 |b| (1− β)(c+ p+ n)δm

[1 + µ(p+ n− 1)]n(c+ p)δm(p+ λn)m
, (12)

|ak| ≤
[1 + µ(p− 1)] 2pm+1 |b| (1− β)(c+ k)δm(n− 1)!

[1 + µ(k − 1)] (c+ p)δm [p+ λ(k − p)]m (k − p)!

×
k−p−n−1∏

j=0

[(n+ j) + 2p |b| (1− β) ] , (13)

for k ≥ p+ n+ 1

Proof. Define the function F (z) by

F (z) =
1

1 + µ(p− 1)

[
µz
(
Jm,δ
c,p,λf(z)

)′
+ (1− µ)Jm,δ

c,p,λf(z)

]
, (14)

then for f ∈ A(p, n), we have

F (z) = zp +
∞∑

k=p+n

Akz
k (15)

where

Ak = Bk,m(c, p, λ, δ)

[
1 + µ(k − 1)

1 + µ(p− 1)

]
ak

=
[1 + µ(k − 1)] (c+ p)δm [p+ λ(k − p)]m

[1 + µ(p− 1)] pm(c+ k)δm
ak (16)

Thus, from (10) and (14), we get

Re

{
1 +

1

b

(
1

p

zF ′(z)

F (z)
− 1

)}
> β, (z ∈ U)
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Define the function q(z) by

q(z) =
1 + 1

b

(
1
p
zF ′(z)
F (z)

− 1
)
− β

1− β
, (z ∈ U)

Hence, q(z) is an analytic function in U with q(0) = 1 and Re(q(z)) > 0. Let q(z) =

1 + q1z + q2z
2 + . . . , then we get

1 +
1

b

(
1

p

zF ′(z)

F (z)
− 1

)
= (1− β)

(
q1z + q2z

2 + + . . .
)

(17)

which is equivalent to

zF ′(z)− pF (z) = pb(1− β)F (z)

Expressing F (z) in its series form as in (15), and the equating coefficients of zk(k ≥ p+n),

thus (17) implies

(k − p)Ak = pb(1− β)

(
qk−p +

k−1∑
e=p+n

Aeqk−e

)

Setting k = p+ n+ r (r ∈ N0), then

(n+ r)Ap+n+r = pb(1− β)

(
qn+r +

p+n+r−1∑
e=p+n

Aeqp+n+r−e

)

Since q(z) is a Carathéodory function, then |qk| ≤ 2 (k ∈ N) [4], then we obtain

|Ap+n+r| ≤
2p |b| (1− β)

n+ r
(1 + |Ap+n|+ . . .+ |Ap+n+r−1|)

which for r = 0, 1, 2 implies

|Ap+n| ≤
2p |b| (1− β)

n
,

|Ap+n+1| ≤
2p |b| (1− β)

n+ 1
(1 + |Ap+n|) ≤

2p |b| (1− β) (n+ 2p |b| (1− β))

n(n+ 1)
,

and

|Ap+n+2| ≤
2p |b| (1− β)

n+ 1
(1 + |Ap+n|+ |Ap+n+1|)

≤ 2p |b| (1− β) (n+ 2p |b| (1− β)) ((n+ 1) + 2p |b| (1− β))

n(n+ 1)(n+ 2)
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respectively. Making use of mathematical induction yields

|Ap+n+r| ≤
2p |b| (1− β)

n(n+ 1) · · · (n+ r)

r−1∏
j=0

[(n+ j) + 2p |b| (1− β)]

=
2p |b| (1− β)(n− 1)!

(n+ r)!

r−1∏
j=0

[(n+ j) + 2p |b| (1− β)]

for r ≥ 1. So, we have

|Ap+n| ≤
2p |b| (1− β)

n
, (18)

and

|Ak| ≤
2p |b| (1− β)(n− 1)!

(k − p)!

k−p−n−1∏
j=0

[(n+ j) + 2p |b| (1− β)] (19)

for k ≥ n + p + 1. Hence making use of (16) , we readily get the inequalities (12) and

(13), and the proof is complete.

By choosing suitable values of the parameters m, δ, c, λ, β, b, p, n and µ in Theorem 2.1,

we deduce particular results. Some of these special cases are mentioned in the corollaries

below.

Setting µ = 0 and µ = 1, respectively, in Theorem 2.1, we get

Corollary 2.2. If a function f(z) ∈ A(p, n) is in the class Sm,δc,λ (β, b, p, n), then

|ap+n| ≤
2pm+1 |b| (1− β)(c+ p+ n)δm

n(c+ p)δm(p+ λn)m
,

|ak| ≤
2pm+1 |b| (1− β)(c+ k)δm(n− 1)!

(c+ p)δm [p+ λ(k − p)]m (k − p)!

k−p−n−1∏
j=0

[(n+ j) + 2p |b| (1− β) ] ,

for k ≥ p+ n+ 1.

Corollary 2.3. If a function f(z) ∈ A(p, n) is in the class Vm,δc,λ (β, b, p, n), then

|ap+n| ≤
2pm+2 |b| (1− β)(c+ p+ n)δm

(p+ n)(c+ p)δm(p+ λn)m
,

|ak| ≤
2pm+2 |b| (1− β)(c+ k)δm(n− 1)!

k(c+ p)δm [p+ λ(k − p)]m (k − p)!

k−p−n−1∏
j=0

[(n+ j) + 2p |b| (1− β) ] ,
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for k ≥ p+ n+ 1.

For m = 1 and λ = 0, then J 1,δ
c,p,0 ≡ Kδc,p and SV1,δ

c,0(β, b, p, n, µ) ≡ SVδc(β, b, p, n, µ)

which is the class of all functions f(z) ∈ A(p, n) satisfying the inequality defined by re-

placing Kδc,pf(z) instead of Jm,δ
c,p,λf(z) in (10).

Corollary 2.4. If a function f(z) ∈ A(p, n) is in the class SVδc(β, b, p, n, µ), then

|ap+n| ≤
[1 + µ(p− 1)] 2p |b| (1− β)(c+ p+ n)δ

[1 + µ(p+ n− 1)]n(c+ p)δ
,

|ak| ≤
[1 + µ(p− 1)] 2p |b| (1− β)(c+ k)δ(n− 1)!

[1 + µ(k − 1)] (c+ p)δ(k − p)!

k−p−n−1∏
j=0

[(n+ j) + 2p |b| (1− β) ] ,

for k ≥ p+ n+ 1

Also, for m = 1 and λ = 1, then J 1,δ
c,p,1f(z) ≡ z

p

(
Kδc,pf(z)

)′
and SV1,δ

c,1(β, b, p, n, µ) ≡

SWδ
c(β, b, p, n, µ) which is the class of all functions f(z) ∈ A(p, n) satisfying the inequal-

ity defined by replacing z
p

(
Kδc,pf(z)

)′
instead of Jm,δ

c,p,λf(z) in (10).

Corollary 2.5. If a function f(z) ∈ A(p, n) is in the class SWδ
c(β, b, p, n, µ), then

|ap+n| ≤
[1 + µ(p− 1)] 2p2 |b| (1− β)(c+ p+ n)δ

[1 + µ(p+ n− 1)]n(c+ p)δ(p+ n)
,

|ak| ≤
[1 + µ(p− 1)] 2p2 |b| (1− β)(c+ k)δ(n− 1)!

[1 + µ(k − 1)] (c+ p)δk(k − p)!

k−p−n−1∏
j=0

[(n+ j) + 2p |b| (1− β) ] ,

for k ≥ p+ n+ 1.

Also if A ≡ A(1, 1) which is the class of all functions f(z) = z +
∑∞

k=2 akz
k that are

analytic and univalent in U . So, we have the following known coefficient bounds.

Corollary 2.6. (cf, e.g. Altintaş et al. [2]) If a function f(z) ∈ A is in the class

SC(b, µ, β), then

|ak| ≤
∏k−2

j=0 [j + 2p |b| (1− β) ]

[1 + µ(k − 1)] (k − 1)!
,
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for k ≥ 2.

Corollary 2.7. (cf, e.g. Nasr and Aouf [10]) If a function f(z) ∈ A is in the class

S(b), then

|ak| ≤
∏k−2

j=0 (j + 2 |b|)
(k − 1)!

,

for k ≥ 2.

Corollary 2.8. (cf, e.g. Nasr and Aouf [10]) If a function f(z) ∈ A is in the class

C(b), then

|ak| ≤
∏k−2

j=0 (j + 2 |b|)
k!

,

for k ≥ 2.

3. Coefficient Inequalities for the Class Em,δc,λ (β, b, p, n, µ, η)

Theorem 3.1. Let the function f ∈ A(p, n) be defined by (1). If the function f belongs

to the class Em,δc,λ (β, b, p, n, µ, η), then

|ap+n| ≤
(p+ η)(p+ η + 1) [1 + µ(p− 1)] 2pm+1 |b| (1− β)(c+ p+ n)δm

(p+ n+ η)(p+ n+ η + 1) [1 + µ(p+ n− 1)]n(c+ p)δm(p+ λn)m
, (20)

|ak| ≤
(p+ η)(p+ η + 1) [1 + µ(p− 1)] 2pm+1 |b| (1− β)(c+ k)δm(n− 1)!

(k + η)(k + η + 1) [1 + µ(k − 1)] (c+ p)δm [p+ λ(k − p)]m (k − p)!

×
k−p−n−1∏

j=0

[(n+ j) + 2p |b| (1− β) ] , (21)

for k ≥ p+ n+ 1 and η > −p (η ∈ R).

Proof. f(z) ∈ A(p, n) given by (1) and g(z) = zp +
∑∞

k=p+n bkz
k ∈ SVm,δc,λ (β, b, p, n, µ)

, then by the Cauchy-Euler differential equation (11), we get

ak =
(p+ η)(p+ η + 1)

(k + η)(k + η + 1)
bk
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where fork ≥ p + n + 1 and η > −p (η ∈ R). Since bk satisfies the inequalities (12) and

(13) in Theorem (2.1), then we get readily the inequalities (20) and (21) which completes

the proof of the theorem.

Corollary 3.2. Let the function f ∈ A(p, n) satisfy the Cauchy-Euler differential

equation given by (11) such that g(z) ∈ Sm,δc,λ (β, b, p, n), then

|ap+n| ≤
(p+ η)(p+ η + 1)2pm+1 |b| (1− β)(c+ p+ n)δm

(p+ n+ η)(p+ n+ η + 1)n(c+ p)δm(p+ λn)m
,

|ak| ≤
(p+ η)(p+ η + 1)2pm+1 |b| (1− β)(c+ k)δm(n− 1)!

(k + η)(k + η + 1)(c+ p)δm [p+ λ(k − p)]m (k − p)!

×
k−p−n−1∏

j=0

[(n+ j) + 2p |b| (1− β) ] ,

for k ≥ p+ n+ 1 and η > −p (η ∈ R).

Corollary 3.3. Let the function f ∈ A satisfy the Cauchy-Euler differential equation

given by (11) such that g(z) ∈ Vm,δc,λ (β, b, p, n), then

|ap+n| ≤
(p+ η)(p+ η + 1)2pm+2 |b| (1− β)(c+ p+ n)δm

(p+ n+ η)(p+ n+ η + 1)(p+ n)n(c+ p)δm(p+ λn)m
,

|ak| ≤
(p+ η)(p+ η + 1)2pm+2 |b| (1− β)(c+ k)δm(n− 1)!

(k + η)(k + η + 1)k(c+ p)δm [p+ λ(k − p)]m (k − p)!

×
k−p−n−1∏

j=0

[(n+ j) + 2p |b| (1− β) ] ,

for k ≥ p+ n+ 1 and η > −p (p ∈ R).

Corollary 3.4. Let the function f ∈ A satisfy the Cauchy-Euler differential equation

z2
d2ω

dz2
+ 2(1 + η)z

dω

dz
+ η(1 + η)ω = (1 + η)(2 + 1 + η)g(z)

where ω = f(z) and g(z) ∈ SC(b, µ, β), then

|ak| ≤
(1 + η)(2 + η)

∏k−2
j=0 [j + 2p |b| (1− β) ]

(k + η)(k + η + 1) [1 + µ(k − 1)] (k − p)!
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for k ≥ 2 and η > −1 (η ∈ R).
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