Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 3, 747-758 ISSN: 1927-5307

SOME NEW FAMILIES OF PAIR SUM GRAPHS

R.PONRAJ¹, J.VIJAYA XAVIER PARTHIPAN^{2,*}, AND R. KALA³

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India

² Department of Mathematics, St.John's College, Palayamcottai- 627002, India

³Department of Mathematics, ManonmaniamSundaranar University, Tirunelveli-627012, India

Abstract. Let *G* be a graph. An injective map $f: V(G) \to \{\pm 1, \pm 2, ..., \pm p\}$ is called a pair sum labeling if the induced edge function, $f_e: E(G) \to Z - \{0\}$ defined by $f_e(uv) = f(u) + f(v)$ is one-one and $f_e(E(G))$ is either of the form $\{\pm k_1, \pm k_2, ..., \pm k_{q/2}\}$ or $\{\pm k_1, \pm k_2, ..., \pm k_{(q-1)/2}\} \cup \{k_{(q+1)/2}\}$ according as *q* is even or odd. In this paper we investigate the pair sum labeling behavior of $P_n \times P_n$ if *n* is even, Prism $C_m \times P_2$, *m* is even and some cycle related graphs.

Keywords: Path, Cycle, Prism

2000 AMS Subject Classification:05C78

1. Introduction

The graphs in this paper are finite, undirected and simple V(G) and E(G) will denote the vertex set and edge set of a graph G. pandq denote respectively the number of vertices and edges of G. The corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 (with p_1 vertices) and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to all the vertices in the i^{th} copy of G_2 . The product of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ with vertex set $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever

^{*}Corresponding author

E-mail addresses: ponrajmaths@indiatimes.com (R.Ponraj), parthi68@rediffmail.com (J.V.X. Parthipan),

karthipyi91@yahoo.co.in (R. Kala)

Received February 15, 2012

 $[u_1 = v_1 \text{ and } u_2 \text{ adj } v_2]$ or $[u_2 = v_2 \text{ and } u_1 \text{ adj } v_1]$. The graph $P_m \times P_n$ is called planar grid and $C_m \times P_n$ is called prism. Terms not defined here are used in the sense of Harary [1]. Concepts of pair sum labeling have been introduced in [2] and their behaviors are studied in [3,4,5]. In this paper we investigate pair sum labeling behavior of some cycle related graphs.

2. Pair Sum Labeling

Definition 2.1: Let *G* be a (p, q) graph. A one - one map $f: V(G) \to \{\pm 1, \pm 2, \dots, \pm p\}$ is said to be pair sum labeling if the induced edge function $f_e: E(G) \to Z - \{0\}$ defined by $f_e(uv) = f(u) + f(v)$ is one-one and $f_e(E(G))$ is either of the form $\{\pm k_1, \pm k_2, \dots, \pm k_{q/2}\}$ or

 $\{\pm k_1, \pm k_2, \dots, \pm k_{(q-1)/2}\} \cup \{k_{(q+1)/2}\}$ according as q is even or odd. A graph with a pair sum labeling defined on it is called pair sum graph.

Theorem 2.2: The graph $P_n \times P_n$ is a pair sum graph if *n* is even.

Proof: We now display the structure of the graph $P_n \times P_n$.

Fig. 1

Define $f: V(P_n \times P_n) \to \{\pm 1, \pm 2, \dots, \pm n^2\}$ by $f(a_{i,j}) = -(2i + 2nj - 2n - 1); 1 \le i \le n, 1 \le j \le n/2$ $f(a_{i,j+n/2}) = n^2 - 2i - 2nj + 2n + 1; 1 \le i \le n, 1 \le j \le n/2.$

$$\begin{aligned} &\operatorname{Here} f_e(E(P_n \times P_n)) = \{ (\pm (2n+2), \pm (6n+2), \pm (10n+2), \dots, \pm (2n^2-6n+2)), (\pm (2n+6), \pm (6n+6), \pm (10n+6), \dots, \pm (2n^2-6n+6)), \dots, (\pm (6n-2), \pm (10n-2), \pm (14n-2), \dots, \pm (2n^2-2n+2)) \} \cup \{ (\pm 4, \pm 8, \dots, \pm (4n-4)), (\pm (4n+4), \pm (4n+8), \dots, \pm (8n-4)), (\pm (8n+4), \pm (8n+8), \dots, \pm (12n-4)), \dots \dots, (\pm (2n^2-4n+4), \pm (2n^2-4n+8), \dots, \pm (2n^2-4n+8), \dots, \pm (2n^2-4n+4), \pm (2n^2-4n+8), \dots, \pm (2n^2-4n+8), \dots, \pm (2n^2-4n+8), \dots, \pm (2n^2-4n+4), \pm (2n^2-4n+8), \dots, \pm (2n^2-4n$$

Then f is a pair sum labeling. Then $P_n \times P_n$ is a pair sum graph if n is even.

Illustration 1: A pair sum labeling of $P_6 \times P_6$ is

Theorem 2.3: The Prism $C_n \times P_2$ is a pair sum graph if *n* is even. **Proof:** Let $V(C_n \times P_2) = \{u_i, v_i: 1 \le i \le n\}$ and $E(C_n \times P_2) = \{u_i u_{i+1}, v_i v_{i+1}: 1 \le i \le n-1\} \cup \{u_i v_i: 1 \le i \le n\}$. Define $f: V(C_n \times P_2) \to \{\pm 1, \pm 2, ..., \pm 2n\}$ as follows. **Case (i)** n = 4m + 2Define $f(u_i) = i; 1 \le i \le 2m + 1$ $f(u_{2m+1+i}) = -i; 1 \le i \le 2m + 1$ $f(v_i) = 8m - 2i + 6; 1 \le i \le 2m + 1$ $f(v_{2m+1+i}) = -8m + 2i - 6; 1 \le i \le 2m + 1$ Here $f_e(E(C_n \times P_2)) = \{(\pm 3, \pm 5, ..., \pm (4m + 1)\} \cup \{\pm 2m\} \cup \{(\pm (6m + 5), \pm (6m + 6), ..., \pm (8m + 5)\}.$

Case (ii)
$$n = 4m$$

 $f(u_i) = i; 1 \le i \le 2m - 1$
 $f(u_{2m}) = 2m + 1$
 $f(u_{2m+i}) = -i; 1 \le i \le 2m - 1$
 $f(u_{4m}) = -(2m + 1)$
 $f(v_{2m+1-i}) = 8m - 2i + 2; 1 \le i \le 2m$
 $f(v_{2m+1}) = -(4m + 2i); 1 \le i \le 2m$
 $f_e(E(C_n \times P_2)) = \{(\pm 3, \pm 5, ..., \pm (4m - 3)\} \cup \{\pm 2m, \pm 4m\} \cup \{(\pm (4m + 3), \pm (4m + 6), ..., \pm (10m - 3)\} \cup \{\pm (10m + 1)\}.$
Then f is a pair sum labeling.

Illustration 2: A pair sum labeling of $C_{10} \times P_2$ is

Fig. 3

Notation: We denote the vertex set and edge set of ladder $L_n = P_n \times P_2$ as follows. Let $V(L_n) = \{u_i, v_i : 1 \le i \le n\}$ and $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}$.

Theorem 2.4: $L_n \odot K_1$ is a pair sum graph.

Proof: Let $w_{1,}w_{2,}\dots,w_{n}$ be the pendant vertices adjacent to $u_{1,}u_{2,}\dots,u_{n}$ and $w_{n+1,}w_{n+2,}w_{2n}$

be the pendant vertices adjacent to v_1, v_2, \dots, v_n . Case (i) n is odd. Let n = 2m + 1. Define $f: V(L_n \odot K_1) \rightarrow \{\pm 1, \pm 2, \dots, \pm (8m + 4)\}$ by $f(u_i) = -4(m+1) + 2i; 1 \le i \le m$ $f(u_{m+1}) = -(2m+1)$ $f(u_{m+1+i}) = 2m + 2i + 2; 1 \le i \le m$ $f(v_i) = -4m - 3 + 2i; 1 \le i \le m$ $f(v_{m+1}) = 2m + 2$ $f(v_{m+1+i}) = 2m + 2i + 1; 1 \le i \le m$ $f(w_i) = -8m - 6 + 2i; 1 \le i \le m + 1$ $f(w_{2m+2-i}) = 8m + 6 - 2i; 1 \le i \le m$ $f(w_{2m+1+i}) = -8m - 6 + 2i; 1 \le i \le m$ $f(w_{2n+1-i}) = 8m + 5 - 2i; 1 \le i \le m + 1$ Here $f_e(E(L_n \odot K_1)) = f_e(E(L_n)) \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 4), \pm (6m - 8), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 8), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 8), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 8), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 8), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 8), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 8), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (6m - 8), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup (4m + 6)\} \cup \{\pm 6m, \pm (4m + 6), \dots, \pm (4m + 6), \dots, \pm (4m + 6)\} \cup (4m + 6)\} \cup (4m + 6)\} \cup (4m + 6)\} \cup (4m + 6)\}$ $\{-4m-1\} \cup \{\pm (6m-2), \pm (6m-6), \dots, \pm (6m+4)\} \cup \{4m+1\}.$ **Case (ii)** *n* is even. Let n = 2m. Define a map f as follows: $f(u_{m+1-i}) = -2i; 1 \le i \le m$ $f(u_{m+i}) = 2i - 1; 1 \le i \le m$ $f(u_{m+i}) = 2i; 1 \le i \le m$ $f(u_{m+1-i}) = -(2i-1); 1 \le i \le m$ $f(w_i) = -8m + 2 + 2i + 1; 1 \le i \le m$ $f(w_{2m+1-i}) = 8m + 1 - 2i; 1 \le i \le m$ $f(w_{2m+i}) = -8m - 1 + 2i; 1 \le i \le m$ $f(w_{4m+1-i}) = 8m - 2 - 2i; 1 \le i \le m$ Here $f_e(E(L_n \odot K_1)) = f_e(E(L_n)) \cup \{\pm 10m, \pm (10m - 4), \pm (10m - 8), \dots, \pm 6m\} \cup$ $\pm \{(10m-2), \pm (10m-6), \dots, \pm (6m+2)\}$. Then f is a pair sum labeling. **Illustration 3:** A pair sum labeling of $L_7 \odot K_1$ is

Fig.4

Notation: Two copies of the cycle C_m connected by the path P_n is denoted by $[C_m, P_n]$. **Theorem 2.5:** The graph $[C_m, P_m]$ is a pair sum graph.

Proof: Let the first copy of cycle *C_m* be *u*₁*u*₂ ... *u_mu*₁ and second copy of cycle *C_m*be *v*₁*v*₂ ... *v_nv*₁. Let *P_m* be the path *w*₁*w*₂ ... *w_m*.Let *V*([*C_m, P_m*]) = *V*(*C_m*) ∪ *V*(*C_m*) ∪ *V*(*P_m*) and *E*([*C_m, P_m*]) = *E*(*C_m*) ∪ *E*(*C_m*) ∪ *E*(*P_m*) ∪ {*u*₁*w*₁, *w_nv*₁}. **Case (i)** *m* is odd. Define *f*: *V*([*C_m, P_m*]) → {±1, ±2, ..., ±3*m*} by *f*(*w*_{(*m*-1)/2+*i*}) = *i*; 1 ≤ *i* ≤ (*m* + 1)/2 *f*(*w*_{(*m*-1)/2-2*i*+2}) = -2 - 2*i*; 1 ≤ *i* ≤ (*m* − 1)/4 *if m* ≡ 1(mod4) 1 ≤ *i* ≤ (*m* + 1)/4 *if m* ≡ 3(mod4) *f*(*w*_{(*m*-3)/2-2*i*+2}) = -2*i* + 1; 1 ≤ *i* ≤ (*m* − 1)/4 *if m* ≡ 1(mod4) 1 ≤ *i* ≤ (*m* + 1)/4 *if m* ≡ 3(mod4) *f*(*v_i*) = -3*m* − *i* + 1; 1 ≤ *i* ≤ *m f*(*u_i*) = 2*m* + 2 + *i*; 1 ≤ *i* ≤ *m* − 2 *f*(*u_{m-1}*) = 2*m* + 1 *f*(*u_m*) = 2*m* + 2. Here $f_e(E(C_m, P_m)) = \{(\pm 3, \pm 5, ..., \pm n)\} \cup \{\pm (4m + 3), \pm (4m + 5), ..., \pm (6m - 1)\} \cup \{\pm (5m + 1), \pm (5m + 7/2)\}.$ **Case (ii)***m* is even. Assign the label to the vertices of path $P_{m-1} : u_2, u_3, ..., u_m$ as in case (i). Label the vertex u_1 by m/2 + 1. $f(u_i) = 2m + 1 + i; 1 \le i \le m - 1$ $f(u_m) = 2m + 1$ $f(v_i) = -3m + i; 1 \le i \le m - 1$ $f(v_m) = -3m$. Here $f_e(E(C_m, P_m)) = \{(\pm 3, \pm 5, ..., \pm n)\} \cup \{n + 1, \pm (3m + 1)\} \cup \{\pm (4m + 3), \pm (4m + 5), ..., \pm (6m - 1)\} \cup \{\pm (5m + 1)\}.$

Then clearly f is a pair sum labeling.

Illustration 4: A pair sum labeling of $[C_5, P_5]$ is

Theorem 2.6: Let *G* be the graph with $V(G) = V(C_n) \cup \{v\}$ and $E(G) = E(C_n) \cup \{u_1v, u_3v\}$. Then *G* is a pair sum graph.

Proof: Let $u_1 u_2 ... u_m u_1$ be the cycle C_n . Case (i)n = 2m + 1. Define $f: V(G) \rightarrow \{\pm 1, \pm 2, ..., \pm (n + 1)\}$ by $f(u_i) = i; 1 \le i \le m + 1$ $f(u_{n-2i+2}) = -2 - 2i; 1 \le i \le [m/2]$ $f(u_{n-2i+1}) = 1 - 2i; 1 \le i \le [m/2]$ f(v) = -2. Here $f_e(E(G)) = \{(\pm 3, \pm 5, \dots, \pm (2m+1))\} \cup \{2, \pm 1\}$ *if* $n \equiv 1 \pmod{4}$ and $f_e(E(G)) = \{(\pm 3, \pm 5, \dots, \pm (2m+1))\} \cup \{-2, \pm 1\}$ *if* $n \equiv 3 \pmod{4}$.

Case (ii)
$$n = 4m + 2$$
.
 $f(u_1) = -(4m + 2)$
 $f(u_{1+i}) = 2i; 1 \le i \le 2m + 1$
 $f(u_{2m+2+i}) = -2i; 1 \le i \le 2m$
 $f(v) = 2m - 1$.
Here $f_e(E(G)) = \{(\pm 6, \pm 10, ..., \pm (8m+2))\} \cup \{\pm 4m, \pm (2m + 3)\}$.

Case (iii)

Sub case (i) n = 4.

A pair sum labeling of G with n = 4 is

Sub case (ii) n = 4m, m > 1 $f(u_1) = -4m + 1$ $f(u_{1+i}) = 2i - 1; 1 \le i \le 2m$ $f(u_{2m+2+i}) = -2i + 1; 1 \le i \le 2m - 1$ f(v) = 2m - 2. Here $f_e(E(G)) = \{(\pm 4, \pm 8, \dots, \pm (8m-4))\} \cup \{\pm (2m + 1), \pm (4m - 2)\}$.

Then f is obviously a pair sum labeling.

Illustration 5: A pair sum labeling of G with n = 9 is

Fig. 7

Notation: Let G_n denotes the graph with vertex set $V(G_n) = V(C_n) \cup \{v_i : 1 \le i \le n\}$ and edge set $E(G_n) = E(C_n) \cup \{u_i v_i, u_{i(i+1)modn} : 1 \le i \le n\}$.

Theorem 2.7: If n is even then G_n is a pair sum graph.

Define
$$f: V(G_n) \to \{\pm 1, \pm 2, ..., \pm 2n\}$$

 $f(u_i) = 2i; 1 \le i \le n/2 - 1$
 $f(u_{n/2}) = -2 - 2i$
 $f(u_{n/2+i}) = -2i; 1 \le i \le n/2 - 1$
 $f(u_n) = -2n$
 $f(v_i) = 2i - 1; 1 \le i \le n/2$
 $f(v_{n/2+i}) = -(2i - 1); 1 \le i \le n/2.$
Here $f_e(E(G)) = \{(\pm 6, \pm 10, ..., \pm (2n-6))\} \cup \{\pm (3n - 2), \pm (2n - 2)\} \cup \{\pm 3, \pm 5, ..., \pm (2n - 3)\} \cup \{\pm (3n - 1), \pm (2n - 1)\}.$
Then G_n is a pair sum graph.

Illustration 6: A pair sum labeling of G_8 is

Notation: Let G_n^* denotes the graph with vertex set $V(G_n^*) = V(C_n) \cup \{v_i, w_i : 1 \le i \le n\}$ and edge set $E(G_n^*) = E(C_n) \cup \{u_i v_i, u_i w_i v_i w_i : 1 \le i \le n\}$.

Theorem 2.8: If n is even then G_n^* is a pair sum graph.

Proof: Define
$$f: V(G_n^*) \to \{\pm 1, \pm 2, ..., \pm 3n\}$$
 by
 $f(u_i) = 6i - 5; 1 \le i \le n/2$
 $f(u_{n/2+i}) = -6i + 5; 1 \le i \le n/2$
 $f(v_i) = 6i - 4; 1 \le i \le n/2$
 $f(v_{n/2+i}) = -6i + 4; 1 \le i \le n/2$
 $f(w_i) = 6i - 3; 1 \le i \le n/2$
 $f(w_{n/2+i}) = -6i + 3; 1 \le i \le n/2$
Here $f_e(E(G_n^*)) = \{(\pm 8, \pm 20, \pm 32, ..., \pm (6n - 16))\}$
 $\cup \{\pm (3n - 6)\} \cup \{(3, 4, 5), (15, 16, 17), ..., (6n - 9, 6n - 8, 6n - 7)\}$
 $\cup \{(-3, -4, -5), (-15, -16, -17), ..., (-6n + 9, -6n + 8, -6n + 7)\}.$
Then f is a pair sum labeling.

Illustration 7: A pair sum labeling of G_8^* is

Conclusion

Here we investigate pair sum labeling behavior of $P_n \times P_n$ (*n* is even), $C_m \times P_2$

(mis even), $L_n \odot K_1$, $[C_m, P_m]$ and some more standard graphs. Investigation of pair sum

labeling behavior of $P_m \times P_n$ $(m \neq n)$, $C_m \times P_n$ $(n \neq 2)$, $[C_m, P_n]$ $(m \neq n)$ are open

problems for future research.

REFERENCES

- [1] F. Harary, Graph Theory, Narosa publishing house, New Delhi, (1998).
- [2] R. Ponraj, J. Vijaya Xavier Parthipan, Pair sum labeling of graphs, The Journal of the Indian Academy of Mathematics, 32 (2) (2010), 587-595.

- [3] R. Ponraj, J. Vijaya Xavier Parthipan and R.Kala, Some results on pair sum labeling of graphs, International Journal of MathematicalCombinatorics, 4 (2010), 53-61.
- [4]R. Ponraj, J. Vijaya Xavier Parthipan and R.Kala, A note on pair sum graphs ,Journal of Scientific Research, 3(2) (2011), 321-329.
- [5] R. Ponraj, J. Vijaya Xavier Parthipan, Further results on pair sum labeling of trees, Applied Mathematics, 2(2011),1270-1278.