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Abstract. The paper deals with the existence of solutions for a nonlinear degenerated equation in divergence

form having lower order term, this problem is associated to elliptic operators in the framework of weighted orlicz-

Sobolev spaces and L1 data.
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1. Introduction

Let Ω ⊂ RN be a bounded domain, and M,P two N-functions such that P� M, M,P be

the complementary functions of M,P, respectively. In this article, we prove the existence of

solution for quasilinear degenerate elliptic equations of the form :

(1) −div(ρ(x)a(x,u,∇u))+a0(x,u,∇u) = f ,
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where A(u)=−div(ρ(x)a(x,u,∇u))+a0(x,u,∇u) is a Leray-Lions operator defined on D(A)⊂

W 1
0 LM(Ω).

a : Ω×R×RN →RN and a0 : Ω×R×RN →RN are Carathéodorys functions satisfying some

naturals growth conditions with respect to u and ∇u and the degenerate ellipticity condition

a0(x,s,ξ )η +ρ(x)a(x,s,ξ )ξ ≥ λ0[M(λ1s)+ρ(x)M(λ2|ξ |)].

The source term f is supposed in L1(Ω). In no degenerate case Gossez [12] solved(1.1) with f ∈

W−1EM(Ω). An existence theorem have been proved by Benkirane and Elmahi [6,8] with f ∈

W−1EM(Ω) and f ∈ L1(Ω), respectively, but the result is restricted to N-functions M satisfying

a ∆2 condition. An other work in this direction can be found in [9] in non-weighted case.

So for our nonlinear operator A(u) = −div(ρ(x)a(x,u,∇u)) + a0(x,u,∇u), with coefficients

are singular or degenerated the classic ellipticity conditions are violated one has to change

the classical approach introducing weighted spaces. The case where f ∈W−1EM(Ω,ρ), and

A(u) = −div(a(x,u,∇u)) + a0(x,u,∇u) is treated in [3] by using the framework of pseudo-

monotones operator in complementary systems introduced by Gossez. Note that this type of

equations can be applied in sciences physics. Non-standard example of M(t) which occur in

the mechanics of solids and Fluids are M(t) = tlog(1+ t). Note that the use of the truncation

operator in (1.1) is justified by the fact that the the solution does not in general belong to L∞(Ω)

for f ∈ L1(Ω). Specific examples to which our results apply include :

−div(ρ(x)|∇u|p−2
∇u) = f in Ω

−div(ρ(x)|∇u|p−2
∇u logβ (1+ |∇u|)) = f in Ω

−div
ρ(x)M(|∇u|)∇u

|∇u|2
= f in Ω,

where p > 1, f is function in L1(Ω) and ρ is a given weight function on Ω.

2. Preliminaries

In this section we present, some definitions and well-known about N-functions, weighted

Orlicz-Sobolev spaces (standard references are in [1], [5] and [8]).
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2.1. The N- functions

Let M : IR+→ IR+ be an N- function, ie. M is continuous, convex, with M(t)> 0 for

t > 0, M(t)/t→ 0 as t→ 0 and M(t)
t → ∞ as t→ ∞.

Equivalently. M admits the representation:

M(t) =
∫ t

0
m(τ)dτ ,

where m : IR+→ IR+ is non-decreasing right continuous, with m(0) = 0, m(t)> 0 for t > 0 and

m(t)→ ∞ as t→ ∞ The N-function M conjugate to M defined by

M(t) =
∫ t

0
m(τ)dτ,

where m : IR+→ IR+ is given bay m(t) = sup{s : m(s)≤ t}. Clearly M = M and has young’s

inequality st ≤M(t)+M(s) for all s, t ≥ 0.

It is well known that we can assume that m and m are continuous and strictly increasing. We

will extend the N-functions into even function on all IR. The N-function M is said to satisfy

the ∆2-condition every where ( resp. infinity) if there exist k > 0(resp. t0 > 0) such that,

M(2t)≤ kM(t) for all t ≥ 0 (resp.t ≥ t0).

2.2. Orlicz-Sobolev spaces

Let Ω be a open subset of IRN , and let M be an N-fonction. The Orlicz classe KM(Ω) ( resp

the Orlicz spaces LM(Ω) is the set of all (equivalence classes modulo equality a.e.in Ω of) real-

valued measurable functions u defined in Ω and satisfying
∫

Ω

M(u(x))dx < ∞

(resp )
∫

Ω

M(
|u(x)|

λ
)dx < ∞ for some λ > 0.

LM(Ω) is a Banach space under the Luxemburg’s norm:

‖u‖M,Ω = inf
{

λ > 0 :
∫

Ω

M(
|u(x)|

λ
)dx≤ 1

}
. (2.1)

The closure in LM(Ω) of the set of bounded measurable function with compact support in Ω

is denoted byEM(Ω). We have EM(Ω) ⊂ KM(Ω) ⊂ LM(Ω)). The equality LM(Ω) = EM(Ω)

hold if and only if M satisfies the ∆2-condition, for all t or for t large according to whether Ω

has a infinite measure or note. The dual of EM(Ω) can be identified with LM(Ω) by means of

the pairing
∫

Ω

u(x)v(x)dx where u ∈ LM(Ω) and v ∈ LM(Ω) and the dual norm on LM(Ω) is
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equivalent to ‖‖M,Ω.

The space LM(Ω) is reflexive if and only if M an M satisfy the ∆2-condition for all t or for t

large, according to wheither Ω be infinite measure or note.

We return now to the Orlicz-Sobolev spaces W 1LM(Ω) (resp W 1EM(Ω)) is the space of all

function u such that u and its distributional derivatives up to order 1 lies in ∈ LM(Ω) (resp

∈ EM(Ω)) .

It’s Banach space under the norm

‖u‖1,M = ∑
|α|≤1

‖Dαu‖M,Ω. (2.2)

Thus W 1LM(Ω) and W 1EM(Ω) can be identified with subspaces of ∏LM we have the weak

topology σ(∏LM,∏EM) and σ(∏LM,∏LM) .

The space W 1
0 EM(Ω) ( resp W 1

0 LM(Ω) is defined by the closure of D(Ω) in W 1EM(Ω) ( resp

W 1LM(Ω) for the norm 2.2 ( resp for the topology σ(∏LM,∏EM)).

Definition 2.1 The sequence un converges to u in LM(Ω) for the modular convergence (denoted

by un→ u (mod) LM(Ω)) if
∫

Ω

M(
|un−u|

λ
)dx→ 0 as n→ ∞ for some λ > 0.

2.3. Weighted Orlicz-Sobolev spaces

Now we shall work with weighted Orlicz spaces in the following sense. Let Ω be a domain

in IRN , and let M be an N-fonction and ρ be a weight function on Ω, ie .measurable positive a.e

on Ω. The weighted Orlicz classe KM(Ω,ρ) ( resp the weighted Orlicz space LM(Ω,ρ)) is the

set of all (equivalence classes modulo equality a.e.in Ω ) of real-valued mesurable functions u

defined in Ω and satisfying

mρ(u,M) =
∫

Ω

M(|u(x)|)ρ(x)dx < ∞

(resp)

mρ(
u
λ
,M) =

∫
Ω

M(
|u(x)|

λ
)ρ(x)dx < ∞ for someλ > 0

LM(Ω,ρ) is a Banach space under the Luxemburg’s norm:

‖u‖M,ρ = inf
{

λ > 0;mρ(
u
λ
,M)≤ 1

}
. (2.3)
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The closure in LM(Ω,ρ) of the set of bounded measurable function with compact support in Ω

is denoted by EM(Ω,ρ) we have

EM(Ω,ρ)⊂ KM(Ω,ρ)⊂ LM(Ω,ρ).

The equality LM(Ω,ρ) = EM(Ω,ρ) hold if and only if M satisfies the ∆2-condition, for all t or

for t large according to whether Ω has a infinite measure or note. The dual of EM(Ω,ρ) can be

identified with LM(Ω,ρ) by means of the pairing∫
Ω

u(x)v(x)ρ(x)dx

where u ∈ LM(Ω,ρ) and v ∈ LM(Ω,ρ). The dual norm on LM(Ω,ρ) is equivalent to ‖‖M,Ω.

Giving birth to the so called Orlicz norm onLM(Ω,ρ) defined by

‖u‖(M,ρ) = sup
{∫

Ω

f (x)g(x)ρ(x)dx;mρ(g,M)≤ 1
}

The space LM(Ω,ρ) is reflexive if and only if M an M satisfy the ∆2-condition for all t or for t

large, according to weighted Ω be infinite measure or note.

We return now to the weighted Orlicz-Sobolev spaces W 1LM(Ω,ρ) (resp W 1EM(Ω,ρ)) is the

space of all function u such that u ∈ LM(Ω) (resp u ∈ EM(Ω)) and its distributional derivatives

up to order 1 lie in LM(Ω,ρ) (resp in EM(Ω,ρ)).

It’s Banach space under the norm :

‖u‖1,M,ρ = ‖u‖M +‖∇u‖M,ρ . (2.4)

where ‖u‖M = ‖u‖M,Ω.

Thus W 1LM(Ω,ρ) and W 1EM(Ω,ρ)) can be identified with subspaces of ∏LM,ρ =LM×∏LM(Ω,ρ)

we have the weak topology σ(∏LM,ρ ,∏EM,ρ) and σ(∏LM,ρ ,∏LM,ρ).

The space W 1
0 EM(Ω,ρ) ( resp W 1

0 LM(Ω,ρ)) is defined by the closure of D(Ω) in W 1EM(Ω,ρ))

( resp W 1LM(Ω,ρ)) for the norm (2.4) ( resp for the topology σ(∏LM,ρ ,∏EM,ρ).

The space W 1
0 EM(Ω,ρ) is defined as the (norm) closure of C∞

0 (Ω,ρ) in W 1EM(Ω,ρ) and the

space W 1
0 LM(Ω,ρ) as the σ(ΠLM,ΠEM) closure of C∞

0 (Ω) in W 1LM(Ω).

Let W−1LM(Ω,ρ) (resp. W−1EM(Ω,ρ)) denote the space of distributions on which can be

written as sums of derivatives of order ≤ 1 of functions in LM(Ω,ρ) (resp. EM(Ω,ρ)). It is a
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Banach space under the usual quotient norm (see). If the open set Ω has the segment property,

then the space C∞
0 (Ω) is dense in W 1

0 LM(Ω) for the modular convergence and thus for the

topology σ(ΠLM,ΠLM).

Definition 2.3.1 The sequence un converges to u in W 1LM(Ω,ρ) for the modular convergence

(denoted by un → u (mod) W 1LM(Ω,ρ)) if for some λ > 0
∫

Ω

M(
|un−u|

λ
)dx→ 0 as n→ ∞

and
∫

Ω

M(
|Dα(un−u)|

λ
)ρ(x)dx→ 0

as n→ ∞ for |α|= 1.

3. Basic assumptions and fundamental lemmas

Let Ω ⊂ RN be a bounded domain, M,P be two N-functions such that P� M, M,P be

the complementary functions of M,P, respectively, A : D(A) ⊂W 1
0 LM(Ω)→W−1LM̄(Ω) be

a mapping given by A(u) = −diva(x,u,∇u) where a : Ω×R×RN → RN be a Caratheodory

function satisfying for a.e. x ∈ Ω and all s ∈ R, ξ ,η ∈ RN with ξ 6= η The following lemmas

will be applied to the truncation operators, and concerns operators of the Nemytskii type in

Orlicz spaces.

Lemma 3.1 Let fn, f ∈ L1(Ω) such that

(1) fn ≥ 0 a.e. in Ω.

(2) fn→ f a.e. in Ω.

(3)
∫

Ω
fn(x)dx→

∫
Ω

fn(x)dx

Then fn→ f stongly in L1(Ω).

Lemma 3.2 Let F : R→ R be uniformly lipschitzian, with F(0) = 0. Let M be an N-function

and let u ∈W 1LM(Ω,ρ) (resp. W 1EM(Ω,ρ)). Then F(u) ∈W 1LM(Ω,ρ) (resp. W 1EM(Ω,ρ)).

Moreover, if the set of discontinuity points of F ′ is finite, then

∂

∂xi
F(u) =


F ′(u) ∂u

∂xi
a.e. in {x ∈Ω : u(x) /∈ D}

0 a.e. in {x ∈Ω : u(x) ∈ D}.
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Proof. First consider de case F ∈ C1 and let W 1LM(Ω,ρ). Then there exist a sequence

un ∈ D(Ω) such that un → u (mod) W 1LM(Ω,ρ)). Passing to subsequence, we can assume

that Dαun → Dαu ∀|α| ≤ 1 a.e. in Ω. From the relation |F(s)| ≤ k |s|,where k denote the

lipschitz constant for F , and ∂

∂xi
F(un) = F

′
(un)

∂un
∂xi

, we deduce that F(un) remains bounded in

W 1
0 LM(Ω,ρ).Thus going to to a further subsequence, we obtain F(un)→ w ∈W 1

0 LM(Ω,ρ) for

σ(∏LM,∏EM), and also by a local application of the compact imbedding theorem,F(un)→ w

a.e. in Ω. Consequently w = F(u), and F(u) ∈W 1
0 LM(Ω,ρ). Finally, by the usual chain rule

for weak derivatives
∂

∂xi
F(u) = F

′
(u)

∂u
∂xi

(2.5)

a.e. in Ω. For the general case. Taking convolution with the mollifiers, we get a sequence

Fn ∈C∞(IR) such that Fn→ F uniformly on each compact, Fn(0) = 0 and
∣∣∣F ′n∣∣∣≤ k.

For each n, Fn ∈W 1
0 LM(Ω,ρ),and we have (2.5) with F remplaced by Fn. Finally (2.5) follows

from the generalized chain rule for weak derivatives.

Lemma 3.3 Let F : R→R be uniformly lipschitzian, with F(0) = 0. We suppose that the set of

discontinuity points of F ′ is finite. Let M be an N-function, then the mapping F : W 1LM(Ω,ρ)→

W 1LM(Ω,ρ) is sequentially continuous with respect to the weak* topology σ(ΠLM,ΠEM).

We use also the following technical lemmas:

Lemma 3.4 If a sequence un converge a.e to u and if un remains bonded in LM(Ω), then u ∈

LM(Ω) and un→ u forσ(LM(Ω),EM(Ω))

Lemma 3.5 If a sequence un converge a.e to u and if un remains bonded in LM(Ω,ρ), then

u ∈ LM(Ω,ρ) and un→ u forσ(LM(Ω,ρ),EM(Ω,ρ))

Lemma 3.6 Let Ω be an open subset of RN with finite measure. Let M,P and Q be N-functions

such that Q << P,and let F be a Carathéodorys function such that, for a.e. x ∈Ω and all s ∈ R

|F(x,s)| ≤ c(x)+ k1P−1M(k2|s|),

where k1,k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator NF defined by

NF(u)(x) = F(x,u(x)) is strongly continuous from

P(EM(Ω),
1
k2
) = {u ∈ LM : d(u,EM(Ω))<

1
k2
}
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into EQ(Ω).

Lemma 3.7 If the sequence un ∈ EM(Ω,ρ) Converges a.e in Ω with ρ ∈ L1(Ω), and the norms

are uniformly Absolutely Continuous, i.e. for each ε > 0 there existe δ > 0 such that

‖unχ(E)‖M,ρ < ε

for all n, and E ⊂Ω With |E|< δ , then it Converge in norm in EM(Ω,ρ).

3.1. Compactness results

Let Ω an bounded open subset of IRN with locally-lipscitzien boundary, ρ a weight function,

and the N-function M such that the assumptions (H) are satisfied, there is a real s > 0 such that:

(H1) : (M(t))
s

s+1 be N-function and that ρ−s ∈ L1(Ω)

(H2) :
∫

∞

1

t

M(t)1+ s
N(s+1)

dM(t) = ∞.

(H3) : limt→∞

1
M−1(t)

∫ t
s+1

s

0

M−1(u)

u1+ s
N(s+1)

du = 0.

Remark 3.1.1 In the particular case where M(t) = t p

p (1 < p < ∞), the first part of (H1) is

satisfied if s > 1
p−1 .

Theorem 3.1.2(see [2, theorem 9-5]). Let Ω an bounded open subset of IRN with locally lipsc-

itzian boundary and M an N -function.

Suppose that assumptions (H) are satisfied. So we have the following compact injection:

W 1LM(Ω,ρ) ↪→↪→ EM

Theorem 3.1.2 Let Ω an bounded open subset of IRN with locally-lipscitzien boundary, ρ a

weight function, and M a N-function, let u ∈W 1
0 LM(Ω) then:

‖u‖M ≤ c‖∇u‖M,ρ

where c is a positive constant which imply that ‖∇u‖M,ρ is a equivalent norm of ‖u‖1,M in

W 1
0 LM,ρ
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Proof. Under the assumption (H), the Sobolev conjugate N-function M∗s of Ms is well defined,

by M∗−1
s =

∫ s

0

M−1(t)

t1+ 1
N

dt we have W 1
0 LMs ⊂ LM∗s . And since M�M∗s we have LM∗s ⊂ LM hence

‖u‖M ≤ c1‖u‖M∗s ≤ c2‖u‖1,Ms

where c1 and c2 are two positives constants, by (gossez74) their exist a positive constant c′ such

‖u‖1,Ms ≤ c′‖∇u‖Ms

We well show that

‖∇u‖Ms ≤ c‖∇u‖M,ρ

For that we have

‖v‖Ms ≤
∫

Ω

Ms(v(x))dx+1 =
∫

Ω

Ms(v(x))
1

ρ(x)
ρ(x)dx+1

≤
∫

Ω

S(Ms(v(x)))ρ(x)dx+
∫

Ω

S(
1

ρ(x)
)ρ(x)dx+2

=
∫

Ω

M(v(x))ρ(x)dx+
∫

Ω

ρ
−s(x)dx+1

witch implies that

‖v‖Ms ≤ c‖v‖M,ρ

for some positive constant C.

In fact if is not true, then there exist a sequence vn such that ‖vn‖Ms → ∞ and for n large,

‖vn‖M,ρ‖ ≤ 1. Hence, for n sufficiently large we get∫
Ω

M(vn(x))ρ(x)dx≤ ‖vn‖M,ρ ≤ 1

then,

‖vn‖Ms‖ ≤
∫

Ω

M(v(x))ρ(x)dx+
∫

Ω

ρ
−s(x)dx+1

≤ ‖vn‖M,ρ‖+
∫

Ω

ρ
−s(x)dx+1

witch is contradiction, since the left hand-side tends to infinity while the right hand-side is

bonded. Finally taking v = ∇u we conclude the result. The following lemma is a immediate

consequence of the above theorem.
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Lemma 3.1.3. Let Ω an bounded open subset of IRN with locally-lipscitzien boundary, ρ a

weight function, and M a N-function M let u ∈W 1
0 LM(Ω). Then there exist positives constants

c1 and c2 such that ∫
Ω

M(|u(x)|)dx≤ c1

∫
Ω

M(|c2∇u(x)|)ρ(x)dx

4. Main results

Let Ω ⊂ RN be a bounded domain, M,P be two N-functions such that P�M, M,P be the

complementary functions of M,P, respectively, A : D(A) ⊂W 1
0 LM(Ω,ρ)→W−1LM(Ωρ) be a

mapping (not everywhere defined) given by A(u) =−div(ρ(x)a(x,u,∇u))+a0(x,u,∇u) where

a : Ω×R×RN → RN and a0 : Ω×R×RN → RN are Carathéodorys functions satisfying for

a.e. x ∈Ω and all s ∈ R, ξ ,η ∈ RN with ξ 6= η :

|a0(x,s,ξ )| ≤ K0[g0(x)+M−1M(α2η)+M−1
(ρ(x)P(α1|ξ |))] (4.1)

|a(x,s,ξ )| ≤C0(x)+K1P−1
(ρ−1M(α2s))+K2M−1M(α1|ξ |) (4.2)

[a(x,s,ξ )−a(x,s,η)][ξ −η ]> 0 (4.3)

a0(x,s,ξ )η +ρ(x)a(x,s,ξ )ξ ≥ λ0[M(λ1s)+ρ(x)M(λ2|ξ |)] (4.4)

where α1,α2,K0,K1,K2,λ0,λ1,λ2 > 0, K0(x) in LM(Ω) and C0(x) in (EM(Ω,ρ))N

Let Tk the truncation operator at height k > 0, defined by Tk(s) = max(−k,min(k,s)), ∀s ∈ R,

for all k ≥ 0.

And consider the following nonlinear elliptic problem with Dirichlet boundary condition.

A(u) = f in Ω (4.5)

Finally, we assume that

f ∈ L1(Ω) (4.6)

In the next section, we will prove the following main result.
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Theorem 4.1.. Let Ω an bounded open subset of IRN with locally lipscitzian boundary, assume

that (4.1)-(4.4) holds, and f ∈ L 1(Ω). Then there exists at least one weak solution of the

problem 
u ∈W 1

0 LM(Ω,ρ), *∫
Ω

a(x,u,∇u)∇vρ(x)dx+
∫

Ω
a0(x,u,∇u)vdx = 〈 f ,v〉, *

∀v ∈W 1
0 EM(Ω,ρ)∩L∞(Ω), *

(4.7)

Proof.

Step 1. Approximation problem and a priori estimate.

Let consider the sequence of approximate equations: un ∈W 1
0 LM(Ω), *

−div(ρ(x)a(x,un,∇un))+a0(x,un,∇un) = fn, *
(4.8)

where fn is a smooth function which converges to f in L1(Ω) and ‖ fn‖L1(Ω) ≤ c0. For n fixed

by [Theorem 3.1] in [3], there exists at least one solution {un} to (4.8).

For k > 0, by taking Tk(un) as test function in (4.8), one has∫
Ω

a(x,un,∇Tk(un))∇Tk(un)ρ(x)dx+
∫

Ω

a0(x,un,∇un)Tk(un)dx =< fn,Tk(un > .

In view of the degenerate ellipticity condition (4.4), and the fact that ‖ fn‖L1(Ω) ≤ c0 we get∫
Ω

M(λ2|∇Tk(un)|)ρ(x)dx≤ c0k
λ0

(4.9)

Thanks to Lemma 3.8, there exist two constants c1 and c2such that∫
Ω

M(|v(x)|)dx≤ c1

∫
Ω

M(|c2∇v(x)|)ρ(x)dx

Taking v = λ2Tk(un)
c2

, we have ∫
Ω

M(
λ2|Tk(un)|

c2
))dx≤ c1c0k

λ0
(4.10)

which imply that

mes{|un| ≥ k} ≤ c1c0k

λ0M(kλ

c2
)

And using t
M(t) → 0ast→ ∞ hens mes{|un| ≥ k}→ 0 as k→+∞. forδ > 0 we have :

mes{|un−um|> δ} ≤mes{|un| ≥ k}+mes{|um| ≥ k}+mes{|un−um|> δ}
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by (4.9) Tk(un) is bounded in W 1
0 LM(Ω,ρ), then their exist `k ∈W 1

0 LM(Ω,ρ) such Tk(un)⇀ `k

weakly in W 1
0 LM(Ω,ρ) (for a subsequence still denoted Tk(un))thus ∀ε > 0 their exist k(ε)> 0

mes{|un−um|> δ}6 ε forn,m≥ n0(k(ε),δ )

This proves that un is a cauchy sequence in measure, then there exists some measurable function

u such that

un→ u almost everywhere in Ω (4.11)

Then

Tk(un)⇀ Tk(u) weakly in W 1
0 LM(Ω,ρ) for σ

(
ΠLM,ρ ,ΠEM,ρ

)
(4.12)

And by theorem 3.1.1 we deduce that

Tk(un)→ Tk(u) strongly in EM(Ω) (4.13)

Step 2. boundedness of a(x,Tk(un),∇Tk(un)) and a0(x,Tk(un),∇Tk(un)).

In this step we will shows that a(x,Tk(un),∇Tk(un)) remains bounded in (LM(Ω,ρ))N . We

will use the Orlicz norm. For that, let ψ ∈ (LM(Ω))Nwith ‖ψ‖M ≤ 1. In fact, by the monotonic-

ity condition (4.2) we have

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),ψ)][∇Tk(un)−ψ]ρ(x)dx≥ 0

So that

∫
Ω

a(x,Tk(un),∇Tk(un))ψρ(x)dx≤
∫

Ω

a(x,Tk(un),∇(un))∇Tk(un)ρ(x)dx

−
∫

Ω

a(x,Tk(un),ψ)∇Tk(un)ρ(x)dx

+
∫

Ω

a(x,Tk(un),ψ)ψρ(x)dx

And by (4.8) we have:

∫
Ω

a(x,Tk(un,∇Tk(un))∇Tk(un)ρ(x)dx≤ c0k

To estimate the seconde the tiered terms we us Yuong inequality hence
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∫
Ω

a(x,Tk(un),∇Tk(un))ψρ(x)dx≤ c0k+2
∫

Ω

M(
|a(x,Tk(un),ψ|

r
)ρ(x)dx

+
∫

Ω

M(r|∇Tk(un)|)ρ(x)dx+
∫

Ω

M(r|ψ|)ρ(x)dx

where r > 0 using the growth conditions (4.1)and the fact that P << M we conclude for r large

and ε small, that ∫
Ω

M(
|a(x,Tk(un)),ψ|

r
)ρ(x)dx≤ 1

r

∫
Ω

M(C0(x))ρ(x)dx

+
εK1

r

∫
Ω

M(α2Tk(un)dx

+
K2

r

∫
Ω

M(α1|ψ|)dx+K′ε

since Tk(un) is bounded in W 1
0 LM(Ω,ρ) and ψ is bounded in (LM(Ω))N we get∫
Ω

M(|a(x,Tk(un|),ψ)ρ(x)dx≤Ck

for all ψ ∈ (LM(Ω,))N with ‖ψ‖M, ≤ 1

Therefore, we deduce that a(x,Tk(un),∇Tk(un)) remains bounded in (LM(Ω,ρ))N

Let now prove that a0(x,un,∇un) is bounded in (LM(Ω)).

First using growth conditions (4.1) it follows that for λ large∫
Ω

M(
|a0(x,un,∇un|

λ
)dx≤ 1

2

∫
Ω

M(
2
λ

k0|g0(x)|dx

+
k0

λ

∫
Ω

M(α2un)dx

+
k0

λ

∫
Ω

P(α1|∇un|)ρ(x)dx

Since P�M then for large λand ε small we get∫
Ω

M(
a(x,un,∇un

λ
)dx≤ 1

2

∫
Ω

M(
2
λ

k0|g0(x)|dx

+
k0

λ

∫
Ω

M(α2un)dx+
k0

λ

∫
Ω

M(ε|∇un|)ρ(x)dx+
kε

λ

≤ 1

for some positive constant kε , which implies that a0(x,un,∇un) is bounded in (LM(Ω))

Remark 4.2 we can easily shows as in [3] that a(x,un,∇un) remains bounded in (LM(Ω,ρ))N

Step 3. Almost everywhere convergence of the gradient.
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In this step we prove that ∇un→ ∇u a.e in Ω for a subsequence. For k > 0, and n fixed we

take vn = Tk(un)−Tk(u) as test function in (4.8) one has :

< fn,vn >=
∫

Ω

a(x,un,∇un)(∇Tk(un)−∇Tk(u))ρ(x)dx

+
∫

Ω

a0(x,un,∇un)(Tk(un)−Tk(u))dx
(4.14)

let Ωr = {x ∈ Ω/|∇Tk(un)| ≤ r}, and let χr denoted the characteristic functions of the sets

Ωr hens Ωr ⊂ Ωr+1 and |Ωr\Ωr+1| → 0 asr → +∞ for hat fix r > 0 and let s > r, by the

monotonicity condition (4.2) we get :∫
Ωr

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)dx≥ 0 (4.15)

∫
Ωs

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)dx≥ 0 (4.16)

Then ∫
Ω

[a(x,un,∇Tk(un))−a(x,un,χs∇Tk(u))][∇Tk(un)−χs∇Tk(u)]ρ(x)dx≥ 0 (4.17)

On the other hand let consider :

< Bun,vn >=
∫

Ω

a(x,un,∇un)[∇Tk(un)−∇Tk(u)]ρ(x)dx

We can see that

< Bun,vn >=
∫

Ω

a(x,un,∇Tk(un))[∇Tk(un)−∇Tk(u)χs]ρ(x)dx

−
∫

Ω

a(x,un,∇un)∇Tk(u)ρ(x)dx

+
∫

Ω

a(x,un,∇Tk(un))∇Tk(u)χsρ(x)dx

Hence

< Bun,vn >=
∫

Ω

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]ρ(x)dx

−
∫

Ω

[a(x,un,∇un)−a(x,un,∇Tk(un)]∇Tk(u)ρ(x)dx

−
∫

Ω

a(x,un,∇Tk(un))∇Tk(u)χΩ\Ωsρ(x)dx

+
∫

Ω

a(x,un,∇Tk(un)χs)[∇Tk(un)−∇Tk(u)χs]ρ(x)dx
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Which can be writhed as

< Bun,vn >= In− I1
n − I2

n + I3
n (4.18)

where:

In =
∫

Ω

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]ρ(x)dx

I1
n =

∫
Ω

[a(x,un,∇un)−a(x,un,∇Tk(un)]∇Tk(u)ρ(x)dx

I2
n =

∫
Ω

a(x,un,∇Tk(un))∇Tk(u)χΩ\Ωsρ(x)dx

I3
n =

∫
Ω

a(x,un,∇Tk(un)χs)[∇Tk(un)−∇Tk(u)χs]ρ(x)dx

In the following we will show this intermediate lemma.

Lemma 4.1.1 Let I1
n , I2

n and I3
n as above we have:

(i) I1
n → 0

(ii) I2
n →

∫
Ω\Ωs

h∇Tk(u)ρ(x)dx

(iii) I3
n →

∫
Ω\Ωs

a(x,u,0)∇Tk(u)ρ(x)dx

(2)

Proof of (i):

First we can write

I1
n =

∫
Ω

[a(x,un,∇(un))−a(x,u,0)]χGn χs∇Tk(u)ρ(x)dx

where: Gn = {x ∈Ω; |un(x))|> k} we have

M(|χGn χs∇Tk(u)|)ρ(x)≤M(|∇Tk(u)χs|)ρ(x) ∈ L1(Ω)

and we have un(x)→ u(x) a.e in Ω hence if |u(x)|< k then for n large |un(x)|< k. which implies

that

|∇Tk(u)|χGn χs→ 0 a.e in Ω

then By Lebesgue theorem we deduce that

M(|∇Tk(u)|χGn χs)ρ(x)→ 0
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Thus χsχGn∇Tk(u)→ 0 strongly in (EM(Ω,ρ))N and since a(x,un,∇(un)) and a(x,u,0) are

bonded in (LM(Ω,ρ))N we obtain I1
n → 0.

Proof of (ii):

We have a(x,un,∇Tk(un)) is bonded in (LM(Ω,ρ))N , by the lemma 3.4 we deduce that there ex-

ist h∈LM(Ω,ρ)N and a subsequence also denoted a(x,un,∇Tk((un))) such that a(x,un,∇Tk((un)))⇀

h weakly in (LM(Ω,ρ))N we well pass to the limit over n and obtain:

I2
n →

∫
Ω\Ωs

h∇Tk(u)ρ(x)dx

Proof of (iii):

By using (4.12), we have ∇Tk(un)⇀∇Tk(u) weakly in (LM(Ω,ρ))N for σ(ΠLM(Ω,ρ),ΠEM(Ω,ρ)).

Thanks to continuity of Nemytsky operator, we get

a(x,un,∇Tk(un)χs)→ a(x,un,∇Tk(u)χs)

strongly in (EM(Ω,ρ))N Then I3
n →

∫
Ω

a(x,u,∇Tk(u)χs)[∇Tk(u)−∇Tk(u)χs]ρ(x)dx ie

I3
n →

∫
Ω\Ωs

a(x,u,0))∇Tk(u)ρ(x)dx

which achieved the above Lemma.

Finally we shall prove that ∇un→∇u a.e in Ω, back to approximate problems (4.8), we have

< Bun,vn >=< fn,vn >−
∫

Ω

a0(x,un,∇(un))vndx

since vn ∈W 1
0 EM(Ω,ρ)∩L∞(Ω) and vn ⇀ 0 weakly* in L∞(Ω) and fn→ f strongly in L1(Ω),

while a0(x,un,∇(un)) is bonded in (LM(Ω,ρ))N then < fn,vn >→ 0 We conclude that

0≤
∫

Ω

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]ρ(x)dx

≤
∫

Ω\Ωs

(h−a(x,u,0))∇Tk(u)ρ(x)dx+ ε(n)

where ε(n) is a sequence of real numbers which converge to zero as n tends to infinity.

For r ≤ s we deduce that∫
Ωr

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]ρ(x)dx

≤
∫

Ω\Ωs

(h−a(x,u,0))∇Tk(u)ρ(x)dx+ ε(n)
(4.19)
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By passing to Limit over n and letting s→ ∞ since meas(Ω\Ωs)→ 0 we get∫
Ωr

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)dx→ 0 (4.20)

Passing to a subsequence, we have

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)→ 0 a.e inΩr.

For a subsequence still denote un, say for each x ∈Ω\R with |R|= 0. Fix x ∈Ω/R, one has by

using (4.1) and (4.3)

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)≥

λ0M(λ |∇Tk(un)|)ρ(x)−C3

[
1+ |∇Tk(un)|+M−1M(α1 |∇Tk(un)|)

]
+C4

(4.21)

for some positives constants C3 and C4, which implies that ∇Tk(un) is bounded in IRN .

Indeed suppose that there exists a subsequence denoted again ∇Tk(un(x) such that ∇Tk(un(x)→

∞ as n→ ∞. Writing (4.21) as the form

[a(x,un,∇Tk(un))−a(x,un,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x)≥

M(λ |∇un|)

[
λ0ρ(x)−C3

(
1+ |∇Tk(un)|

M(λ |∇Tk(un)|)
+

M−1M(c1 |∇Tk(un)|
M(λ |∇Tk(un)|)

)]
+C4

which gives the contradiction since the right hand-side converge to infinity while the left hand-

side tends to zero as n→ ∞. Then, we have for a subsequence unp(x),∇Tk(unp)(x)→ ξ ∈ IRN ,

and [a(x,unp,∇Tk(unp))−a(x,unp,∇Tk(u))][∇Tk(un)−∇Tk(u)]ρ(x), tend to

[a(x,u,ξ )−a(x,u,∇Tk(u))][ξ −∇Tk(u)]ρ(x) as np→ ∞. hence

[a(x,u,ξ )−a(x,u,∇Tk(u))][ξ −∇Tk(u)]ρ(x) = 0

consequently by (4.2) ∇Tk(u) = ξ and thus ∇Tk(un(x))→ ∇Tk(u(x)) sice n and k are arbitrary

we can construct a subsequence such that

∇un→ ∇u a.e in Ω (4.22)

Step 4. Passage to limit.

Going back to approximate problems (4.8) and taking v ∈ D(Ω)) as test function we have:∫
Ω

a(x,u,∇u)∇vρ(x)dx+
∫

Ω

a0(x,u,∇u)vdx = 〈 f ,v〉
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By (4.22) and (4.11) we deduce that a(x,un,∇un)→ a(x,u,∇u) a.e in Ω and a0(x,un,∇un)→

a0(x,u,∇(u) a.e in Ω moreover, Lemma 3.4 and Lemma 3.5 implies that a(x,un,∇un ⇀ a(x,u,∇u)

weakly in (LM(Ω,ρ))N for σ(ΠLM(Ω,ρ),ΠEM(Ω,ρ)), On the other hand, fn→ f strongly in

L1(Ω) and a0(x,un,∇un)→ a0(x,u,∇u weakly in (LM(Ω)) for σ(LM(Ω),EM(Ω)). On the other

hand, fn→ f strongly in L1(Ω) Finally by passing to the limit in the sequence of approximate

problems, we obtain the existence result.
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