

Available online at http://scik.org
J. Math. Comput. Sci. 1 (2011), No. 1, 126-139

ISSN: 1927-5307

SOME VECTOR VALUED MULTIPLIER DIFFERENCE DOUBLE SEQUENCE SPACES IN 2-NORMED SPACES DEFINED BY ORLICZ FUNCTIONS

VAKEEL A. KHAN* AND SABIHA TABASSUM
Department of Mathematics, Aligarh Muslim University, Aligarh-202002 (INDIA)

Abstract

In this paper, we study certain new difference double sequence spaces using an Orlicz function, a bounded sequence of positive real numbers and a sequence in 2-normed space and we give some relations related to these sequence spaces.

Keywords: Difference double sequence spaces, 2-norm, Orlicz Function, Paranorm.
2000 AMS Subject Classification: 46E30; 46E40; 46B20.

1. Introduction

Let w, l_{∞}, c and c_{0} denote the spaces of all, bounded, convergent and null sequences $x=\left(x_{k}\right)$ with complex terms, respectively normed by

$$
\|x\|=\sup _{k}\left|x_{k}\right| .
$$

Kizmaz [20], defined the difference sequences $l_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ as follows:

$$
Z(\Delta)=\left\{x=\left(x_{k}\right):\left(\Delta x_{k}\right) \in Z\right\}
$$

[^0]for $Z=l_{\infty}, c$ and c_{0}, where $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$, for all $k \in \mathbb{N}$.

The above spaces are Banach spaces, normed by

$$
\|x\|_{\Delta}=\left|x_{1}\right|+\sup _{k}\left\|\Delta x_{k}\right\| .
$$

The notion of difference sequence spaces was generalized by Et and Colak[2] as follows:

$$
Z\left(\Delta^{n}\right)=\left\{x=\left(x_{k}\right):\left(\Delta^{n} x_{k}\right) \in Z\right\}
$$

for $Z=l_{\infty}, c$ and c_{0}, where $n \in \mathbb{N},\left(\Delta^{n} x_{k}\right)=\left(\Delta^{n-1} x_{k}-\Delta^{n-1} x_{k+1}\right)$ and so that

$$
\Delta^{n} x_{k}=\sum_{v=0}^{n}(-1)^{v}\binom{n}{v} x_{k+v}
$$

In 2005, Tripathy and Esi [25], introduced the following new type of difference sequence spaces:

$$
Z\left(\Delta_{m}\right)=\left\{x=\left(x_{k}\right) \in w: \Delta_{m} x \in Z\right\}, \text { for } Z=l_{\infty}, c \text { and } c_{0}
$$

where $\Delta_{m} x=\left(\Delta_{m} x_{k}\right)=\left(x_{k}-x_{k+m}\right)$, for all $k \in \mathbb{N}$.

Later on Tripathy, Esi and Tripathy [26], generalized the above notions and unified them as follows:

Let m, n be non negative integers, then for Z a given sequence space we have

$$
Z\left(\Delta_{m}^{n}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta_{m}^{n} x_{k}\right) \in Z\right\}
$$

where

$$
\Delta_{m}^{n} x_{k}=\sum_{v=0}^{n}(-1)^{v}\binom{n}{v} x_{k+m v}
$$

Taking $m=1$, we get the spaces $l_{\infty}\left(\Delta^{n}\right), c\left(\Delta^{n}\right)$ and $c_{0}\left(\Delta^{n}\right)$ studied by Et and Colak [2]. Taking $n=1$, we get the spaces $l_{\infty}\left(\Delta_{m}\right), c\left(\Delta_{m}\right)$ and $c_{0}\left(\Delta_{m}\right)$ studied by Tripathy and Esi [25]. Taking $m=n=1$, we get the spaces $l_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ introduced and
studied by Kizmaz [20]. Difference sequence spaces have been studied by Cigdem and $\operatorname{Rifat}[1]$ and V.A.Khan $[14,15,16,17,18,19]$ and many others.

Let $\Lambda=\left(\lambda_{k}\right)$ be a sequence of non-zero scalars. Then for E a sequence space, the multiplier sequence $E(\Lambda)$, associated with the multiplier sequence Λ is defined as

$$
E(\Delta)=\left\{\left(x_{k}\right) \in w:\left(\lambda_{k} x_{k}\right) \in E\right\} .
$$

The concept of 2-normed spaces was initially introduced by Gahler[3,4,5] in the mid of 1960's. Since then, many researchers have studied this concept and obtained various results, see for instance [6].

Let X be a real vector space of dimension d, where $2 \leq d \leq \infty$. A 2-norm on X is a function $\|.,\|:. X \times X \rightarrow R^{+}$which satisfies the following four conditions:
(1) $\left\|x_{1}, x_{2}\right\|=0$ if and only if x_{1}, x_{2} are linearly dependent;
(2) $\left\|x_{1}, x_{2}\right\|=\left\|x_{2}, x_{1}\right\|$:
(3) $\left\|\alpha x_{1}, x_{2}\right\|=\alpha\left\|x_{1}, x_{2}\right\|$, for any $\alpha \in R^{+}$:
(4) $\left\|x+x^{\prime}, x_{2}\right\| \leq\left\|x, x_{2}\right\|+\left\|x^{\prime}, x_{2}\right\|$

The pair $(X,\|.,\|$.$) is then called a 2$-normed space.

Example 1.1. A standard example of a 2-normed space is R^{2} equipped with the following 2-norm
$\|x, y\|:=$ the area of the triangle having vertices $0, x, y$.

Example 1.2.Take $X=R^{2}$ and consider the function $\|.,$.$\| on X$ defined as:

$$
\left\|x_{1}, x_{2}\right\|=\operatorname{abs}\left(\left|\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right|\right)
$$

The concept of paranorm is closely related to linear metric spaces. Let X be a linear space. A paranorm is a function $g: X \rightarrow \mathbb{R}$ which satisfies the following axioms: for any $x, y, x_{0} \in X, \lambda, \lambda_{0} \in \mathbb{C}$,
(i) $g(\theta)=0$ (where $\theta=(0,0, \cdots, 0, \cdots)$ is zero of the space $)$;
(ii) $g(x)=g(-x)$;
(iii) $g(x+y) \leq g(x)+g(y)$;
(iv) the scalar multiplication is continuous, that is $\lambda \rightarrow \lambda_{0}, x \rightarrow x_{0}$ imply $\lambda x \rightarrow \lambda_{0} x_{0}$.

Any function g which satisfies all the condition (i)-(iv) together with the condition
(v) $g(x)=0$ if only if $x=\theta$,
is called a total paranorm on X and the pair (X, g) is called total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (cf.[27],Theorm 10.42,p183])

An Orlicz Function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$.

If convexity of M is replaced by $M(x+y) \leq M(x)+M(y)$, then it is called a modulus funtion.
J. Lindenstrauss and L. Tzafriri [21] used the idea of an Orlicz sequence space;

$$
l_{M}:=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

which is a Banach space with the norm

$$
\|x\|_{M}=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

The space l_{M} is closely related to the space l_{p}, which is an Orlicz sequence space with $M(x)=x^{p}$ for $1 \leq p<\infty$.

An Orlicz function M satisfies the $\Delta_{2}-\operatorname{condition}\left(M \in \Delta_{2}\right.$ for short $)$ if there exist constant $K \geq 2$ and $u_{0}>0$ such that

$$
M(2 u) \leq K M(u)
$$

whenever $|u| \leq u_{0}$.
Note that an Orlicz function satisfies the inequality

$$
M(\lambda x) \leq \lambda M(x) \text { for all } \lambda \text { with } 0<\lambda<1
$$

Orlicz functions have been studied by V.A.Khan[7,8,9,10,11] and many others.

Throughout, a double sequence $x=\left(x_{k l}\right)$ is a doubly infinite array of elements $x_{k l}$. for $k, l \in \mathbb{N}$. Double sequences have been studied by V.A.Khan[12,13], Mursaleen and Osama H.H.Edely [24], Moricz and Rhoades[23] and many others.

A double sequence $\left(x_{j k}\right)$ in 2-normed space $(X,\|.\|$,$) is said to converge to some$ $L \in X$ in the 2-norm, if

$$
\lim _{j, k \rightarrow \infty}\left\|x_{j k}-L, u_{1}\right\|=0, \text { for every } u_{1} \in X
$$

A sequence $\left(x_{j k}\right)$ in a 2 -normed space $(X,\|.\|$,$) is said to be Cauchy with respect to the$ 2-norm if

$$
\lim _{j, p \rightarrow \infty}\left\|x_{j k}-x_{p q}, u_{1}\right\|=0 \rightarrow \text { for every } u_{1} \in X \text { and } k, q \in \mathbb{N}
$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach space.

Example 1.3. Let w be the linear space of all double sequences of real numbers. For $x=\left(x_{j k}\right), y=\left(y_{j k}\right)$ in w, let us define

$$
\begin{gathered}
\|x, y\|=0, \quad \text { if } \mathrm{x}, \mathrm{y} \text { are linearly dependent, } \\
\|x, y\|=\sum_{j, k=1}^{\infty}\left|x_{j k}\right|\left|y_{j k}\right|, \text { if } \mathrm{x}, \mathrm{y} \text { are linearly independent. }
\end{gathered}
$$

Then it is obvious that $\|.,$.$\| is a 2$-norm on w.

The following inequalities will be used throughout the paper. Let $p=\left(p_{k, l}\right)$ be a double sequence of positive real numbers with $0<p_{k, l} \leq \sup _{k, l} p_{k, l}=H$ and let $D=$ $\max \left\{1,2^{H-1}\right\}$. Then for the factorable sequences $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ in the complex plane, we have as in Maddox [22]

$$
\begin{equation*}
\left|a_{k, l}+b_{k, l}\right|^{p_{k, l}} \leq D\left\{\left|a_{k, l}\right|^{p_{k, l}}+\left|b_{k, l}\right|^{p_{k, l}}\right\} . \tag{1.1}
\end{equation*}
$$

2. Main results

Let $p=\left(p_{j k}\right)$ be any bounded sequence of positive numbers and $\Lambda=\left(\lambda_{j k}\right)$ be a sequence of non-zero reals. Let m, n be non-negative integers, then for a real linear 2-normed space $(X,\|.,\|$.$) and an Orlicz function M$ we define the following sequence spaces:

$$
\begin{aligned}
& { }_{2} c_{0}\left(M,\|.,\|, \Delta_{m}^{n}, \Lambda, p\right)=\left\{x=\left(x_{j k}\right) \in w(X): \lim _{j, k \rightarrow \infty}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho}, z\right\|\right)\right)^{p_{j k}}=0\right. \\
& \quad \text { for every } z \text { in } X \text { and for some } \rho>0\}, \\
& { }_{2} c\left(M,\|.,\|, \Delta_{m}^{n}, \Lambda, p\right)=\left\{x=\left(x_{j k}\right) \in w(X): \lim _{j, k \rightarrow \infty}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}-L}{\rho}, z\right\|\right)\right)^{p_{j k}}=0,\right. \\
& \text { for every } z \text { in } X \text { and for some } \rho>0 \text { and } L \in X\} \\
& { }_{2} l_{\infty}\left(M,\|., .\|, \Delta_{m}^{n}, \Lambda, p\right)=\left\{x=\left(x_{j k}\right) \in w(X): \sup _{j, k \geq 1}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho}, z\right\|\right)\right)^{p_{j k}}<\infty,\right. \\
& \text { for every } z \text { in } X \text { and for some } \rho>0\},
\end{aligned}
$$

where $\left(\Delta_{m}^{n} \lambda_{j k} x_{j k}\right)=\left(\Delta_{m}^{n-1} \lambda_{j k} x_{j k}-\Delta_{m}^{n-1} \lambda_{j+1, k} x_{j+1, k}-\Delta_{m}^{n-1} \lambda_{j, k+1} x_{j, k+1}+\Delta_{m}^{n-1} \lambda_{j+1, k+1} x_{j+1, k+1}\right)$ and $\left(\Delta_{m}^{0} \lambda_{j k} x_{j k}\right)=\lambda_{j k} x_{j k}$ for all $j, k \in N$, which is equivalent to the following binomial representation:

$$
\Delta_{m}^{n} \lambda_{j k} x_{j k}=\sum_{s=0}^{r} \sum_{v=0}^{n}(-1)^{s+v}\binom{r}{s}\binom{n}{v} \lambda_{j+m v, k+m v} x_{j+m v, k+m v}
$$

Theorem 2.1. The sets of sequences ${ }_{2} c_{0}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right),{ }_{2} c\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ and ${ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ are linear spaces over the field \mathbb{C}, complex numbers.

Proof. Let $x=\left(x_{j k}\right)$ and $y=\left(y_{j k}\right) \in{ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist some positive numbers ρ_{1} and ρ_{2} such that

$$
\sup _{j, k \geq 1}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho_{1}}, z\right\|\right)\right)^{p_{j k}}<\infty
$$

and

$$
\sup _{j, k \geq 1}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} y_{j k}}{\rho_{2}}, z\right\|\right)\right)^{p_{j k}}<\infty
$$

Define $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$

$$
\begin{aligned}
& \sup _{j, k \geq 1}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}+\Delta_{m}^{n} \lambda_{j k} y_{j k}}{\rho_{3}}, z\right\|\right)\right)^{p_{j k}} \\
& \quad \leq D \sup _{j, k \geq 1}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho_{1}}, z\right\|\right)\right)^{p_{j k}}+D \sup _{J, k \geq 1}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} y_{j k}}{\rho_{2}}, z\right\|\right)\right)^{p_{j k}}<\infty .
\end{aligned}
$$

Since M is non decreasing convex function using (4) property of $(X .\|.,\|$.$) .$
This proves that ${ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ is a linear space. A similar proof works for ${ }_{2} c$ and ${ }_{2} c_{0}$.

Theorem 2.2. For $Z={ }_{2} l_{\infty},{ }_{2} c$ and ${ }_{2} c_{0}$, the spaces $Z\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ are paranormed by

$$
g(x)=\inf \left\{\rho^{\frac{p_{j k}}{H}}: \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho}, z\right\|\right) \leq 1\right\}
$$

where $H=\max \left(1, \sup _{j \geq 1} p_{j k}\right)$.
Proof. Clearly $g(x)=g(-x), x=\theta$ imply that $g(\theta)=0$.
Let $x=\left(x_{j k}\right), y=\left(y_{j k}\right) \in{ }_{2} c_{0}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$. Then there exist $\rho_{1}, \rho_{2}>0$ such that

$$
\sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho_{1}}, z\right\|\right) \leq 1
$$

and

$$
\sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} y_{j k}}{\rho_{2}}, z\right\|\right) \leq 1
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then by convexity of Orlicz functions, we have

$$
\begin{aligned}
& \sup _{j, k \geq 1}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}+\Delta_{m}^{n} \lambda_{j k} y_{j k}}{\rho}, z\right\|\right)\right) \\
& \leq\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho_{1}}, z\right\|\right) \\
&+\left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right) \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} y_{j k}}{\rho_{2}}, z\right\|\right) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& g(x+y) \leq \inf \left\{\rho^{\frac{p_{j k}}{H}}: \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho_{1}}, z\right\|\right) \leq 1\right\} \\
& \quad+\inf \left\{\rho^{\frac{p_{j k}}{H}}: \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho_{2}}, z\right\|\right) \leq 1\right\} .
\end{aligned}
$$

This implies that $g(x+y) \leq g(x)+g(y)$.

The continuity of the scalar multiplication follows from the following :

$$
g(\alpha x)=\inf \left\{\rho^{\frac{p_{j k}}{H}}: \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \alpha \lambda_{j k} x_{j k}}{\rho}, z\right\|\right) \leq 1\right\} .
$$

Theorem 2.3. If X is a 2 - Banach space, then the spaces $Z\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right), Z=$ ${ }_{2} l_{\infty},{ }_{2} c$ and ${ }_{2} c_{0}$ are complete paranormed spaces.

Proof. We prove the theorem for ${ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ and the proof for the other cases can be established following similar techniques.

Let $x=\left(x_{j k}^{i}\right)$ be a Cauchy sequence in ${ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ and let $\epsilon>0$ be given. For a fixed $x_{0}>0$, choose $r>0$ such that $M\left(\frac{r x_{0}}{3}\right) \geq 1$ and $m_{0} \in \mathbb{N}$ be such that

$$
g\left(\left(x_{j k}^{i}-x_{j k}^{i^{\prime}}\right)\right)<\frac{\epsilon}{x_{0}}, \text { for all } i, i^{\prime} \geq m_{0}
$$

By the definition of g we have,

$$
\inf \left\{\rho^{\frac{p_{j k}}{H}}: \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k}\left(x_{j k}^{i}-x_{j k}^{i^{\prime}}\right)}{\rho}, z\right\|\right) \leq 1\right\} \text { for all } i, i^{\prime} \geq m_{0}
$$

Then we get,

$$
\sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k}\left(x_{j k}^{i}-x_{j k}^{i^{\prime}}\right)}{g\left(\left(x_{j k}^{i}-x_{j k}^{i^{\prime}}\right)\right)}, z\right\|\right) \leq 1 \leq M\left(\frac{r x_{0}}{3}\right) \text { for all } i, i^{\prime} \geq m_{0}
$$

This implies that

$$
\left\|\Delta_{m}^{n} \lambda_{j k} x_{j k}^{i}-\Delta_{m}^{n} \lambda_{j k} i_{j k}^{i^{\prime}}, z\right\| \leq\left(\frac{r x_{0}}{3}\right) g\left(\left(x_{j k}^{i}-x_{j k}^{i^{\prime}}\right)\right) \leq \frac{r x_{0}}{3} \frac{\epsilon}{r x_{0}}=\frac{\epsilon}{3} \text { for all } i, i^{\prime} \geq m_{0}
$$

for every Z in X.
Hence $\left(x_{j k}^{i}\right)$ is a Cauchy sequence in the 2-Banach space X for all $(j, k) \in N \times N$.
Since X is complete this implies that $\left(\Delta_{m}^{n} \lambda_{j k} x_{j k}\right)$, is convergent in X for all $j, k \in N$.

For simplicity, let $\lim _{i \rightarrow \infty} \Delta_{m}^{n} \lambda_{j k} x_{j k^{i}}=y_{j k}$ for $(j, k) \in N \times N$.
Let $j=1$

$$
\begin{gather*}
\lim _{i \rightarrow \infty} \Delta_{m}^{n} \lambda_{j k} x_{j k}^{i}=\lim _{i \rightarrow \infty} \sum_{v=0}^{n}(-1)^{v}\binom{n}{v} \lambda_{1+m v, k+m v} x_{1+m v, k+m v}^{i} \\
=\lim _{i \rightarrow \infty} \Delta_{m}^{n} \lambda_{1 k} x_{1 k}^{i}=y_{1 k} \tag{2.3.1}
\end{gather*}
$$

Let $k=1$

$$
\lim _{i \rightarrow \infty} \Delta_{m}^{n} \lambda_{j 1} x_{j 1}^{i}=\lim _{i \rightarrow \infty} \sum_{v=0}^{n}(-1)^{v}\binom{n}{v} \lambda_{j+m v, 1+m v} x_{j+m v, 1+m v}^{i}
$$

$$
\begin{equation*}
=\lim _{i \rightarrow \infty} \Delta_{m}^{n} \lambda_{j 1} x_{j 1}^{i}=y_{j 1} \tag{2.3.2}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \Delta_{m}^{n} \lambda_{j k} x_{j k}^{i}=\lim _{i \rightarrow \infty} \lambda_{j k} x_{j k}^{i}=y_{j k} \text { for } j, k \in \mathbb{N} \tag{2.3.3}
\end{equation*}
$$

Thus from [2.3.1], [2.3.2] and [2.3.3] we have

$$
\lim _{i \rightarrow \infty} x_{j k}^{i}=x_{j k} \text { exists for all } j, k \in \mathbb{N} .
$$

Now we have for all $i \geq m_{0}$

$$
\inf \left\{\rho^{\frac{p_{j k}}{H}}: \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k}\left(x_{j k}^{i}-x_{j k}^{i^{\prime}}\right)}{\rho}, z\right\|\right) \leq 1\right\}<\epsilon
$$

This implies that

$$
\lim _{j, k \rightarrow \infty} \inf \left\{\rho^{\frac{p_{j k}}{H}}: \sup _{j, k \geq 1} M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k}\left(x_{j k}^{i}-\Delta_{m}^{n} \lambda_{j k} x_{j k}\right)}{\rho}, z\right\|\right) \leq 1\right\}<\epsilon \text { for all } i \geq m_{0}
$$

Hence $\left(x^{i}-x\right) \in{ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$.
Since $\left(x^{i}\right) \in{ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ and ${ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ is a linear space, so we have $x=x^{i}-\left(x^{i}-x\right) \in{ }_{2} l_{\infty}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$.

Theorem 2.4. If $0<p_{j k} \leq q_{j k}<\infty$ for each j, k, then $Z\left(M,\|., \cdot\|, \Delta_{m}^{n}, \Lambda, p\right) \subseteq$ $Z\left(M,\|.\|,, \Delta_{m}^{n}, \Lambda, q\right)$ for $Z={ }_{2} c_{0}$ and ${ }_{2} c$.

Proof. We prove the theorem for $Z={ }_{2} c_{0}$ and the proof for other cases can be established following similar techniques.

Let $x=\left(x_{j k}\right) \in{ }_{2} c_{0}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$. Then there exists some $\rho>0$ such that

$$
\lim _{j, k \rightarrow \infty}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho}, z\right\|\right)\right)^{p_{j k}}=0
$$

This implies that

$$
\lim _{j, k \rightarrow \infty}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho}, z\right\|\right)\right)^{p_{j k}}<\epsilon(0<\epsilon \leq 1)
$$

for sufficiently large j, k.
Hence we get

$$
\lim _{j, k \rightarrow \infty}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho}, z\right\|\right)\right)^{q_{j k}} \leq \lim _{j, k \rightarrow \infty}\left(M\left(\left\|\frac{\Delta_{m}^{n} \lambda_{j k} x_{j k}}{\rho}, z\right\|\right)\right)^{p_{j k}}=0
$$

This implies that
$x=\left(x_{j k}\right) \in{ }_{2} c_{0}\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$.
This completes the proof.

Corollary 2.5(a). If $0<\inf p_{j k}$ and for each j and $k, p_{j k} \leq 1$, then $Z\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right) \subseteq$ $Z\left(M,\|., \cdot\|, \Delta_{m}^{n}, \Lambda\right)$ for $Z={ }_{2} c_{0}$ and ${ }_{2} c$.
(b). If $0<\inf p_{j k}$ and for each j and $k, p_{j k} \leq 1$, then $Z\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda\right) \subseteq Z\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$ for $Z={ }_{2} c_{0}$ and ${ }_{2} c$.

Theorem 2.6. $Z\left(M,\|.,\|,. \Delta_{m}^{n-1}, \Lambda, p\right) \subset Z\left(M,\|.,\|,. \Delta_{m}^{n}, \Lambda, p\right)$, for $i=1,2,3, \ldots . ., n-1$ for $Z={ }_{2} l_{\infty},{ }_{2} c_{0}$ and ${ }_{2} c$.

Proof. That the inclusion is strict follows from the following example:

Example 2.7. Let $m=3, n=2, M(x)=x^{10}$ and $x \in[0, \infty)$ and

$$
p_{j k}=\left\{\begin{array}{l}
3 \text { for } j \text { odd and all } k \in N, \\
2 \text { otherwise }
\end{array}\right.
$$

Consider the 2-normed space as defined in Example[1.3] and let $\Lambda=\left(\frac{1}{j+k}\right)$ and $x=\left(x_{j k}\right)=\left((j+k)^{2},(j+k)^{2}\right)$.

Then

$$
\begin{aligned}
& \qquad \Delta_{3}^{2} \lambda_{j k} x_{j k}=\sum_{v=0}^{2}(-1)^{v}\binom{n}{v} \lambda_{j+3 v, k+3 v} x_{j+3 v, k+3 v}^{i} \\
& =\lambda_{j k} x_{j k}-2 \lambda_{j+3, k+3} x_{j+3, k+3}+\lambda_{j+6, k+6} x_{j+6, k+6} \\
& \quad=\frac{1}{j+k}\left((j+k)^{2},(j+k)^{2}\right)-2 \frac{1}{j+k+6}\left((j+k+6)^{2},(j+k+6)^{2}\right)+\frac{1}{j+k+12}\left((j+k+12)^{2},(j+\right. \\
& \left.k+12)^{2}\right) \\
& =(j+k, j+k)-2(j+k+6, j+k+6)+(j+k+12, j+k+12) \\
& =\theta \text { for all } j, k \in \mathbb{N} .
\end{aligned}
$$

Hence $x \in{ }_{2} c_{0}\left(M,\|.,\|,. \Delta_{3}^{2}, \Lambda, p\right)$.
Again we have

$$
\begin{aligned}
& \Delta_{3}^{1} \lambda_{j k} x_{j k}=\sum_{v=0}^{1}(-1)^{v}\binom{n}{v} \lambda_{j+3 v, k+3 v} x_{j+3 v, k+3 v}^{i} \\
&=\lambda_{j k} x_{j k}-\lambda_{j+3, k+3} x_{j+3, k+3} \\
&=(j+k, j+k)-(j+k+3, j+k+3) \\
&=(-3,-3) \text { for all } j, k \in \mathbb{N}
\end{aligned}
$$

Hence $x \notin{ }_{2} c_{0}\left(M,\|.,\|,. \Delta_{3}^{1}, \Lambda, p\right)$.

Acknowledgments. The author would like to record their gratitude to the reviewer for his/her careful reading and making some useful corrections which improved the presentation of the paper.

References

[1] Çiğdem and Rifat Çolak Generalized difference sequence spaces defined by a sequence of moduli, Soochow J.Math., 29(2)(2003), 215-220.
[2] M.Et and R.Colak: On generalized difference sequence spaces, Soochow Jour. Math., 21(4)(1995),377-386.
[3] S.Gähler: 2-merische Räme und ihre topological Struktur, Math. Nachr., 28(1963),145-148 .
[4] S.Gähler: Linear 2-normietre Räme, Math. Nachr., 28(1965), 1-43 .
[5] S.Gähler: Uber der Uniformisierbarkeit 2-merische Räme, Math. Nachr., 28(1965), 235-244.
[6] H.Gunawan and Mashadi: On finite dimensional 2-normed spaces, Soochow J. Math., 27(3)(2001), 631-639 .
[7] V.A.Khan: On Riesz-Musielak Orlicz sequence spaces,Numerical Functional Analysis and Optimization, 28(7-8)(2007), 883-895 .
[8] V.A.Khan and Q.M.D.Lohani: Statistically Pre-Cauchy sequence and Orlicz Functions, Southeast Asian Bull.Math., 31(2007), 1107-1112.
[9] V.A.Khan: On a new sequence space defined by Orlicz Functions, Commun. Fac. Sci. Univ. Ank. Series Al, 57(2)(2008), 25-33 .
[10] V.A.Khan: On a new sequence space related to the Orlicz sequence space, J. Mathematics and its applications, 30(2008), 61-69 .
[11] V.A.Khan: On a new sequence spaces defined by Musielak Orlicz Functions, Studia Math., LV2(2010), 143-149 .
[12] V.A.Khan: Quasi almost convergence in a normed space for double sequences, Thai J.Math., 8(1)(2010), 227-231.
[13] V.A.Khan and Sabiha Tabassum: Statistically Pre-Cauchy double sequences and Orlicz functions, Southeast Asian Bull.Math.(2010) (Accepted).
[14] V. A. Khan, Some inclusion relations between the difference sequence spaces defined by sequence of moduli, Journal of the Indian Math. Soc.73(1-2)(2006), 77-81.
[15] V. A. Khan and Q.M.D. Lohani, Difference sequence spaces defined by a sequence of moduli, Southeast Asian Bull.Math. 30(2006), 1061-1067.
[16] V.A. Khan and Q.M.D. Lohani, New Lacunary strong convergence diffference sequence spaces defined by sequence of moduli, Kyungpook Mathematical Journal,46(4)(2006), 591-595.
[17] V.A. Khan , New Lacunary Strongly Summable Difference Sequences and \triangle_{v}^{m} - Lacunary Almost Statistical Convergence, Vietnam Journal of Mathematics, 36(2008), 405-413.
[18] V.A. Khan ,A New type of difference sequence spaces, Applied Sciences(Balkan Society of Geometers), 12(2010), $99-105$.
[19] V.A.Khan, Some new generalized difference sequence spaces defined by a sequence of Moduli,Applied Mathematics - A Journal of Chinese Universities, 26(1)(2011), 104-108 .
[20] H.Kizmaz: On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 167-176.
[21] J. Lindenstrauss and L.Tzafriri: On Orlicz Sequence Spaces, Israel J.Math. 10 (1971), 379-390.
[22] I.J.Maddox: Elements of Functional Analysis, Cambridge University Press, London, UK, 1970.
[23] F.Moricz and B.E.Rhoades: Almost Convergence of double sequences and strong regularity of summability matrices, Math.Proc.Camb.Phil.Soc.104(1987), 283-294.
[24] Mursaleen and Osama H.H.Edely: Statistical convergence of double sequences, J.Mathematical Analysis and Applications, 288(1)(2003), 223-231.
[25] B.C.Tripathy and A.Esi: A new type of difference sequence spaces, International Journal of Science and Technology, 1(1)(2006), 11-14.
[26] B.C.Tripathy A.Esi and B.K.Tripathy: On a new type of generalized difference Cesàro sequence spaces, Soochow J.Math., 31(3)(2005), 333-340.
[27] A.Wilansky: Summability through functional analysis, North-Holland Mathematical Studies, 85, (1984).

[^0]: *Corresponding author
 E-mail addresses: vakhan@math.com (V.A. Khan), sabihatabassum@math.com (S. Tabassum)
 Received November 30, 2011

