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Abstract. In this work, a combined form of the Laplace transform method (LTM) with the differential

transform method (DTM) will be used to solve non-homogeneous linear partial differential equations

(PDEs). The combined method is capable of handling non-homogeneous linear partial differential equa-

tions with variable coefficient. The aim of using the Laplace transform is to overcome the deficiency that

is caused by unsatisfied boundary conditions in using differential transform method. Illustrative examples

will be examined to support the proposed analysis.

Keywords: Differential transform method (DTM); Laplace transform method (LTM); Non-homogenous

PDEs.

2000 AMS Subject Classification: 41A58; 44A10; 35K05; 35L05

1. Introduction

Many interesting phenomena in scientific and engineering applications are governed by partial differen-

tial equations, employed to model innumerable nonlinear phenomenon, for instance in solid state physics,

plasma physics, fluid dynamics, mathematical biology and chemical kinetics. The wave equation, heat

equation and Laplaces equations are known as three fundamental equations in mathematical physics, and
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occur in many branches of physics, in applied mathematics as well as in engineering. It is also known

that there are two types of these equations, the homogeneous equations that have constant coefficients

with many classical solutions, and the non-homogeneous equations with constant coefficients. Most of

these types of equations do not have an analytical solution, these equations should be solved by using

numerical or approximate methods. In the last decade, there has been some advanced developments

including, Adomian decomposition method [2, 12], Differential transform method [3, 7], Variational it-

eration method [4, 6, 8], and Homotopy perturbation method [5, 13] for solving various types of partial

differential equations (PDEs).

The recent development, so-called the Laplace Homotopy Perturbation Method (LHPM) [9], which cou-

pled the homotopy perturbation method (HPM) and the Laplace transform being used to solve one-

dimensional non-homogeneous partial differential equations with variable coefficients. DTM can be used

to solve linear or nonlinear non-homogeneous PDEs with accurate approximation, which is acceptable for

a small range, because boundary conditions are satisfied via the method, and the remaining unsatisfied

conditions play no roles in the final results [9]. The aim of using the Laplace transform is to overcome the

deficiency that is mainly caused by the unsatisfied conditions. A combined form of the Laplace transform

method with the ADM was developed in [11] for analytic treatment of the of the nonlinear Volterra

integro-differential equations.

The basic motivation of this work, is to propose a new modification of DTM, which is based on a

combination of the Laplace transform and the differential transform methods, called (LDTM), that will

be used together to establish exact solutions, or approximations of homogeneous and non-homogeneous

partial differential equations. In [9] the numerical experiments show that it works well when coupling

the Laplace transform with HPM. Therefore, as mentioned above, the objective of this paper is to show

that the LDTM offers a reasonable, reliable solution to PDEs. To demonstrate this we intend to solve

several examples in the succeeding sections considering the homogenous, non-homogenous, linear partial

differential equations. We observe that the LDTM shows its validity and potential for the solution of

non-homogenous, linear partial differential equations in science and engineering applications.

2. Basic idea of the LDTM

To illustrate the basic idea of this method, we consider the general form of one-dimensional non-

homogeneous partial differential equations with a variable coefficients of the form [9]

(1) ut + a0(x)u+ a1(x)ux + a2(x)uxx = f(x, t), t > 0, x > 0,



692 MARWAN ALQURAN∗, KAMEL AL-KHALED, MOHAMMED ALI AND AMEINA TA’ANY

subject to

(2) u(x, 0) = g(x),

(3) u(0, t) = h1(t), ux(0, t) = h2(t).

and

(4) utt + a0(x)u+ a1(x)ux + a2(x)uxx = f(x, t), t > 0, x > 0,

subject to

(5) u(x, 0) = g1(x), ut(x, 0) = g2(x)

(6) u(0, t) = h1(t), ux(0, t) = h2(t).

The methodology consists of applying a Laplace transforms to Equations (1)-(3), and by the initial

condition (2), we get

(7) sū(x, s)− g(x) + a0(x)ū+ a1(x)
dū

dx
+ a2(x)

d2ū

dx2
= f̄(x, s),

subject to

(8) ū(0, s) = h̄1(s),
dū

dx
(0, s) = h̄2(s).

which is second-order initial value problem.

According to Differential transform method, the solution of (7), (8) can be written as:

(9) ū(x, s) =

∞∑
k=0

U(k)xk,

where U(k) is the differential transform of ū(x, s), and U(k) is a function of the parameter s. Once ū(x, s)

is determined, we then apply the Inverse Laplace transform to (9) to get u(x, t). The same procedure

will be applied to (4)-(6).

3. Applications and Results

In this section, we demonstrate the effectiveness of the LDTM. The advantage of the proposed method

is its capability of combining the two powerful methods for obtaining exact solutions for several illustrative

examples.

3.1 Example

We consider the linear-wave equation [10]

(10)
∂2u

∂t2
=

1

2
x2 ∂

2u

∂x2
, x ∈ R, t > 0
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subject to

(11) u(x, 0) = x, ut(x, 0) = x2,

and

(12) u(0, t) = 0, ux(0, t) = 1.

By applying the aforesaid method subject to the initial conditions (11), we have

(13) s2ū(x, s)− sx− x2 =
1

2
x2 d

2ū

dx2
,

subject to

(14) ū(0, s) = 0,
dū

dx
(0, s) =

1

s
.

Now, we apply the Differential transform to equations (13)-(14) to get

(15) s2U(k)− sδ(k − 1)− δ(k − 2) =
1

2

k∑
i=0

(i+ 1)(i+ 2)U(i+ 2)δ(k − i− 2) : k ≥ 0,

and,

(16) U(0) = 0, U(1) =
1

s
.

By the above recurrence equation (15) and the initials (16), we get the following outcomes

(17) U(2) =
1

s2 − 1
, U(k) = 0 : k ≥ 3.

Therefore,

ū(x, s) = U(1)x+ U(2)x2

=
1

s
x+

1

s2 − 1
x2.(18)

Apply Inverse Laplace transform to (18) yields

(19) u(x, t) = x+ x2 sinh t,

which is the exact for the problem in (10-12).

3.2 Example

In this example we consider the one-dimensional inhomogeneous equation given by:

(20) ut + xux + uxx = 2t+ 2x2 + 2, t > 0, x ∈ R,

subject to,

(21) u(x, 0) = x2,
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and

(22) u(0, t) = t2, ux(0, t) = 0.

By using (21), the Laplace transform of (20) is

(23) sū(x, s)− x2 + x
dū

dx
+
d2ū

dx2
=

2

s2
+

2

s
+

2x2

s
,

subject to

(24) ū(0, s) =
2

s3
,

dū

dx
(0, s) = 0.

Apply the Differential transform to (23)-(24) yields

(25)

sU(k)−δ(k−2)+(k+1)(k+2)U(k+2)+

k∑
i=0

(i+1)U(i+1)δ(k−i−1) = (
2

s2
+

2

s
)δ(k)+

2

s
δ(k−2) : k ≥ 0,

and

(26) U(0) =
2

s3
, U(1) = 0.

By the above recurrence equation (25) and the initials (26) we get the following outcomes

(27) U(2) =
1

s
, U(k) = 0 : k ≥ 3.

Therefore,

ū(x, s) = U(0) + U(2)x2

=
2

s3
+

1

s
x2.(28)

Apply Inverse Laplace transform to (28) yields

(29) u(x, t) = t2 + x2,

which is the exact for the problem in (20)-(22).

3.3 Example

We consider the one-dimensional wave-like equation with variable coefficients [1]

(30) utt +
1

2
x2ux + uxx = kxt, t > 0, x > 0,

subject to,

(31) u(x, 0) = c1x, ut(x, 0) = c2x
2

and

(32) u(0, t) = 0, ux(0, t) = c1 +
k

6
t3.
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where x ∈ [0, 1], t ∈ [0, π], and k, c1, c2 are constants. By using (31), the Laplace transform of (30) is

(33) s2ū(x, s)− c1sx− c2x2 +
1

2
x2 d

2ū

dx2
=
kx

s2
,

subject to

(34) ū(0, s) = 0,
dū

dx
(0, s) =

c1
s

+
k

s4
.

Apply the Differential transform to (33-34) yields

(35) s2U(k)− c1sδ(k−1)− c2δ(k−2)− k

s2
δ(k−1)− 1

2

k∑
i=0

(i+ 1)(i+ 2)U(i+ 2)δ(k− i−2) = 0 : k ≥ 2,

and

(36) U(0) = 0, U(1) =
c1
s

+
k

s4
.

By the above recurrence equation (35) and the initials (36) we get

(37) U(2) =
c2

s2 + 1
, U(k) = 0 : k ≥ 3.

Therefore,

ū(x, s) = U(1)x+ U(2)x2

=

(
c1
s

+
k

s4

)
x+

c2
s2 + 1

x2.(38)

Apply inverse Laplace transform to (38) yields

(39) u(x, t) = c1x+
k

6
xt3 + x2 + c2x

2 sin t,

which is the exact solution to (30)-(32).

3.4 Example

We consider the following equation [1]

(40) utt − uxx = αtex, t > 0, x > 0,

subject to,

(41) u(x, 0) = c cosx, ut(x, 0) = 0

and

(42) u(0, t) = α(sinh t− t) + c cos t, ux(0, t) = α(sinh t− t).

for x, t ∈ [0, π/2] and α, c are constants. By using (41), the Laplace transform of (40) is

(43) s2ū(x, s)− cs cosx− d2ū

dx2
=
kex

s2
,
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subject to

(44) ū(0, s) = α

(
1

s2 − 1
− 1

s2

)
+ c

s

s2 + 1
,

dū

dx
(0, s) = α

(
1

s2 − 1
− 1

s2

)
.

Apply the Differential transform to (43)-(44) yields

(45) s2U(k)− csG(k)− (k + 1)(k + 2)U(k + 2) =
α

s2k!
: k ≥ 0,

and

(46) U(0) = α

(
1

s2 − 1
− 1

s2

)
+ c

s

s2 + 1
, U(1) = α

(
1

s2 − 1
− 1

s2

)
,

where G(k) in (45) is the coefficient of the Taylor series of cosx.

By the above recurrence equation (45), and the initials (46), we get

U(2) =
α

2

1

s2 − 1
− c

2

s

s2 + 1
− α

2s2
,

U(3) =
α

6

1

s2 − 1
− α

6s2
,

U(4) =
α

24

1

s2 − 1
+

c

24

s

s2 + 1
− α

24s2
,

.

.

.(47)

Therefore,

(48) ū(x, s) = U(0) + U(1)x+ U(2)x2 + U(3)x3 + U(4)x4 + ...

Apply Inverse Laplace transform to (48) yields

u(x, t) = α(sinh t− t) + c cos t

+ x(α sinh t− αt)

+ x2(
α

2
sinh t− c

2
cos t− α

2
t)

+ x3(
α

6
sinh t− α

6
t)

+ x4 α

24
sinh t+

c

24
cos t− α

24
t,

.

.

.(49)
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Equivalently,

u(x, t) = α sinh t(1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + ...)

+ c cos t(1− 1

2
x2 +

1

24
x4 + ...)

− αt(1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + ...)

= αex sinh t+ c cos t cosx− αtex

= αex(sinh t− t) + c cos t cosx.(50)

which is the exact solution to (40)-(42).

4. Higher dimensional problems

In this section, we demonstrate the effectiveness of the LDTM, for higher dimension problems. So, in

the next two examples, we consider a heat-like equation and a wave-like equation with variable coefficients

obeying a three-dimensional IBVP [12].

4.1. Example

Consider the two-dimensional heat-like equation

(51) ut =
1

2
(y2uxx + x2uyy) 0 < x, y < 1, t > 0,

subject to,

(52) u(x, y, 0) = y2

In view of the initial condition (52), the Laplace transform of (51) is

(53) sū− y2 =
1

2
y2ūxx +

1

2
x2ūyy,

where ū = ū(x, y, s)

Apply the Differential transform to (53) yields

sU(k, h)− δ(h− 2)δ(k) =
1

2

h∑
j=0

k∑
i=0

(i+ 1)(i+ 2)U(i+ 2, j)δ(k − i)δ(h− j − 2)

+
1

2

h∑
j=0

k∑
i=0

(j + 1)(j + 2)U(i, j + 2)δ(k − i− 2)δ(h− j)(54)
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where U(k, h) = 1
h!k!

(
∂k+hū(x,y,s)

∂xk∂yh

)
: k, h = 0, 1, 2, ....

Setting k = 0 in (54) yields

(55) sU(0, h)− δ(h− 2) =

h∑
j=0

δ(h− j − 2)U(2, j),

and setting h = 0 in (54) yields

(56) sU(k, 0) =

k∑
i=0

δ(k − i− 2)U(i, 2).

Running equations (55), (56) for the values of h, k yields

(57) U(0, 0) = U(0, 1) = U(1, 0) = 0

and

(58) sU(0, 2)− 1 = U(2, 0), sU(2, 0) = U(0, 2)

and

sU(3, 0) = U(1, 2), sU(0, 3) = U(2, 1)(59)

.

.

.

Solving the algebraic equations in (58) gives

(60) U(2, 0) =
1

s2 − 1
, U(0, 2) =

s

s2 − 1
,

by the use of (54) and the results in (59), the other coefficients of the DT series are all zero. Therefore,

ū(x, y, s) = U(0, 2)y2 + U(2, 0)x2

=
s

s2 − 1
y2 +

1

s2 − 1
x2,(61)

and therefore, we get the exact solutions as

(62) u(x, y, t) = y2 cosh t+ x2 sinh t.

4.2. Example

We finally, consider the two-dimensional wave-like equation

(63) utt =
1

12
(x2uxx + y2uyy) 0 < x, y < 1, t > 0,
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subject to,

(64) u(x, , y, 0) = x4, ut(x, y, 0) = y4.

In view of the initial condition (64), the Laplace transform of (63) is

(65) s2ū− sx4 − y4 =
1

12
x4ūxx +

1

12
y4ūyy,

where ū = ū(x, y, s)

Apply the Differential transform to (65) yields

s2U(k, h)− sδ(k − 4)δ(h)− δ(k)δ(h− 4) =
1

12

h∑
j=0

k∑
i=0

(i+ 1)(i+ 2)U(i+ 2, j)δ(k − i− 2)δ(h− j)

+
1

12

h∑
j=0

k∑
i=0

(j + 1)(j + 2)U(i, j + 2)δ(k − i)δ(h− j − 2)

(66)

where U(k, h) = 1
h!k!

(
∂k+hū(x,y,s)

∂xk∂yh

)
: k, h = 0, 1, 2, ....

Setting k = 0 in (66) yields

(67) s2U(0, h)− δ(h− 4) =
1

12

h∑
j=0

δ(h− j − 2)(j + 1)(j + 2)U(0, j + 2),

and setting h = 0 in (66) yields

(68) s2U(k, 0)− sδ(k − 4) =
1

12

k∑
i=0

δ(k − i− 2)(i+ 1)(i+ 2)U(i+ 2, 0).

From (67), we obtain the following results

h = 0 : U(0, 0) = 0

h = 1 : U(0, 1) = 0

h = 2 : U(0, 2) = 0

h = 3 : U(0, 3) = 0

h = 4 : s2U(0, 4)− 1 = U(0, 4)⇒ U(0, 4) =
1

s2 − 1

h ≥ 5 : U(0, h) = 0(69)
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From (68) we obtain the following results

k = 0 : U(0, 0) = 0

k = 1 : U(1, 0) = 0

k = 2 : U(2, 0) = 0

k = 3 : U(3, 0) = 0

k = 4 : s2U(4, 0)− s = U(4, 0)⇒ U(4, 0) =
s

s2 − 1

k ≥ 5 : U(k, 0) = 0.(70)

Now, by (69), (70) and (66) and the use of properties of δ(h), δ(k) we conclude that

(71) U(h, k) = 0 : h, k = 1, 2, 3, ...

Therefore,

ū(x, y, s) = U(0, 4)y4 + U(4, 0)x4

=
1

s2 − 1
y4 +

s

s2 − 1
x4,(72)

Applying the inverse Laplace transform, we arrive at the exact solution

(73) u(x, y, t) = y4 sinh t+ x4 cosh t.

5. Concluding remarks

A combined form of the Laplace transform method with the DTM is effectively used to handle six

examples of non-homogeneous linear PDEs. The exact solution have been obtained even with just the

two first terms of the LDTM solution, which indicates that the proposed method LDTM need much less

computational work compared with the standard DTM. The proposed scheme can be applied for other

nonlinear PDEs.
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