Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 3, 747-758

ISSN: 1927-5307

SOME NEW FAMILIES OF PAIR SUM GRAPHS

R.PONRAJ ${ }^{1}$, J.VIJAYA XAVIER PARTHIPAN ${ }^{2, *}$, AND R. KALA ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India
${ }^{2}$ Department of Mathematics, St.John's College, Palayamcottai- 627002, India
${ }^{3}$ Department of Mathematics, ManonmaniamSundaranar University,Tirunelveli-627012, India

Abstract. Let G be a graph. An injective map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm p\}$ is called a pair sum labeling if the induced edge function, $f_{e}: E(G) \rightarrow Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{q / 2}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{(q-1) / 2}\right\} \cup\left\{k_{(q+1) / 2}\right\}$ according as q is even or odd. In this paper we investigate the pair sum labeling behavior of $P_{n} \times P_{n}$ if n is even, Prism $C_{m} \times P_{2}, m$ is even and some cycle related graphs.

Keywords: Path, Cycle, Prism
2000 AMS Subject Classification:05C78

1. Introduction

The graphs in this paper are finite, undirected and simple. $V(G)$ and $E(G)$ will denote the vertex set and edge set of a graph G. pand q denote respectively the number of vertices and edges of G. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} (with p_{1} vertices) and p_{1} copies of G_{2} and then joining the $i^{t h}$ vertex of G_{1} to all the vertices in the $i^{\text {th }}$ copy of G_{2}. The product of two graphs G_{1} and G_{2} is the graph $G_{1} \times G_{2}$ with vertex set $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent whenever

[^0][$u_{1}=v_{1}$ and u_{2} adj v_{2}] or [$u_{2}=v_{2}$ and u_{1} adj v_{1}]. The graph $P_{m} \times P_{n}$ is called planar grid and $C_{m} \times P_{n}$ is called prism. Terms not defined here are used in the sense of Harary [1]. Concepts of pair sum labeling have been introduced in [2] and their behaviors are studied in [3,4,5]. In this paper we investigate pair sum labeling behavior of some cycle related graphs.

2. Pair Sum Labeling

Definition 2.1: Let G be a (p, q) graph. A one - one map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm p\}$ is said to be pair sum labeling if the induced edge function $f_{e}: E(G) \rightarrow Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{q / 2}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{(q-1) / 2}\right\} \cup\left\{k_{(q+1) / 2}\right\}$ according as q is even or odd. A graph with a pair sum labeling defined on it is called pair sum graph.
Theorem 2.2: The graph $P_{n} \times P_{n}$ is a pair sum graph if n is even.
Proof: We now display the structure of the graph $P_{n} \times P_{n}$.

Fig. 1
Define $f: V\left(P_{n} \times P_{n}\right) \rightarrow\left\{ \pm 1, \pm 2, \ldots, \pm n^{2}\right\}$ by
$f\left(a_{i, j}\right)=-(2 i+2 n j-2 n-1) ; 1 \leq i \leq n, 1 \leq j \leq n / 2$
$f\left(a_{i, j+n / 2}\right)=n^{2}-2 i-2 n j+2 n+1 ; 1 \leq i \leq n, 1 \leq j \leq n / 2$.

Here $f_{e}\left(E\left(P_{n} \times P_{n}\right)\right)=\left\{\left(\pm(2 n+2), \pm(6 n+2), \pm(10 n+2), \ldots, \pm\left(2 n^{2}-6 n+2\right)\right),(\pm(2 n+\right.$ $\left.6), \pm(6 n+6), \pm(10 n+6), \ldots, \pm\left(2 n^{2}-6 n+6\right)\right), \ldots,(\pm(6 n-2), \pm(10 n-2), \pm(14 n-$ 2), $\left.\left.\ldots, \pm\left(2 n^{2}-2 n+2\right)\right)\right\} \cup\{(\pm 4, \pm 8, \ldots, \pm(4 n-4)),(\pm(4 n+4), \pm(4 n+8), \ldots, \pm(8 n-$ $4)),(\pm(8 n+4), \pm(8 n+8), \ldots, \pm(12 n-4)), \ldots \ldots \ldots,\left(\pm\left(2 n^{2}-4 n+4\right), \pm\left(2 n^{2}-4 n+\right.\right.$ 8), $\left.\left.\ldots, \pm\left(2 n^{2}-4\right)\right)\right\} \cup\{(\pm 2, \pm 6, \pm 10, \ldots, \pm(2 n-2))\}$.

Then f is a pair sum labeling. Then $P_{n} \times P_{n}$ is a pair sum graph if n is even.

Illustration 1: A pair sum labeling of $P_{6} \times P_{6}$ is

Fig. 2
Theorem 2.3: The Prism $C_{n} \times P_{2}$ is a pair sum graph if n is even.
Proof: Let $V\left(C_{n} \times P_{2}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and
$E\left(C_{n} \times P_{2}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.
Define $f: V\left(C_{n} \times P_{2}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 n\}$ as follows.
Case (i) $n=4 m+2$
Define $f\left(u_{i}\right)=i ; 1 \leq i \leq 2 m+1$
$f\left(u_{2 m+1+i}\right)=-i ; 1 \leq i \leq 2 m+1$
$f\left(v_{i}\right)=8 m-2 i+6 ; 1 \leq i \leq 2 m+1$
$f\left(v_{2 m+1+i}\right)=-8 m+2 i-6 ; 1 \leq i \leq 2 m+1$
Here $f_{e}\left(E\left(C_{n} \times P_{2}\right)\right)=\{(\pm 3, \pm 5, \ldots, \pm(4 m+1)\} \cup\{ \pm 2 m\} \cup\{(\pm(6 m+5), \pm(6 m+$ 6), $\ldots, \pm(8 m+5)\}$.

Case (ii) $n=4 m$
$f\left(u_{i}\right)=i ; 1 \leq i \leq 2 m-1$
$f\left(u_{2 m}\right)=2 m+1$
$f\left(u_{2 m+i}\right)=-i ; 1 \leq i \leq 2 m-1$
$f\left(u_{4 m}\right)=-(2 m+1)$
$f\left(v_{2 m+1-i}\right)=8 m-2 i+2 ; 1 \leq i \leq 2 m$
$f\left(v_{2 m+1}\right)=-(4 m+2 i) ; 1 \leq i \leq 2 m$
$f_{e}\left(E\left(C_{n} \times P_{2}\right)\right)=\{(\pm 3, \pm 5, \ldots, \pm(4 m-3)\} \cup\{ \pm 2 m, \pm 4 m\} \cup\{(\pm(4 m+3), \pm(4 m+$ $6), \ldots, \pm(10 m-3)\} \cup\{ \pm(10 m+1)\}$.
Then f is a pair sum labeling.

Illustration 2: A pair sum labeling of $C_{10} \times P_{2}$ is

Fig. 3
Notation: We denote the vertex set and edge set of ladder $L_{n}=P_{n} \times P_{2}$ as follows.
Let $V\left(L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and
$E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.

Theorem 2.4: $L_{n} \odot K_{1}$ is a pair sum graph.
Proof: Let $w_{1}, w_{2}, \ldots, w_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$ and $w_{n+1}, w_{n+2}, w_{2 n}$
be the pendant vertices adjacent to $v_{1}, v_{2}, \ldots, v_{n}$.
Case (i) n is odd.
Let $n=2 m+1$.
Define $f: V\left(L_{n} \odot K_{1}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(8 m+4)\}$ by
$f\left(u_{i}\right)=-4(m+1)+2 i ; 1 \leq i \leq m$
$f\left(u_{m+1}\right)=-(2 m+1)$
$f\left(u_{m+1+i}\right)=2 m+2 i+2 ; 1 \leq i \leq m$
$f\left(v_{i}\right)=-4 m-3+2 i ; 1 \leq i \leq m$
$f\left(v_{m+1}\right)=2 m+2$
$f\left(v_{m+1+i}\right)=2 m+2 i+1 ; 1 \leq i \leq m$
$f\left(w_{i}\right)=-8 m-6+2 i ; 1 \leq i \leq m+1$
$f\left(w_{2 m+2-i}\right)=8 m+6-2 i ; 1 \leq i \leq m$
$f\left(w_{2 m+1+i}\right)=-8 m-6+2 i ; 1 \leq i \leq m$
$f\left(w_{2 n+1-i}\right)=8 m+5-2 i ; 1 \leq i \leq m+1$
Here $f_{e}\left(E\left(L_{n} \odot K_{1}\right)\right)=f_{e}\left(E\left(L_{n}\right)\right) \cup\{ \pm 6 m, \pm(6 m-4), \pm(6 m-8), \ldots, \pm(4 m+6)\} \cup$
$\{-4 m-1\} \cup\{ \pm(6 m-2), \pm(6 m-6), \ldots, \pm(6 m+4)\} \cup\{4 m+1\}$.
Case (ii) n is even.
Let $n=2 m$. Define a map f as follows:
$f\left(u_{m+1-i}\right)=-2 i ; 1 \leq i \leq m$
$f\left(u_{m+i}\right)=2 i-1 ; 1 \leq i \leq m$
$f\left(u_{m+i}\right)=2 i ; 1 \leq i \leq m$
$f\left(u_{m+1-i}\right)=-(2 i-1) ; 1 \leq i \leq m$
$f\left(w_{i}\right)=-8 m+2+2 i+1 ; 1 \leq i \leq m$
$f\left(w_{2 m+1-i}\right)=8 m+1-2 i ; 1 \leq i \leq m$
$f\left(w_{2 m+i}\right)=-8 m-1+2 i ; 1 \leq i \leq m$
$f\left(w_{4 m+1-i}\right)=8 m-2-2 i ; 1 \leq i \leq m$
Here $f_{e}\left(E\left(L_{n} \odot K_{1}\right)\right)=f_{e}\left(E\left(L_{n}\right)\right) \cup\{ \pm 10 m, \pm(10 m-4), \pm(10 m-8), \ldots, \pm 6 m\} \cup$ $\pm\{(10 m-2), \pm(10 m-6), \ldots, \pm(6 m+2)\}$. Then f is a pair sum labeling.
Illustration 3: A pair sum labeling of $L_{7} \odot K_{1}$ is

Fig. 4

Notation: Two copies of the cycle C_{m} connected by the path P_{n} is denoted by [C_{m}, P_{n}].
Theorem 2.5: The graph $\left[C_{m}, P_{m}\right.$] is a pair sum graph.
Proof: Let the first copy of cycle C_{m} be $u_{1} u_{2} \ldots u_{m} u_{1}$ and second copy of cycle C_{m} be $v_{1} v_{2} \ldots v_{n} v_{1}$. Let P_{m} be the path $w_{1} w_{2} \ldots w_{m}$.Let $V\left(\left[C_{m}, P_{m}\right]\right)=V\left(C_{m}\right) \cup V\left(C_{m}\right) \cup V\left(P_{m}\right)$ $\operatorname{and} E\left(\left[C_{m}, P_{m}\right]\right)=E\left(C_{m}\right) \cup E\left(C_{m}\right) \cup E\left(P_{m}\right) \cup\left\{u_{1} w_{1}, w_{n} v_{1}\right\}$.
Case (i) m is odd.
Define $f: V\left(\left[C_{m}, P_{m}\right]\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 3 m\}$ by
$f\left(w_{(m-1) / 2+i}\right)=i ; 1 \leq i \leq(m+1) / 2$
$f\left(w_{(m-1) / 2-2 i+2}\right)=-2-2 i ; 1 \leq i \leq(m-1) / 4$ if $m \equiv 1(\bmod 4)$
$1 \leq i \leq(m+1) / 4$ if $m \equiv 3(\bmod 4)$
$f\left(w_{(m-3) / 2-2 i+2}\right)=-2 i+1 ; 1 \leq i \leq(m-1) / 4$ if $m \equiv 1(\bmod 4)$
$1 \leq i \leq(m+1) / 4$ if $m \equiv 3(\bmod 4)$
$f\left(v_{i}\right)=-3 m-i+1 ; 1 \leq i \leq m$
$f\left(u_{i}\right)=2 m+2+i ; 1 \leq i \leq m-2$
$f\left(u_{m-1}\right)=2 m+1$
$f\left(u_{m}\right)=2 m+2$.

Here $f_{e}\left(E\left(C_{m}, P_{m}\right)\right)=\{(\pm 3, \pm 5, \ldots, \pm \mathrm{n})\} \cup\{ \pm(4 m+3), \pm(4 m+5), \ldots, \pm(6 m-1)\} \cup$ $\{ \pm(5 m+1), \pm(5 m+7 / 2)\}$.
Case (ii) m is even.
Assign the label to the vertices of path $P_{m-1}: u_{2}, u_{3}, \ldots, u_{m}$ as in case (i).
Label the vertex u_{1} by $m / 2+1$.
$f\left(u_{i}\right)=2 m+1+i ; 1 \leq i \leq m-1$
$f\left(u_{m}\right)=2 m+1$
$f\left(v_{i}\right)=-3 m+i ; 1 \leq i \leq m-1$
$f\left(v_{m}\right)=-3 m$.
Here $f_{e}\left(E\left(C_{m}, P_{m}\right)\right)=\{(\pm 3, \pm 5, \ldots, \pm \mathrm{n})\} \cup\{n+1, \pm(3 m+1)\} \cup\{ \pm(4 m+3), \pm(4 m+$ $5), \ldots, \pm(6 m-1)\} \cup\{ \pm(5 m+1)\}$.
Then clearly f is a pair sum labeling.

Illustration 4: A pair sum labeling of $\left[C_{5}, P_{5}\right]$ is

Fig. 5

Theorem 2.6: Let G be the graph with $V(G)=V\left(C_{n}\right) \cup\{v\}$ and $E(G)=E\left(C_{n}\right) \cup\left\{u_{1} v, u_{3} v\right\}$. Then G is a pair sum graph.
Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{n}.
Case (i) $n=2 m+1$.
Define $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(n+1)\}$ by
$f\left(u_{i}\right)=i ; 1 \leq i \leq m+1$
$f\left(u_{n-2 i+2}\right)=-2-2 i ; 1 \leq i \leq\lceil m / 2\rceil$
$f\left(u_{n-2 i+1}\right)=1-2 i ; 1 \leq i \leq\lfloor m / 2\rfloor$
$f(v)=-2$.

Here $f_{e}(E(G))=\{(\pm 3, \pm 5, \ldots, \pm(2 m+1))\} \cup\{2, \pm 1\}$ if $n \equiv 1(\bmod 4)$ and $f_{e}(E(G))=$ $\{(\pm 3, \pm 5, \ldots, \pm(2 \mathrm{~m}+1))\} \cup\{-2, \pm 1\}$ if $n \equiv 3(\bmod 4)$.

Case (ii) $n=4 m+2$.
$f\left(u_{1}\right)=-(4 m+2)$
$f\left(u_{1+i}\right)=2 i ; 1 \leq i \leq 2 m+1$
$f\left(u_{2 m+2+i}\right)=-2 i ; 1 \leq i \leq 2 m$
$f(v)=2 m-1$.
Here $f_{e}(E(G))=\{(\pm 6, \pm 10, \ldots, \pm(8 m+2))\} \cup\{ \pm 4 m, \pm(2 m+3)\}$.

Case (iii)

Sub case (i) $n=4$.
A pair sum labeling of G with $n=4$ is

Fig. 6

Sub case (ii) $n=4 m, m>1$
$f\left(u_{1}\right)=-4 m+1$
$f\left(u_{1+i}\right)=2 i-1 ; 1 \leq i \leq 2 m$
$f\left(u_{2 m+2+i}\right)=-2 i+1 ; 1 \leq i \leq 2 m-1$
$f(v)=2 m-2$.
Here $f_{e}(E(G))=\{(\pm 4, \pm 8, \ldots, \pm(8 m-4))\} \cup\{ \pm(2 m+1), \pm(4 m-2)\}$.
Then f is obviously a pair sum labeling.

Illustration 5: A pair sum labeling of G with $n=9$ is

Fig. 7

Notation: Let G_{n} denotes the graph with vertex set $V\left(G_{n}\right)=V\left(C_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(G_{n}\right)=E\left(C_{n}\right) \cup\left\{u_{i} v_{i}, u_{i(i+1) m o d n}: 1 \leq i \leq n\right\}$.

Theorem 2.7:If n is even then G_{n} is a pair sum graph.
Define $f: V\left(G_{n}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 n\}$
$f\left(u_{i}\right)=2 i ; 1 \leq i \leq n / 2-1$
$f\left(u_{n / 2}\right)=-2-2 i$
$f\left(u_{n / 2+i}\right)=-2 i ; 1 \leq i \leq n / 2-1$
$f\left(u_{n}\right)=-2 n$
$f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n / 2$
$f\left(v_{n / 2+i}\right)=-(2 i-1) ; 1 \leq i \leq n / 2$.
Here $f_{e}(E(G))=\{(\pm 6, \pm 10, \ldots, \pm(2 \mathrm{n}-6))\} \cup\{ \pm(3 n-2), \pm(2 n-2)\} \cup\{ \pm 3, \pm 5, \ldots, \pm(2 n-$ $3)\} \cup\{ \pm(3 n-1), \pm(2 n-1)\}$.
Then G_{n} is a pair sum graph.

Illustration 6: A pair sum labeling of G_{8} is

Fig. 8

Notation: Let G_{n}^{*} denotes the graph with vertex set $V\left(G_{n}^{*}\right)=V\left(C_{n}\right) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(G_{n}^{*}\right)=E\left(C_{n}\right) \cup\left\{u_{i} v_{i}, u_{i} w_{i} v_{i} w_{i}: 1 \leq i \leq n\right\}$.

Theorem 2.8: If n is even then G_{n}^{*} is a pair sum graph.
Proof: Define $f: V\left(G_{n}^{*}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 3 n\}$ by
$f\left(u_{i}\right)=6 i-5 ; 1 \leq i \leq n / 2$
$f\left(u_{n / 2+i}\right)=-6 i+5 ; 1 \leq i \leq n / 2$
$f\left(v_{i}\right)=6 i-4 ; 1 \leq i \leq n / 2$
$f\left(v_{n / 2+i}\right)=-6 i+4 ; 1 \leq i \leq n / 2$
$f\left(w_{i}\right)=6 i-3 ; 1 \leq i \leq n / 2$
$f\left(w_{n / 2+i}\right)=-6 i+3 ; 1 \leq i \leq n / 2$
Here $f_{e}\left(E\left(G_{n}^{*}\right)\right)=\{(\pm 8, \pm 20, \pm 32, \ldots, \pm(6 n-16))\}$
$\cup\{ \pm(3 n-6)\} \cup\{(3,4,5),(15,16,17), \ldots,(6 n-9,6 n-8,6 n-7)\}$
$\cup\{(-3,-4,-5),(-15,-16,-17), \ldots,(-6 n+9,-6 n+8,-6 n+7)\}$.
Then f is a pair sum labeling.

Illustration 7: A pair sum labeling of G_{8}^{*} is

Fig. 9

Conclusion

Here we investigatepair sum labeling behavior of $P_{n} \times P_{n}$ (n is even), $C_{m} \times P_{2}$
(mis even), $L_{n} \odot K_{1},\left[C_{m}, P_{m}\right]$ and some more standard graphs. Investigation ofpair sum
labeling behavior of $P_{m} \times P_{n}(m \neq n), C_{m} \times P_{n}(n \neq 2),\left[C_{m}, P_{n}\right](m \neq n)$ are open
problems for future research.

REFERENCES

[1] F. Harary, Graph Theory, Narosa publishing house, New Delhi, (1998).
[2] R. Ponraj, J. Vijaya Xavier Parthipan , Pair sum labeling of graphs, The Journal of the Indian Academy ofMathematics , 32 (2) (2010), 587-595.
[3] R. Ponraj, J. Vijaya Xavier Parthipan andR.Kala, Some results on pair sum labeling of graphs, International Journal of MathematicalCombinatorics, 4 (2010),53-61.
[4]R. Ponraj, J. Vijaya Xavier Parthipan andR.Kala , A note on pair sum graphs ,Journal of Scientific Research ,3(2) (2011), 321-329.
[5] R. Ponraj, J. Vijaya Xavier Parthipan, Further results on pair sum labeling of trees, Applied Mathematics ,2(2011),1270-1278 .

[^0]: *Corresponding author
 E-mail addresses: ponrajmaths@indiatimes.com (R.Ponraj), parthi68@rediffmail.com (J.V.X. Parthipan), karthipyi91@yahoo.co.in (R. Kala)

 Received February 15, 2012

