

Available online at http://scik.org
J. Math. Comput. Sci. 4 (2014), No. 5, 879-891

ISSN: 1927-5307

SUM CORDIAL LABELING OF GRAPHS

V. R. VISAVALIYA ${ }^{1}$, M. I. BOSMIA ${ }^{2}$, B. M. PATEL ${ }^{3, *}$
${ }^{1}$ Department of Mathematics, Government Engineering College, Chandkheda-382424, Gujarat, India
${ }^{2}$ Department of Mathematics, Government Engineering College, Gandhinagar-382028, Gujarat, India
${ }^{3}$ Department of Mathematics, Government Science College, Gandhinagar-382016, Gujarat, India
Copyright © 2014 Visavaliya, Bosmia and Patel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate the sum cordial labeling of flower graph, web graph, tadpole, triangular snake and shell graph.

Keywords: cordial labeling; sum cordial labeling; sum cordial graph.
2010 AMS Subject Classification: 05C78.

1. Introduction

All graphs $G=(V(G), E(G))$ in this paper are finite, connected and undirected. For any undefined notations and terminology we follow [3]. If the vertices or edges or both of the graph are assigned valued subject to certain conditions it is known as graph labeling. A dynamic survey on graph labeling is regularly updated by Gallian [4]. Labeled graphs have variety of applications in graph theory, particularly for missile guidance code, design good radar type codes and convolution codes with optimal autocorrelation properties. Labeled graphs plays vital role in the study of X-ray crystallography, communication network and to determine optimal

[^0]circuit layouts. A detailed study on variety of applications on graph labeling is carried out in Bloom and Golomb [1].

2. Preliminaries

Definition 1. A mapping $f: V(G) \longrightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f.

The induced edge labeling $f^{*}: E(G) \longrightarrow\{0,1\}$ is given by $f^{*}(e=u v)=|f(u)-f(v)|$. Let us denote $v_{f}(0), v_{f}(1)$ be the number of vertices of G having labels 0 and 1 respectively under f ad $e_{f}(0), e_{f}(1)$ be the number of edges of G having labels 0 and 1 respectively under f^{*}.

Definition 2. A binary vertex labeling of a graph G is called a cordial labeling if $\mid v_{f}(0)-$ $v_{f}(1) \mid \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is called cordial if it admits labeling.

The concept of cordial labeling was introduced by Cahit [2] in which he investigated several results on this newly defined concept. Also, some new graphs are investigated as product cordial graphs by Vaidya [6].

Definition 3. A binary vertex labeling of a graph G with induce edge labeling $f^{*}: E(G) \longrightarrow$ $\{0,1\}$ defined by $f^{*}(u v)=(f(u)+f(v))(\bmod 2)$ is called sum cordial labeling if $\mid v_{f}(0)-$ $v_{f}(1) \mid \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is sum cordial if it admits sum cordial labeling.

Shiama [5] investigated the sum cordial labeling and proved that path P_{n}, cycle C_{n}, star $K_{1, n}$ etc are some cordial graphs.

Definition 4. The wheel graph W_{n} is defined as the join of $K_{1}+C_{n}$. The vertex corresponding to K_{1} is said to be apex vertex, the vertices corresponding to cycle are called rim vertices. The edges corresponding to cycle are called the rim edges and edges joining apex and vertices of the cycle are called spoke edges.

Definition 5. The web $W b_{n}$ is the graph obtained by joining the pendant vertices of a helm H_{n} to from a cycle and then adding a pendant edge to each vertex of outer cycle.

Definition 6. The tadpole $C_{n} @ P_{m}$ is formed by joining the end point of a path P_{m} to a cycle C_{n}.
Definition 7. The triangular snake T_{n} is obtained from the path P_{n} by replacing every edge of a path by a triangle C_{3}.

Definition 8. The shell S_{n} is the graph obtained by taking $n-3$ concurrent cords in the cycle C_{n}.

The vertex at which all the cords are concurrent is called an apex vertex. The shell S_{n} is also called fan F_{n-1}. Thus, $S_{n}=F_{n-1}=P_{n-1}+K_{1}$.

Definition 9. The wheel graph W_{n} is defined as the join of $K_{1}+C_{n}$. The vertex corresponding to K_{1} is said to be apex vertex, the vertices corresponding to cycle are called rim vertices. The edges corresponding to cycle are called the rim edges and edges joining apex and vertices of the cycle are called spoke edges.

Definition 10. The helm H_{n} is the graph obtained from a wheel W_{n} by attaching a pendant edge to each rim vertex.

Definition 11. The flower $F l_{n}$ is the graph obtained from a helm H_{n} by joining each pendant vertex to the apex of the helm.

3. Main results

Theorem 12. The Web $W b_{n}$ is a sum cordial graph.
Proof. Let v be an apex vertex and $v_{1}, v_{2}, \ldots, v_{n}$ are vertices of an inner cycle. We denote the pendant vertices and the vertices of an outer cycle by $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ and $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}$. Then $\left|V\left(W b_{n}\right)\right|=3 n+1$ and $\left|E\left(W b_{n}\right)\right|=5 n$. To define $f: V\left(W b_{n}\right) \longrightarrow\{0,1\}$, we consider the following two cases.

For even n :

$$
\begin{aligned}
& f(v)=0 \\
& f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=f\left(v_{i}^{\prime \prime}\right)=\left\{\begin{array}{cc}
1, & i \text { is odd; } \\
0, & i \text { is even. }
\end{array} ; 1 \leq i \leq n\right.
\end{aligned}
$$

Figure 1. Sum cordial labeling of the Web graph $W b_{5}$
In view of the above labeling pattern, we have $v_{f}(0)=\left\lceil\frac{3 n+1}{2}\right\rceil, v_{f}(1)=\left\lfloor\frac{3 n+1}{2}\right\rfloor, e_{f}(0)=$ $\frac{5 n}{2}=e_{f}(1)$. Thus, we get $\left|v_{f}(0)-v_{f}(1)\right| \leq 1,\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

For odd n :

$$
\begin{aligned}
& f(v)=0 \\
& f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{ll}
1, & i \text { is odd; } \\
0, & i \text { is even. }
\end{array} ; 1 \leq i \leq n\right. \\
& f\left(v_{i}^{\prime \prime}\right)=\left\{\begin{array}{ll}
1, & i \text { is odd; } \\
0, & i \text { is even. }
\end{array} ; 1 \leq i \leq n-1\right. \\
& f\left(v_{n}^{\prime \prime}\right)=0
\end{aligned}
$$

In view of the above labeling pattern, we have $v_{f}(0)=\frac{3 n+1}{2}=v_{f}(1), e_{f}(0)=\left\lceil\frac{5 n}{2}\right\rceil, e_{f}(1)=$ $\left\lfloor\frac{5 n}{2}\right\rfloor$. Thus, we get $\left|v_{f}(0)-v_{f}(1)\right| \leq 1,\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence, $W b_{n}$ is a sum cordial graph.

Example 13. The web graph $W b_{5}$ is a sum cordial graph.

Theorem 14. The shell S_{n} is a sum cordial graph.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n}. Therefore, for the shell $S_{n},\left|V\left(S_{n}\right)\right|=n$ and $\left|E\left(S_{n}\right)\right|=2 n-3$. To define, $f: V\left(S_{n}\right) \rightarrow\{0,1\}$, we consider the following cases,

For odd n :

$$
f\left(v_{i}\right)= \begin{cases}1, & i \equiv 1 \text { or } 2(\bmod 4) \\ 0, & i \equiv 0 \text { or } 3(\bmod 4)\end{cases}
$$

Therefore, $v_{f}(0)=\left\lfloor\frac{n}{2}\right\rfloor, v_{f}(1)=\left\lceil\frac{n}{2}\right\rceil, e_{f}(0)=\left\lfloor\frac{2 n-3}{2}\right\rfloor, e_{f}(1)=\left\lceil\frac{2 n-3}{2}\right\rceil$. Hence, $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

For even $n: \quad n \equiv 0(\bmod 4)$:

$$
f\left(v_{i}\right)=\left\{\begin{array}{ll}
1, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
0, & i \equiv 0 \text { or } 3(\bmod 4)
\end{array} ; 1 \leq i \leq n\right.
$$

$$
n \equiv 2(\bmod 4):
$$

$$
\begin{aligned}
f\left(v_{i}\right) & =\left\{\begin{array}{ll}
1, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
0, & i \equiv 0 \text { or } 3(\bmod 4) .
\end{array} ; 1 \leq i \leq n-2\right. \\
f\left(v_{n}\right) & =1 \\
f\left(v_{n-1}\right) & =0
\end{aligned}
$$

Therefore, $v_{f}(0)=\frac{n}{2}=v_{f}(1)$ and $e_{f}(0)=\left\lfloor\frac{2 n-3}{2}\right\rfloor, e_{f}(1)=\left\lceil\frac{2 n-3}{2}\right\rceil$. So, $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Hence, the shell S_{n} is a sum cordial graph.

Example 15. The shell S_{6} is a sum cordial graph.

Theorem 16. The triangular snake T_{n} is a sum cordial graph except $n \equiv 3(\bmod 4)$.

Proof. Let the path P_{n} having vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $e_{1}, e_{2}, \ldots, e_{n-1}$. To construct a triangular snake T_{n} from the path P_{n}, join v_{i} and v_{i+1} to new vertex v_{i}^{\prime} by edges $e_{2 i-1}^{\prime}=v_{i} v_{i}^{\prime}$ and $e_{2 i}^{\prime}=v_{i+1} v_{i}^{\prime}$ for $i=1,2, \ldots, n-1$. Then $\left|V\left(T_{n}\right)\right|=2 n-1$ and $\left|E\left(T_{n}\right)\right|=3 n-3$. To define $f: V\left(T_{n}\right) \rightarrow\{0,1\}$, we consider the following cases

Figure 2. Sum cordial labeling of the Shell S_{6}

For $n \equiv 0,1,2(\bmod 4):$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
1, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
0, & i \equiv 0 \text { or } 3(\bmod 4)
\end{array} ; 1 \leq i \leq n\right. \\
& f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{ll}
1, & \text { if } i \text { is even } ; \\
0, & \text { if } i \text { is odd. }
\end{array} ; 1 \leq i \leq n-1\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& v_{f}(0)= \begin{cases}\left\lceil\frac{2 n-1}{2}\right\rceil, & n \equiv 0(\bmod 4) ; \\
\left\lfloor\frac{2 n-1}{2}\right\rfloor, & n \equiv 1 \text { or } 2(\bmod 4) .\end{cases} \\
& v_{f}(1)= \begin{cases}\left\lfloor\frac{2 n-1}{2}\right\rfloor, & n \equiv 0(\bmod 4) ; \\
\left\lceil\frac{2 n-1}{2}\right\rceil, & n \equiv 1 \text { or } 2(\bmod 4) .\end{cases} \\
& e_{f}(0)= \begin{cases}\left\lfloor\frac{3 n-3}{2}\right\rceil, & n \equiv 0(\bmod 4) ; \\
\frac{3 n-3}{\frac{3 n}{2}, 3}, & n \equiv 1(\bmod 4) ;\end{cases} \\
& e_{f}(1)= \begin{cases}\left\lfloor\frac{3 n-3}{2}\right\rfloor, & n \equiv 2(\bmod 4) . \\
\frac{3 n-3}{\operatorname{lod} 4)}, & n \equiv 1(\bmod 4) ; \\
\left\lceil\frac{3 n-3}{2}\right\rceil, & n \equiv 2(\bmod 4) .\end{cases}
\end{aligned}
$$

Hence, $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. So, triangular T_{n} is a sum cordial for $n \equiv 0,1$ or $2(\bmod 4)$.

Figure 3. Sum cordial labeling of the Triangular snake T_{5}
For $n \equiv 3(\bmod 4):$ In order to satisfy the vertex condition for the sum cordial graph it is necessary to assign 0 to at least $\left\lfloor\frac{2 n-1}{2}\right\rfloor$ vertices out of $2 n-1$ vertices. The vertices having label 0 will give rise either at least $\left\lceil\frac{3 n-3}{2}\right\rceil$ or at most $\left\lfloor\frac{3 n-3}{2}\right\rfloor$ edges with label 0 and at most $\left\lfloor\frac{3 n-3}{2}\right\rfloor$ or at least $\left\lceil\frac{3 n-3}{2}\right\rceil$ edges with label 1 out of $3 n-3$ edges. Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \geq 2$. Hence the edge condition for the sum cordial graph is not satisfied. hence the triangular T_{n} is not sum cordial for $n \equiv 3(\bmod 4)$.

Example 17. The triangular snake T_{5} is a sum cordial graph.
Theorem 18. The Flower $F l_{n}$ is a sum cordial graph.

Proof. Let v be an apex vertex and $v_{1}, v_{2}, \ldots, v_{n}$ are rim vertices. We denote the pendant vertices by $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$. Then $\left|V\left(F l_{n}\right)\right|=2 n+1$ and $\left|E\left(F l_{n}\right)\right|=4 n$. we define $f: V\left(F l_{n}\right) \rightarrow\{0,1\}$ by $f(v)=1, f\left(v_{i}\right)=1, f\left(v_{i}^{\prime}\right)=0$ for $1 \leq i \leq n$. In view of the above labeling pattern, we have $v_{f}(0)=n, v_{f}(1)=n+1, e_{f}(0)=2 n=e_{f}(1)$. Thus, we get $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Hence, $F l_{n}$ is a sum cordial graph.

Example 19. The flower F_{5} is a sum cordial graph.
Theorem 20. The tadpole $C_{n} @ P_{m}$ is a sum cordial graph.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be the vertices of path P_{m}. Therefore $\left|V\left(C_{n} @ P_{m}\right)\right|=n+m-1$ and $E\left(C_{n} @ P_{m}\right) \mid=n+m-1$. Here, we denote $v_{f}^{n}(0), v_{f}^{n}(1)\left(v_{f}^{m}(0), v_{f}^{m}(1)\right)$ by the number of vertices of a cycle $C_{n}\left(\right.$ Path $\left.P_{m}\right)$ having labels 0 and 1 respectively under f and $e_{f}^{n}(0), e_{f}^{n}(1)\left(e_{f}^{m}(0), e_{f}^{m}(1)\right)$ by the number of edges of a cycle $C_{n}\left(\right.$ Path $\left.P_{m}\right)$ having labels 0 and 1 respectively under f_{*}. To prove To define $f: V\left(C_{n} @ P_{m}\right) \rightarrow$ $\{0,1\}$, we consider the following cases,

Figure 4. Sum cordial labeling of the Flower F_{5}
$n \equiv 0(\bmod 4)$ and $m \in \mathbb{N}:$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
0, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
1, & i \equiv 0 \text { or } 3(\bmod 4)
\end{array} ; 1 \leq i \leq n\right. \\
& f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{ll}
1, & j \equiv 0 \text { or } 1(\bmod 4) ; \\
0, & j \equiv 2 \text { or } 3(\bmod 4)
\end{array} ; 1 \leq j \leq m-1\right.
\end{aligned}
$$

Therefore, we have $v_{f}^{n}(0)=\frac{n}{2}=v_{f}^{n}(1)$ and $e_{f}^{n}(0)=\frac{n}{2}=e_{f}^{n}(1)$. Also,

$$
\begin{aligned}
& v_{f}^{m}(0)= \begin{cases}\frac{m-1}{2}, & m \equiv 1 \text { or } 3(\bmod 4) ; \\
\left\lceil\frac{m-1}{2}\right\rceil, & m \equiv 0(\bmod 4) .\end{cases} \\
& v_{f}^{m}(1)= \begin{cases}\left.\frac{m-1}{2}\right\rceil, & m \equiv 0(\bmod 4) . \\
\left\lvert\, \frac{m-1}{2}\right., & m \equiv 1 \text { or } 3(\bmod 4) ; \\
\left\lceil\frac{m-1}{2}\right\rceil, & m \equiv 0(\bmod 4) .\end{cases} \\
& e_{f}^{m}(0)= \begin{cases}\frac{m-1}{2}, & m \equiv 1 \text { or } 3(\bmod 4) . \\
\left\lceil\frac{m-1}{2}\right\rceil, & m \equiv 0 \text { or } 2(\bmod 4) .\end{cases}
\end{aligned}
$$

$$
e_{f}^{m}(1)= \begin{cases}\frac{m-1}{2}, & m \equiv 1 \text { or } 3(\bmod 4) \\ \left\lfloor\frac{m-1}{2}\right\rfloor, & m \equiv 0 \text { or } 2(\bmod 4)\end{cases}
$$

Therefore,

$$
\begin{aligned}
v_{f}(0)-v_{f}(1) & =\left|v_{f}^{n}(0)+v_{f}^{m}(0)-\left(v_{f}^{n}(1)+v_{f}^{m}(1)\right)\right| \\
& =\left|v_{f}^{n}(0)-v_{f}^{n}(1)+v_{f}^{m}(0)-v_{f}^{m}(1)\right| \\
& =\left|\frac{n}{2}-\frac{n}{2}+v_{f}^{m}(0)-v_{f}^{m}(1)\right| \\
& \leq 1
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|e_{f}(0)-e_{f}(1)\right| & =\left|e_{f}^{n}(0)-e_{f}^{n}(1)+e_{f}^{m}(0)-e_{f}^{m}(1)\right| \\
& =\left|\frac{n}{2}-\frac{n}{2}+e_{f}^{m}(0)-e_{f}^{m}(1)\right| \\
& \leq 1
\end{aligned}
$$

$n \equiv 1(\bmod 4)$ and $m \in \mathbb{N}:$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
0, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
1, & i \equiv 0 \text { or } 3(\bmod 4) .
\end{array} \quad 1 \leq i \leq n\right. \\
& f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{ll}
1, & j \equiv 1 \text { or } 2(\bmod 4) ; \\
0, & j \equiv 0 \text { or } 3(\bmod 4)
\end{array} \quad 1 \leq j \leq m-1\right.
\end{aligned}
$$

Therefore, $v_{f}^{n}(0)=\left\lceil\frac{n}{2}\right\rceil, v_{f}^{n}(1)=\left\lfloor\frac{n}{2}\right\rfloor$ and $e_{f}^{n}(0)=\left\lceil\frac{n}{2}\right\rceil, e_{f}^{n}(1)=\left\lfloor\frac{n}{2}\right\rfloor$.
Therefore, $v_{f}^{n}(0)=v_{f}^{n}(1)+1$ and $e_{f}^{n}(0)=e_{f}^{n}(1)+1$. Also,

$$
\begin{aligned}
& v_{f}^{m}(0)= \begin{cases}\frac{m-1}{2}, & m \equiv 1(\bmod 4) ; \\
\frac{m-3}{2}, & m \equiv 3(\bmod 4) ;\end{cases} \\
& v_{f}^{m}(1)= \begin{cases}\frac{m-1}{2}, & m \equiv 0 \text { or } 2(\bmod 4) \\
\frac{m+1}{2}, & m \equiv 1(\bmod 4) ; \\
\frac{m}{2}, & m \equiv 0 \text { or } 2(\bmod 4) ;\end{cases} \\
& e_{f}^{m}(0)= \begin{cases}\frac{m-1}{2}, & m \equiv 1 \text { or } 3(\bmod 4) ;\end{cases} \\
& \frac{\left.\left\lvert\, \frac{m-1}{2}\right.\right\rfloor,}{} \quad m \equiv 0 \text { or } 2(\bmod 4)
\end{aligned}, \begin{array}{ll}
\frac{m-1}{2}, & m \equiv 1 \text { or } 3(\bmod 4) ; \\
e_{f}^{m}(1) & = \begin{cases}\left.\frac{m-1}{2}\right\rceil, & m \equiv 0 \text { or } 2(\bmod 4)\end{cases}
\end{array}
$$

Therefore,

$$
\begin{aligned}
\left|v_{f}^{m}(0)-v_{f}^{m}(1)\right| & = \begin{cases}0, & m \equiv 1(\bmod 4) ; \\
-1, & m \equiv 3(\bmod 4) ; \\
-1, & m \equiv 0 \text { or } 2(\bmod 4)\end{cases} \\
\left|e_{f}^{m}(0)-e_{f}^{m}(1)\right| & = \begin{cases}0, & m \equiv 1 \text { or } 3(\bmod 4) ; \\
-1, & m \equiv 0 \text { or } 2(\bmod 4)\end{cases}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|v_{f}(0)-v_{f}(1)\right| \leq 1 \\
& \left|e_{f}(0)-e_{f}(1)\right| \leq 1
\end{aligned}
$$

$n \equiv 2(\bmod 4)$ and m is even:

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
0, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
1, & i \equiv 0 \text { or } 3(\bmod 4) .
\end{array} \quad 1 \leq i \leq n\right. \\
& f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{ll}
1, & j \equiv 1 \text { or } 2(\bmod 4) ; \\
0, & j \equiv 0 \text { or } 3(\bmod 4)
\end{array} \quad 1 \leq j \leq m-1\right.
\end{aligned}
$$

Therefore, $v_{f}^{n}(0)=\frac{n}{2}+1, v_{f}^{n}(1)=\frac{n}{2}-1$ and $e_{f}^{n}(0)=\frac{n}{2}+1, e_{f}^{n}(1)=\frac{n}{2}-1$.
Therefore, $v_{f}^{n}(0)-v_{f}^{n}(1)=2$ and $e_{f}^{n}(0)-e_{f}^{n}(1)=2$.
Also, $v_{f}^{m}(0)=\frac{m}{2}-1, v_{f}^{m}(1)=\frac{m}{2}$ and $e_{f}^{m}(0)=\frac{m}{2}-1, e_{f}^{m}(1)=\frac{m}{2}$.
Therefore, $v_{f}^{n}(0)-v_{f}^{n}(1)=-1$ and $e_{f}^{n}(0)-e_{f}^{n}(1)=-1$.
Hence,

$$
\begin{aligned}
& \left|v_{f}(0)-v_{f}(1)\right| \leq 1 \\
& \left|e_{f}(0)-e_{f}(1)\right| \leq 1
\end{aligned}
$$

$n \equiv 2(\bmod 4)$ and m is odd:

$$
\begin{aligned}
f\left(v_{i}\right) & =\left\{\begin{array}{ll}
0, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
1, & i \equiv 0 \text { or } 3(\bmod 4) .
\end{array} \quad 1 \leq i \leq n-2\right. \\
f\left(v_{n-1}\right) & =1 \\
f\left(v_{n}\right) & =0 \\
f\left(v_{j}^{\prime}\right) & =\left\{\begin{array}{ll}
1, & j \equiv 0 \text { or } 1(\bmod 4) ; \\
0, & j \equiv 2 \text { or } 3(\bmod 4)
\end{array} \quad 1 \leq j \leq m-1\right.
\end{aligned}
$$

Therefore, $v_{f}^{n}(0)=\frac{n}{2}=v_{f}^{n}(1)$ and $e_{f}^{n}(0)=\frac{n}{2}+1, e_{f}^{n}(1)=\frac{n}{2}-1$.
Therefore, $v_{f}^{n}(0)-v_{f}^{n}(1)=0$ and $e_{f}^{n}(0)-e_{f}^{n}(1)=2$.
Also, $v_{f}^{m}(0)=\frac{m-1}{2}, v_{f}^{m}(1)=\frac{m-1}{2}$ and $e_{f}^{m}(0)=\left\lfloor\frac{m}{2}\right\rfloor-1, e_{f}^{m}(1)=\left\lceil\frac{m}{2}\right\rceil$.
Therefore, $v_{f}^{m}(0)-v_{f}^{m}(1)=0$ and $e_{f}^{m}(0)-e_{f}^{m}(1)=-2$.
Hence,

$$
\begin{aligned}
& \left|v_{f}(0)-v_{f}(1)\right|=0 \\
& \left|e_{f}(0)-e_{f}(1)\right|=0
\end{aligned}
$$

$n \equiv 3(\bmod 4)$ and $m \in \mathbb{N}$:

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
0, & i \equiv 1 \text { or } 2(\bmod 4) ; \\
1, & i \equiv 0 \text { or } 3(\bmod 4)
\end{array} ; 1 \leq i \leq n\right. \\
& f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{ll}
1, & j \equiv 1 \text { or } 2(\bmod 4) ; \\
0, & j \equiv 0 \text { or } 3(\bmod 4) .
\end{array} ; 1 \leq j \leq m-1\right.
\end{aligned}
$$

Therefore, $v_{f}^{n}(0)=\left\lceil\frac{n}{2}\right\rceil, v_{f}^{n}(1)=\left\lfloor\frac{n}{2}\right\rfloor$ and $e_{f}^{n}(0)=\left\lfloor\frac{n}{2}\right\rfloor, e_{f}^{n}(1)=\left\lceil\frac{n}{2}\right\rceil$.
Therefore, $v_{f}^{n}(0)-v_{f}^{n}(1)=1$ and $e_{f}^{n}(0)-e_{f}^{n}(1)=-1$. Also,

$$
\begin{aligned}
& v_{f}^{m}(0)= \begin{cases}\frac{m-1}{2}, & m \equiv 1(\bmod 4) ; \\
\frac{m-3}{2}, & m \equiv 3(\bmod 4) ; \\
\left\lfloor\frac{m-1}{2}\right\rfloor, & m \equiv 0 \operatorname{or} 2(\bmod 4)\end{cases} \\
& v_{f}^{m}(1)= \begin{cases}\frac{m-1}{2}, & m \equiv 1(\bmod 4) ; \\
\frac{m+1}{2}, & m \equiv 3(\bmod 4) ; \\
\left\lceil\frac{m-1}{2}\right\rceil, & m \equiv 0 \text { or } 2(\bmod 4) .\end{cases} \\
& e_{f}^{m}(0)= \begin{cases}\left\lceil\frac{m-1}{2}\right\rceil, & m \equiv 0 \text { or } 2(\bmod 4) ; \\
\frac{m+1}{2}, & m \equiv 1 \text { or } 3(\bmod 4)\end{cases} \\
& e_{f}^{m}(1)= \begin{cases}\left\lfloor\frac{m-1}{2}\right\rfloor, & m \equiv 0 \text { or } 2(\bmod 4) ; \\
\frac{m-3}{2}, & m \equiv 1 \operatorname{or} 3(\bmod 4) .\end{cases}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& v_{f}^{m}(0)-v_{f}^{m}(1)= \begin{cases}0, & m \equiv 1(\bmod 4) \\
-2, & m \equiv 3(\bmod 4) ; \\
-1, & m \equiv 0 \text { or } 2(\bmod 4)\end{cases} \\
& e_{f}^{m}(0)-e_{f}^{m}(1)= \begin{cases}1, & m \equiv 0 \text { or } 2(\bmod 4) ; \\
2, & m \equiv 1 \text { or } 3(\bmod 4)\end{cases}
\end{aligned}
$$

Figure 5. Sum cordial labeling of the Tadpole $C_{6} @ P_{7}$
Hence,

$$
\begin{aligned}
& \left|v_{f}(0)-v_{f}(1)\right| \leq 1 \\
& \left|e_{f}(0)-e_{f}(1)\right| \leq 1
\end{aligned}
$$

Hence, the tadpole is a sum cordial graph.

Example 21. The tadpole $C_{6} @ P_{7}$ is a sum cordial graph.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] G.S. Bloom, S.W. Golomb, Applications of numbered undirected Graph, Proceedings of IEEE 65 (1977), 562-570.
[2] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201-207.
[3] J. Clark, D. Holton, A first look at Graph Theory, Allied Publishers, New Delhi, 1995.
[4] J. A Gallian, A dynamic Survey of graph labeling, The Electronics J. Combinatorics, 16 (2009), 1-219.
[5] J. Shiama, Some cordial labeling for some graphs, Int. J. Math. Archive 3 (2012), 3271-3276.
[6] V. Vaidya, N. A Dani, Some new product cordial graphs, J. Appl. Comput. Sci. Math. 8 (2010), 62-65.

[^0]: *Corresponding author
 Received May 1, 2014

