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Abstract. A new type of contractive mapping known as an Fw-contraction has been introduced for a metric

space equipped with a w-distance recently in 2013. In this paper we extend and generalize the concept of an

Fw-contraction to an Fw-g-contraction and prove a coincidence point theorem for an Fw-g-contraction on a metric

space equipped with a w-distance. Examples are given in support of usability of our results and to justify that our

class of contractions is more generalized.
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1. Introduction

The theory of fixed points has been an important tool in non-linear analysis since 1930. It

is widely used in disciplines such as chemistry, economics, physics, biology, engineering and

applied mathematics. This is the basis for the modelling of a system. In dynamical systems

it is used to prove several existence and stability results for the strict fixed points of a set-

valued dynamic system F, as well as some conditions that guarantee each dynamic process
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converges and its limit is a strict fixed point of F. In theoretical economics, such as general

equilibrium theory, there comes at point where one needs to know whether the solution to

a system of equations necessarily exists; or, more specifically, under which conditions will

a solution necessarily exist. The mathematical analysis of this question usually relies on fixed

point theorems. In engineering, fixed point technique has been used in areas like image retrieval

and signal processing. In game theory it is used to estblish the existence of Nash equilibrium.

The studies of asymmetric structures and their applications in mathematics are important.

One of the types of asymmetric structures on a metric space was introduced by Kada et al. [9]

in 1996 known as a w-distance and he proved some fixed point theorems using it. Since then,

many fixed point results have been deveoped by different authors using w-distance on metric

spaces or a generalized w-distance such as c-distance on cone metric spaces. For more study

in this area one may refer to [1, 2, 6–8]. In 2012, Wardowski [13] introduced the concept of

F-contractive mapping on a metric space and proved a fixed point theorem for such a map

on a complete metric space. Thereafter Batra et al. extended the fixed point result due to

Wardowski by introducing an Fw-contraction which is the w-version of an F-contraction. In

the present paper we extend the fixed point result due to Batra et al. by introducing an Fw-g-

contraction which is the more general than an Fw-contraction. For more study on F-contractions

one may refer to [3, 4, 11–14].

Throughout the article, denoted by R is the set of all real numbers, by R+ is the set of all

positive real numbers and by N is the set of all natural numbers.(X ,d), (X for short), is a metric

space with a metric d. Let T : X → X and g : X → X be any two mappings. T and g are said

to have a coincidence point at x ∈ X if T x = gx and then gx is called a point of coincidence.

Further, a point x ∈ X is called a fixed point of T if T x = x. For a survey of coincidence point

theorey one may refer to [1, 2, 5, 10].

2. Preliminaries

Definition 2.1. [13] Let F : R+→ R be a mapping satisfying

(F1) F is strictly increasing. That is α < β ⇒ F(α)< F(β ) for all α,β ∈ R+.

(F2) For every sequence {αn} in R+ we have limn→∞ αn = 0 if and only if limn→∞ F(αn)=−∞.

(F3) There exists a number k ∈ (0,1) such that limα→0+ αkF(α) = 0.
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Let (X ,d) be a metric space. A mapping T : X→ X is said to be an F-contraction if there exists

a number τ > 0 such that

τ +F(d(T x,Ty))≤ F(d(x,y))(1)

for all x,y ∈ X with T x 6= Ty.

Remark 2.1. Clearly (1) of Definition 2.1. implies that d(T x,Ty)< d(x,y) for all x,y ∈ X with

T x 6= Ty. Hence every F-contraction mapping is continuous.

Next we give the notation of w-distance of Kada et al. [9] with some properties.

Definition 2.2. [9] Let (X ,d) be a metric space. A function p : X ×X → [0,∞) is called a

w-distance on X if the following conditions hold:

(w1) p(x,z)� p(x,y)+ p(y,z) for all x,y,z ∈ X ,

(w2) p(x, .) is lower semi-continuous for all x ∈ X . That is, if x ∈ X and yn → y in X then

p(x,y)≤ liminf p(x,yn).

(w3) For all ε > 0, there exists δ > 0 such that p(z,x)≤ δ and p(z,y)≤ δ imply d(x,y)≤ ε .

Example 2.1. Let X = [0,∞) and define a mapping d : X ×X → R by d(x,y) = |x− y| for

all x,y ∈ X . Then (X ,d) is a (complete) metric space. Define a mapping p : X ×X → R by

p(x,y) = y for all x,y ∈ X . Then p is a w-distance on X .

Example 2.2. Let (X ,d) be a metric space. Define a mapping p : X×X→X by p(x,y) = d(x,y)

for all x,y ∈ X . Then, p is w-distance.

Lemma 2.1. [9] Let (X ,d) be a metric space and p be a w-distance on X . Let{xn} and {yn} be

sequences in X and x,y,z ∈ X . Suppose that un and vn are sequences in [0,∞) converging to 0.

Then the following hold:

(1) If p(xn,y)� un and p(xn,z)� vn,then y = z. In particular if p(x,y) = 0 and p(x,z) = 0

then y = z.

(2) If p(xn,yn)� un and p(xn,z)� vn,then yn converges to z.

(3) If p(xn,xm)� un for m > n, then {xn} is a Cauchy sequence in X .

(4) If p(y,xn)� un, then {xn} is a Cauchy sequence in X .

Remark 2.2.
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(i) p(x,y) = p(y,x) may not be true for all x,y ∈ X .

(ii) p(x,y) = 0 is not necessarily equivalent to x = y for all x,y ∈ X .

Definition 2.3. [4] Let F be a mapping as defined in Definition 2.1. above. A mapping T : X →

X is said to be an Fw-contraction if

(i) p(x,y) = 0⇒ p(T x,Ty) = 0

(ii) There exists a number τ > 0 such that τ +F(p(T x,Ty))≤ F(p(x,y)) for all x,y ∈ X with

p(T x,Ty)> 0.

Remark 2.3. Clearly, (ii) of Definition 2.3. implies that p(T x,Ty) < p(x,y) for all x,y ∈ X

with p(T x,Ty)> 0.

Definition 2.4. Let F be a mapping as defined in Definition 2.1. above and g : X → X be a

mapping. A mapping T : X → X is said to be an Fw-g-contraction if

(i) p(gx,gy) = 0⇒ p(T x,Ty) = 0

(ii) There exists a number τ > 0 such that τ +F(p(T x,Ty)) ≤ F(p(gx,gy)) for all x,y ∈ X

with p(T x,Ty)> 0.

Remark 2.4. Clearly, (ii) of Definition 2.4. implies that p(T x,Ty) < p(gx,gy) for all x,y ∈ X

with p(T x,Ty)> 0.

Example 2.3. Define F : R+→ R by F(α) = lnα . Then F satisfies (F1), (F2) and (F3) (for

all k ∈ (0,1)) of Definition 2.1. and g : X → X be a mapping. Then a mapping T : X → X

satisfies

p(T x,Ty)≤ λ p(gx,gy)(2)

for all x,y ∈ X and some λ ∈ [0,1) if and only if T is an Fw-g-contraction. Let us start with a

mapping T : X → X satisfying (2). If λ = 0 then (i) and (ii) in Definition 2.4. are vacuously

satisfied. For 0 < λ < 1 ,(i) is obvious and (ii) is satisfied for τ = ln 1
λ

. Thus T is an Fw-g-

contraction.

Conversely, if T : X → X is an Fw-g-contraction then (ii) of Definition 2.4. implies that

p(T x,Ty) ≤ e−τ p(gx,gy) for all x,y ∈ X with p(T x,Ty) > 0. Clearly it is satisfied even for

p(T x,Ty) = 0. Thus p(T x,Ty)≤ λ p(gx,gy) for all x,y ∈ X , where λ = e−τ ∈ [0,1).
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Example 2.4. Consider G(α) = lnα +α for all α > 0. Then G satisfies (F1), (F2) and (F3)

of Definition 2.1. Let g : X → X be a mapping. A mapping T : X → X is an Gw-g-contraction if

and only if

p(T x,Ty)ep(T x,Ty)−p(gx,gy) ≤ λ p(gx,gy)(3)

for all x,y ∈ X and some λ ∈ [0,1). Reason is similar to above example.

Remark 2.5. From (F1) of Definition 2.1. and (ii) of Definition 2.4. , it is clear that every Fw-

g-contraction T : X→ X satisfies p(T x,Ty)< p(gx,gy) for all x,y∈ X satisfying p(T x,Ty)> 0.

Remark 2.6. Let F , G : R+ → R be mappings satisfying (F1), (F2) and (F3) of Definition

2.1. together with F(α) ≤ G(α) for all α > 0. Let H = G−F be nondecreasing. Then every

Fw-g-contraction T : X→ X is an Gw-g-contraction. Indeed for any x,y∈ X with p(T x,Ty)> 0,

we have, from Remark 2.5.

τ +G(p(T x,Ty)) = τ +F(p(T x,Ty))+H(p(T x,Ty))

≤ F(p(gx,gy))+H(p(gx,gy)) = G(p(gx,gy)).

3. Main results

Theorem 3.1. Let (X ,d) be a metric space equipped with a w-distance p and g : X → X be

a mapping. Let T : X → X be an Fw-g-contraction such that T (X) ⊆ g(X). If either (X ,d) is

complete with T and g as continuous and commuting mappings on X or g(X) is complete then

g and T have a coincidence point x? ∈ X with the unique point of coincidence gx?.

Proof. For any two coincidence points x∗ and y∗ of T and g in X with p(T x∗,Ty∗) > 0 we

have τ ≤ F(p(gx∗,gy∗))−F(p(T x∗,Ty∗)) = 0. Thus p(T x∗,Ty∗) = p(gx∗,gy∗) = 0 for any

two coincidence points x∗ and y∗ of T and g in X . In particular p(T x∗,T x∗) = p(gx∗,gx∗) = 0.

So by Lemma 2.1. (1) we obtain gx∗ = gy∗ for any two coincidence points x∗ and y∗ of T and

g in X . Hence point of coincidence of T and g if exists, is unique and satisfies p(gx∗,gx∗) = 0.

Now we show the existence of a coincidence point of T and g. Let x0 ∈ X be arbitrary. Define

a sequence {gxn} in X by gxn = T xn−1 for all n ∈ N. Let pn = p(gxn−1,gxn) for all n ∈ N. If

there exists k ∈ N with p(gxk−1,gxk) = 0 then, by (i) of Definition 2.4. , p(T xk−1,T xk) = 0.
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That is p(gxk,gxk+1) = 0. Therefore p(gxk−1,gxk+1) ≤ p(gxk−1,gxk)+ p(gxk,gxk+1) = 0. By

Lemma 2.1. (1) we have gxk = gxk+1 which implies T xk = gxk and the proof is finished.

Now assume that pn = p(gxn−1,gxn)> 0 for all n ∈N. Then by (ii) of Definition 2.3. we get

for all n≥ 2

F(pn)≤ F(pn−1)− τ ≤ F(pn−2)−2τ ≤ ·· · ≤ F(p1)− (n−1)τ.(4)

From (4) we get limn→∞ F(pn) =−∞ and then by (F2) of Definition 2.1. we have

lim
n→∞

pn = 0.(5)

Now,by (F3) of Definition 2.1. , there exists k ∈ (0,1) such that

lim
n→∞

pk
nF(pn) = 0.(6)

By (4), following holds for all n≥ 2

pk
nF(pn)− pk

n(F(p1)+ τ) = pk
n(F(pn)−F(p1)− τ)≤−npk

nτ.(7)

Letting n→ ∞ in (7) and using (5) and (6) we have

lim
n→∞

npk
n = 0.(8)

By (8) there exists a positive integer n0 such that npk
n < 1 for all n≥ n0. Consequently

pn <
1

n
1
k

(9)

for all n ≥ n0. Since the series ∑
∞
n=1

1

n
1
k

is convergent, therefore, by (9), the series ∑
∞
n=1 pn is

also convergent. Now for any m > n we have

p(gxn,gxm)≤ pn+1 + pn+2 + · · ·+ pm < αn,(10)

where αn = ∑
∞
i=n+1 pi→ 0 as n→ ∞. Thus by Lemma 2.1. (3) {gxn} is a Cauchy sequence in

X . Consider the first situation where (X ,d) is complete and the mappings g and T both are con-

tinuous and commuting. Then there exists x∗ ∈ X such that limn→∞gxn = x∗. Finally, continuity

and commutativity of T and g yield T x∗ = T (limn→∞gxn) = limn→∞T gxn = limn→∞gT xn =

g(limn→∞ T xn) = g(limn→∞gxn+1) = gx∗. That is, T and g have a coincidence point at x∗. In



832 RAKESH BATRA, SACHIN VASHISTHA, RAJESH KUMAR

the second situation g(X) is complete. So there exists x∗ ∈ X such that limn→∞ gxn = gx∗. From

(10) and (ii) of Definition 2.2. we get

p(gxn,gx∗)≤ αn.(11)

Now for p(T xn−1,T x∗)> 0, by Remark 2.5. and by (11)

p(gxn,T x∗) = p(T xn−1,T x∗)

< p(gxn−1,gx∗)

≤ αn−1.(12)

Clearly (12) is satisfied even for p(T xn−1,T x∗) = 0. Thus

p(gxn,T x∗)≤ αn−1 f or all n ∈ N.(13)

From (11), (13) and by using Lemma 2.1. (1) we get T x∗ = gx∗.

Example 3.2. Let X = [0,∞), d(x,y) = |x− y| for all x,y ∈ X and p(x,y) = y for all x,y ∈ X.

Then (X ,d) is a complete metric space and p is a w-distance on X. Define T : X → X by

T x =

 x2 if 0≤ x≤ 1,

0 otherwise
and gx =

 2x if 0≤ x≤ 1,

0 otherwise.

Since T is not continuous, therefore it is not an F-contraction for any mapping F as described

in Definition 2.1. Now consider the mapping F as described in Example 2.3. Then T is not an

F-g-contraction on X as

d(T (1− 1
n),T (1−

1
m))

d(g(1− 1
n),g(1−

1
m))

= 1− 1
2n
− 1

2m
→ 1

as m,n→ ∞. Further, T is not even an Fw-contraction for we have p(T x,T 1)
p(x,1) = 1. We note that

p(T x,Ty) = Ty > 0 if and only if 0 < y≤ 1. For x,y ∈ X with 0 < y≤ 1 we have

p(T x,Ty)
p(gx,gy)

=
Ty
gy

=
y2

2y
=

y
2
≤ 1

2
.

So p satisfies (2) for all x,y ∈ X and for λ = 1
2 . Thus T is an Fw-g-contraction. Next we see that

T (X) = [0,1]v [0,2] = g(X) and g(X) is complete. So all the conditions mentioned in Theorem

3.1. are satisfied. We note that T and g have a coincidence point at 0 and at any number greater
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than 1 with 0 as the unique point of coincidence. Also p(gx,gx) = 0 for any coincidence point

x of T and g.
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