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Abstract. Piszczek and Szczawińska proved the hyperstability of the Drygas functional equation in Banach spaces.

Using the fixed point method, we prove the hyperstability of the Drygas functional equation f (x+ y)+ f (x− y) =

2 f (x)+ f (y)+ f (−y), in the class of functions from a commutative group into a commutative complete metric

group.
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1. Introduction and preliminaries

In 1940, Ulam [32] gave a talk before the Mathematics Club of the University of Wisconsin

in which proposed the following stability problem, well-known as Ulam stability problem.

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there

exist a δ > 0 such that if a mapping h : G1→ G2 satisfies the inequality d(h(xy),h(x)h(y))< δ

for all x,y ∈ G1 then there is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all

x ∈ G1?

In 1941, Hyers [14] gave a first affirmative answer to the question of Ulam for Banach spaces.

Hyers’ theorem was generalized by Aoki [3] for additive mappings and by Rassias [25] for
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linear mappings by considering an unbounded Cauchy difference. Găvruta [13] provided a

further generalization of the Rassias’ theorem by using a general control function.

The functional equation

f (x+ y)+ f (x− y) = 2 f (x)+2 f (y) (1.1)

is called the quadratic functional equation. Quadratic functional equation where used to char-

acterize inner product spaces [1,2,15]. In particular every solution of the quadratic functional

equation is said to be quadratic function. It is well known that a function f between real vector

spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such

that f (x) = B(x,x) for all x (see [1,17]). The bi-additive mapping is given by

B(x,y) =
1
4
[ f (x+ y)− f (x− y)] .

The generalized Hyers-Ulam stability problem for the above quadratic functional equation

was proved by Skof [31] for mapping f : X → Y , where X is a normed space and Y is a Banach

space. Cholewa [8] noticed that the theorem of Skof is still true if relevant domain X is replaced

by an abelian group. In [9], Czerwik proved the generalized Hyers-Ulam of the quadratic

functional equation as above. Grabiec [11] has generalized these results mentioned above.

Several functional equations have been investigated in [7,20-23,26-30].

Drygas [10] obtained a Jordan and von Neumann type characterization theorem for quasi-

inner product spaces. In Drygas’s characterization of quasi-inner product spaces the functional

equation

f (x)+ f (y) = f (x− y)+2
(

f (
x+ y

2
)− x− y

2
)

)
played an important role. If we replace y by −y in the above functional equation and add the

resulting equation to the above equation, then we obtain the Drygas equation

f (x+ y)+ f (x− y) = 2 f (x)+ f (y)+ f (−y). (1.2)

The Drygas functional equation (1.2) on an arbitrary group G takes the form

f (xy)+ f (xy−1)−2 f (x)− f (y)− f (y−1) = 0,

for all x,y ∈ G. The stability of the equation (1.2) was studied in [16] and [33].
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In 2001, Maksa and Páles [19] proved a new type of stability of a class of linear functional

equation

f (x)+ f (y) =
1
n

n

∑
i=1

f (xϕi(y)) , (1.3)

where f is a real-valued mapping defined on a semigroup (S, .) and where ϕ1, ...,ϕn : S→ S

are pairwise distinct automorphisme of S. More precisely, they proved that if the error bound

for the difference of the two sides of (1.3) satisfies a certain asymptotic property then, in fact,

the two sides have to be equal to each other. Such a phenomenon is called the hyperstability

of the functional equation on S. Further, Brzdȩk and Ciepliński in their paper [5] introduce the

following definition, which describes the main ideas of such hyperstability notion for equations

in several variables.

Definition 1.2. Let X be a nonempty set, (Y,d) be a metric space, ε ∈ RXn

0 and F1, F2 be

operators mapping from a nonempty set D ⊂ Y X into Y Xn
. We say that the operator equation

F1ϕ(x1, . . . ,xn) = F2ϕ(x1, . . . ,xn), x1, . . . ,xn ∈ X (1.4)

is ε-hyperstable provided every ϕ0 ∈D satisfies the inequality

d (F1ϕ0(x1, . . . ,xn),F2ϕ0(x1, . . . ,xn))≤ ε(x1, . . . ,xn), x1, . . . ,xn ∈ X (1.5)

fulfills equation (1.4).

In [4], Brzdȩk proved the hyperstability of the Cauchy functional equation by an idea based

on a fixed point theorem for functional equations obtained by Brzdek et al. in [6]. Gsel-

mann [12] investigated the hyperstability of parametric fundamental equation of information.

Piszczek in [24] proved the hyperstability of the general linear equation. In 2013, Piszczek and

Szczawińska in [18] studied the hyperstability of the Drygas equation (1.2) in Banach spaces.

In this paper, using the fixed point method based on a fixed point result ([6]; Theorem 1), we

prove the hyperstability of the Drygas functional equation (1.2) in the class of functions from a

commutative group to commutative complete metric group.

Throughout this paper, N denote the set of all non-negative integers, N+ denote the set of all

positive integers, Nn0 denote the set of all integers greater than or equal to n0 ∈ N+. By R0 and
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R+ we will denote the set of all non-negative reals and the set of all positive reals, respectively.

AB denote the family of all functions from a set B 6=∅ to a set A 6=∅).

Before proceeding to the main results, we will state the following theorem (Theorem (1.3))

which is useful to our purpose.

Theorem 1.3. [6] Let X be a nonempty set, (Y,d) a complete metric space, f1, . . . , fs : X → X

and L1, . . . ,Ls : X → R0 be given maps. Let Λ : RX
0 → RX

0 be a linear operator defined by

Λδ (x) :=
s

∑
i=1

Li(x)δ ( fi(x)), (1.6)

for δ ∈ RX
0 and x ∈ X. If T : Y X → Y X is an operator satisfying the inequality

d (T ξ (x),T µ(x))≤
s

∑
i=1

Li(x)d (ξ ( fi(x)),µ( fi(x))) , ξ ,µ ∈ Y X ,x ∈ X , (1.7)

and the functions ε : X → R0 and ϕ : X → Y are such that

d (T ϕ(x),ϕ(x))≤ ε(x), x ∈ X , (1.8)

ε
∗(x) :=

∞

∑
k=1

Λ
k
ε(x)< ∞, x ∈ X , (1.9)

then, for every x ∈ X, the limit

ψ(x) := lim
n→∞

T n
ϕ(x), (1.10)

exists and the function ψ ∈ Y X so defined is a unique fixed point of T , with

d (ϕ(x),ψ(x))≤ ε
∗(x), x ∈ X . (1.11)

2. Hyperstability of (1.2)

Given a group (X ,+), we denote by Aut(X) the family of all automorphisms of X . Moreover,

for each u ∈ XX we write ux := u(x) for x ∈ X and we define u′ by u′x := x−ux. The following

theorem is a result concerning the hyperstability of equation (1.2).

Theorem 2.1. Let (X ,+) and (Y,+) be commutative groups, d be a complete metric in Y that

is invariant (i.e., d(x+ z,y+ z) = d(x,y) for x,y,z ∈ X), ε : (X\{0})2→ R+, and

l(X) :=
{

u ∈ Aut(X) : u′ ∈ Aut(X),2λ (u′)+λ (u)+λ (−u)+λ (−2u)< 1
}
6= /0, (2.1)
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where

λ (u) := inf{t ∈ R+ : ε(ux,uy)≤ tε(x,y),∀x,y ∈ X\{0}} , (2.2)

for u ∈ Aut(X). Assume that there exists a nonempty subset U ⊂ l(X) such that

u◦ v = v◦u, (2.3)

for all u,v ∈U , and

inf
{

ε(u′x,ux) : u ∈U
}
= 0 ∀x ∈ X\{0},

sup
{

2λ (u′)+λ (u)+λ (−u)+λ (−2u) : u ∈U
}
< 1.

(2.4)

Then every function f : X → Y satisfying the inequality

d ( f (x+ y),2 f (x)+ f (y)+ f (−y)− f (x− y))≤ ε(x,y), (2.5)

for all x,y ∈ X\{0}, satisfies the Drygas functional equation on X\{0}.

Proof. Let us fix u ∈U ⊂ l(X). Replacing x with u′x and y with ux in (2.5), we get

d
(

f (x),2 f (u′x)+ f (ux)+ f (−ux)− f (−2ux)
)
≤ ε(u′x,ux) =: εu(x) (2.6)

for all x ∈ X\{0}. We define the operators Tu : Y X → Y X , Λu : RX
+→ RX

+ by

Tuξ (x) := 2ξ (u′x)+ξ (ux)+ξ (−ux)−ξ (−2ux), (2.7)

Λuδ (x) := 2δ (u′x)+δ (ux)+δ (−ux)+δ (−2ux), (2.8)

for all x ∈ X , ξ ∈ Y X and δ ∈ RX
+ . Then (2.6) becomes

d ( f (x),Tu f (x))≤ εu(x), (2.9)

for all x ∈ X\{0}. The operator Λu : RX
+ → RX

+ has the form given by (1.6) with s = 4 and

f1(x) = u′x, f2(x) = ux, f3(x) =−ux, f4(x) =−2ux, L1(x) = 2, L2(x) = L3(x) = L4(x) = 1, for
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all x ∈ X . Further, we have

d (Tuξ (x),Tuµ(x)) = d
(
2ξ (u′x)+ξ (ux)+ξ (−ux)−ξ (−2ux),

2µ(u′x)+µ(ux)+µ(−ux)−µ(−2ux)
)
,

≤ 2d
(
ξ (u′x),µ(u′x)

)
+d (ξ (ux),µ(ux))

+d (ξ (−ux),µ(−ux))+d (ξ (−2ux),µ(−2ux))

=
4

∑
i=1

Li(x)d (ξ ( fi(x)),µ( fi(x)))

for all x ∈ X and ξ ,µ ∈ Y X . As u ∈U , we have

ε
∗(x) :=

∞

∑
k=0

Λ
k
uεu(x)

≤ ε(u′x,ux)
∞

∑
k=0

(
2λ (u′)+λ (u)+λ (−u)+λ (−2u)

)k

=
ε(u′x,ux)

1−2λ (u′)−λ (u)−λ (−u)−λ (−2u)

< ∞,

for all x ∈ X\{0}. Now, using the Theorem 1.3, there exists a unique solution Fu : X\{0} → Y

of the equation

Fu(x) = 2Fu(u′x)+Fu(u)+Fu(−ux)−Fu((−2ux),

for all x ∈ X\{0}, which is a fixed point of Tu, such that

d (Fu(x), f (x))≤ ε(u′x,ux)
1−2λ (u′)−λ (u)−λ (−u)−λ (−2u)

,

for all x ∈ X\{0}. Moreover

Fu(x) = lim
k→∞

T k
u f (x),

for all x ∈ X\{0}. To prove that Fu satisfies the Drygas functional equation (1.2) on X\{0},

just prove the following inequality

d (T n f (x+ y),2T n f (x)+T n f (y)−T n f (−y)−T n f (x− y))

≤ ε(x,y)
(
2λ (u′)+λ (u)+λ (−u)+λ (−2u)

)n
.

(2.10)

for all x,y ∈ X\{0}, and n ∈ N.
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Indeed, if n = 0 then (2.10) simply becomes (2.5). So, take n ∈ N+ and suppose that (2.10)

holds for n ∈ N+ and x,y ∈ X\{0}. Then, by using (2.7) and the triangle inequality, we have

d
(
T n+1 f (x+ y),2T n+1 f (x)+T n+1 f (y)−T n+1 f (−y)−T n+1 f (x− y)

)
= d

(
2T n f (u′x+u′y)+T n f (ux+uy)+T n f (−ux−uy)−T n f (−2ux−2uy),

4T n f (u′x)+2T n f (ux)+2T n f (−ux)−2T n f (−2ux)

+2T n f (u′y)+T n f (uy)+T n f (−uy)−T n f (−2uy)

+2T n f (−u′y)+T n f (−uy)+T n f (uy)−T n f (2uy)

−2T n f (u′x−u′y)−T n f (ux−uy)−T n f (−ux+uy)+T n f (−2ux+2uy)
)

≤ d
(
T n f (u′x+u′y),2T n f (u′x)+T n f (u′y)−T n f (−u′y)−T n f (u′x−u′y)

)
+d (T n f (ux+uy),2T n f (ux)+T n f (uy)−T n f (−uy)−T n f (ux−uy))

+d (T n f (−ux−uy),2T n f (−ux)+T n f (−uy)−T n f (uy)−T n f (−ux+uy))

+d (T n f (−2ux−2uy),2T n f (−2ux)+T n f (−2uy)−T n f (2uy)−T n f (−2ux+2uy))

≤
(
2ε(u′x,u′y)+ ε(ux,uy)+ ε(−ux,−uy)+ ε(−2ux,−2uy)

)
×
(
2λ (u′)+λ (u)+λ (−u)+λ (−2u)

)n

≤ ε(x,y)
(
2λ (u′)+λ (u)+λ (−u)+λ (−2u)

)
×
(
2λ (u′)+λ (u)+λ (−u)+λ (−2u)

)n

= ε(x,y)
(
2λ (u′)+λ (u)+λ (−u)+λ (−2u)

)n+1
.

(2.11)

By induction, we have shown that (2.10) holds for all x,y ∈ X\{0}. Letting n→ ∞ in (2.10),

we get

Fu(x+ y)+Fu(x− y) = 2Fu(x)+Fu(y)+Fu(−y) (2.12)

for all x,y∈ X\{0}. Thus, we have proved that for every u∈U there exists a function Fu : X→

Y solution of the functional equation (1.2) on X\{0}, and

d ( f (x),Fu(x))≤
ε(u′x,ux)

1−2λ (u′)−λ (u)−λ (−u)−λ (−2u)
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for all x ∈ X\{0}. Thus

d ( f (x),Fu(x))≤ inf
u∈U

{
ε(u′x,ux)

1−2λ (u′)−λ (u)−λ (−u)−λ (−2u)

}
≤ infu∈U ε(u′x,ux)

1−2λ (u′)+λ (u)+λ (−u)+λ (−2u)

= 0,

for all x ∈ X\{0}, this means that Fu(x) = f (x) for all x ∈ X\{0}, hence

f (x+ y)+ f (x− y) = 2 f (x)+ f (y)+ f (−y).

for all x ∈ X\{0}, which implies that f satisfies the Drygas functional equation on X\{0}.

The next corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let E and F be a normed space and a Banach space, respectively. Assume that

X is a subgroup of the group (E,+), p < 0,q < 0 and c≥ 0. If f : X → F satisfies

‖ f (x+ y)+ f (x− y)−2 f (x)− f (y)− f (−y)‖ ≤ c(‖x‖p +‖y‖q) , (2.13)

for all x,y ∈ X\{0}, then f satisfies the Drygas equation on X\{0}.

Proof. The proof follows from Theorem 2.1 by taking

ε(x,y) = c(‖x‖p +‖y‖q) , x,y ∈ X\{0},

with some real p < 0,q < 0, c≥ 0, and

d(x,y) = ‖x− y‖ ,

um(x) := umx := u(x) =−mx, u′m(x) := u′mx := u′(x) = (1+m)x m ∈ N.

So it easily seen that conditions (2.4) are fulfilled with

U := {um ∈ Aut X : m ∈ Nn0} .
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Indeed,

ε(umx,uky) = ε(−mx,−ky)

= c(‖−mx‖p +‖−ky‖q)

= c |m|p ‖x‖p + c |k|q ‖y‖q

≤ (|m|p + |k|q)c(‖x‖p +‖y‖q)

= (|m|p + |k|q)ε(x,y)

for every x,y ∈ X\{0}, k,m ∈ N+. Hence

lim
m→∞

ε(umx,u′my)≤ lim
m→∞

(mp +(1+m)p)ε(x,y)

= 0,

for all x,y ∈ X\{0}, and there exists n0 ∈ N+ such that

2λ (u′m)+λ (um)+λ (−um)+λ (−2um)< 1 m ∈ Nn0.

Therefore, by Theorem 2.1 every f : X →Y satisfying (2.13) is solution of Drygas equation on

X\{0}.
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Babeş-Bolyai Mathematica, 43 (1998), 89–124.

[27] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000),

264–284.



HYPERSTABILITY OF DRYGAS FUNCTIONAL EQUATION 715

[28] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl.

246 (2000), 352–378.
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