A NOTE ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY
RUSCHEWEYH DERIVATIVE AND A NEW GENERALISED MULTIPLIER
TRANSFORMATION

S R SWAMY*

Department of Computer Science and Engineering, R V College of Engineering, Mysore Road, Bangalore-560 059,
INDIA

Abstract: In this paper, we consider the operator $RI^m_{\alpha, \beta, \lambda} : A(n) \rightarrow A(n)$ defined by

$$RI^m_{\alpha, \beta, \lambda} f(z) = (1 - \lambda)R^m f(z) + \lambda I^m_{\alpha, \beta} f(z),$$

where $A(n)$ denote the class of analytic functions in the unit disc $U = \{z : z \in \mathbb{C}, |z| < 1\}$, of the form $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, R^m f(z), m \in N_0 = N \cup \{0\}$ is the Ruscheweyh operator and $I^m_{\alpha, \beta} f(z) = z + \sum_{k=n+1}^{\infty} \left(\frac{\alpha + k \beta}{\alpha + \beta}\right)^m a_k z^k, n \in N, m \in N_0 = N \cup \{0\}$, $\lambda \geq 0, \beta \geq 0$, and α a real number with $\alpha + \beta > 0$. The new subclass $\mathcal{R}I^\lambda_n(m, \mu, \rho, \alpha, \beta)$ of $A(n)$, involving the operator $RI^m_{\alpha, \beta, \lambda}$ is introduced. Some interesting properties of the class $\mathcal{R}I^\lambda_n(m, \mu, \rho, \alpha, \beta)$ are established by making use of the concept of differential subordination.

Keywords: Analytic function, starlike function, convex function, Ruscheweyh derivative, multiplier transformation, differential subordination.

AMS Mathematics Subject Classification (2000): 30C45.

1. INTRODUCTION

Let $A(n)$ denote the class of functions of the form $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, n \in N = \{1, 2, 3, \ldots\}$,
which are analytic in the open unit disc \(U = \{ z : z \in \mathbb{C}, |z| < 1 \} \). Clearly \(A(1) = A \) is a well-known class of normalized analytic functions in \(U \). If \(f \) and \(g \) are analytic in \(U \), we say that \(f \) is subordinate to \(g \), written \(f \prec g \), if there exists a Schwarz function \(w(z) \), which (by definition)is analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1, z \in U \), such that \(f(z) = g(w(z)), z \in U \). Further, if the function \(g \) is univalent in \(U \), then we have the following equivalence \(f \prec g \iff f(0) = g(0) \) and \(f(U) \subset g(U) \).

For \(0 \leq \rho < 1 \), we denote \(S_n^\ast(\rho) \) and \(K_n(\rho) \) the subclasses of \(A(n) \) consisting of all analytic functions which are respectively, starlike of order \(\rho \) and convex of order \(\rho \) in \(U \). It is well known that \(K_n(\rho) \subset S_n^\ast(\rho) \subset S \), where \(S \) is the class of univalent functions in \(U \). We also denote by \(R_n(\rho) \) the subclass of functions in \(A(n) \) which satisfy \(\text{Re}(f^\prime(z)) > \rho, z \in U \).

Definition 1.1 ([16]). For \(f \in A(n), m \in N_0 = N \cup \{ 0 \}, \beta \geq 0 \) and \(\alpha \) a real number with \(\alpha + \beta > 0 \), a new generalized multiplier transformation, denoted by \(I_{\alpha,\beta}^m \), is defined by the following infinite series:

\[
I_{\alpha,\beta}^m f(z) = z + \sum_{k=n+1}^{\infty} \left(\frac{\alpha + k\beta}{\alpha + \beta} \right)^m a_k z^k, z \in U.
\]

It follows from (1.1) that

\[
I_{\alpha,0}^m f(z) = f(z),
\]

\[
(\alpha + \beta) I_{\alpha,\beta}^{m+1} f(z) = \alpha I_{\alpha,\beta}^m f(z) + \beta z (I_{\alpha,\beta}^m f(z))',
\]

We note that

- \(I_{\alpha,1}^m f(z) = I_{\alpha}^m f(z), \alpha > -1 \) (See Cho and Srivastava [10] and Cho and Kim [11]).
- \(I_{1-\beta,\beta}^m f(z) = D_{\beta}^m f(z), \beta \geq 0 \) (See Al-Oboudi [6]).
- \(I_{l+1-\beta,\beta}^m f(z) = I_{l,\beta}^m f(z), l > -1, \beta \geq 0 \) (See Catas [9]).
Remark 1.2. a) \(I^m_\alpha f(z) \) was defined and investigated in [10] and [11] for \(\alpha \geq 0 \) and \(I^m_{l,\beta} f(z) \) was defined and studied in [9] for \(l \geq 0, \beta \geq 0 \). So our results in this paper are improvement of corresponding results proved earlier for \(I^m_\alpha f(z) \) or \(I^m_{l,\beta} f(z) \) to \(\alpha > -1 \) or \(l > -1 \), respectively.
b) i) \(D^m_\beta f(z), m \geq 0 \) was due to Acu and Owa [1], ii) \(D^m f(z) \) was introduced by Salagean [15] and was considered for \(m \geq 0 \) in [7], and iii) \(I^m_1 f(z) \) was investigated by Uralegaddi and Somanath [20].

Definition 1.3 ([14]). For \(m \in N_0, f \in A(n) \), the operator \(R^m \) is defined by \(R^m : A(n) \rightarrow A(n) \),

\[
R^0 f(z) = f(z), \\
R^1 f(z) = zf'(z), \\
\vdots \\
(m + 1)R^{m+1} f(z) = z(R^m f(z))' + mR^m f(z), z \in U.
\]

Definition 1.4. Let \(m \in N_0, \lambda \geq 0, \beta \geq 0 \) and \(\alpha \) a real number with \(\alpha + \beta > 0 \). Denote by \(RI^m_{\alpha,\beta,\lambda} \), the operator given by \(RI^m_{\alpha,\beta,\lambda} : A(n) \rightarrow A(n) \),

\[
RI^m_{\alpha,\beta,\lambda} f(z) = (1 - \lambda)R^m f(z) + \lambda I^m_{\alpha,\beta} f(z), z \in U.
\]

Remark 1.5. If \(f \in A(n) \), then \(RI^m_{\alpha,\beta,\lambda} f(z) = z + \sum_{k=n+1}^{\infty} (1-\lambda)C^{m}_{m+k-1} + \lambda \left(\frac{\alpha + k\beta}{\alpha + \beta} \right)^m a_k z^k, z \in U. \)

Remark 1.6. The operator \(I^m_{\alpha,\beta} \) is introduced and investigated in [16] and [17]. The operator \(RI^m_{\alpha,\beta,\lambda} \) is studied in [18] and [19].

For \(\lambda = 0 \), \(RI^m_{\alpha,\beta,0} f(z) = R^m f(z), z \in U \), and for \(\lambda = 1 \), \(RI^m_{\alpha,\beta,1} = I^m_{\alpha,\beta} f(z), z \in U. \)

To prove our results we need the following lemma.
Lemma 1.7 [13]. Let $\frac{1}{2} \leq \rho < 1$, u be analytic in U with $u(0) = 1$ and suppose that

$$
(1.4) \quad \text{Re}\left(1 + \frac{zu'(z)}{u(z)}\right) > \frac{3\rho - 1}{2\rho}, \quad z \in U.
$$

Then $\text{Re}(u(z)) > \rho, z \in U$.

2. MAIN RESULTS

Definition 2.1. We say that a function $f \in A(n)$ is in the class $I_n(m, \mu, \rho, \alpha, \beta), m \in N_0,$ $n \in N, \mu \geq 0, \rho \in [0,1), \alpha$ a real number with $\alpha + \beta > 0$, if

$$
(2.1) \quad \left|\left(\frac{I_{\alpha, \beta}^{m+1} f(z)}{z}\right) - 1 - \frac{z}{I_{\alpha, \beta}^{m} f(z)}\right|^\mu < 1 - \rho, z \in U.
$$

Definition 2.2. We say that a function $f \in A(n)$ is in the class $RI_n^{\lambda}(m, \mu, \rho, \alpha, \beta), m \in N_0,$ $n \in N, \mu \geq 0, \rho \in [0,1), \alpha$ a real number with $\alpha + \beta > 0$, if

$$
(2.2) \quad \left|\left(\frac{RI_{\alpha, \beta, \lambda}^{m+1} f(z)}{z}\right) - 1 - \frac{z}{RI_{\alpha, \beta, \lambda}^{m} f(z)}\right|^\mu < 1 - \rho, z \in U.
$$

For $\lambda = 1$, (2.2) reduces to (2.1).

Remark 2.3. The family $RI_n^{\lambda}(m, \mu, \rho, \alpha, \beta)$ is a new comprehensive class of analytic functions which includes various well known classes of analytic univalent functions as well as some new ones. For example, i) $RI_n^{\lambda}(m, \mu, \rho, l + 1 - \beta, \beta) = RD_n^{\lambda}(m, \mu, \rho, l, \beta), l > -1$, was studied in [2] for $l \geq 0$; ii) $RI_n^{\lambda}(m, \mu, \rho, 1 - \beta, \beta) = RD_n^{\lambda}(m, \mu, \rho, 0, \beta) = RD_n^{\lambda}(m, \mu, \rho, \beta)$ was due to Lupas [3], iii) $RI_n^{\lambda}(m, \mu, \rho, \alpha, \beta) = I_n(m, \mu, \rho, \alpha, \beta)$ (Definition 2.1), iv) $I_n(m, \mu, \rho, 1 - \beta, \beta) = D_n(m, \mu, \rho, \beta)$ was introduced in [4], v) $D_n(0,1, \rho, l) = S_n^{\lambda}(\rho), D_n(1,1, \rho, l) = K_n(\rho)$ and $D_n(0,0, \rho, 1) = R_n(\rho)$, vi) $D_n(0,1, \rho, 1) = D(m,n,\rho)$ was introduced in [5,8], vii) $D_n(0, \mu, \rho, l) = D(\mu, \rho)$ was introduced
by Frasin and Jahangiri [13] and viii) $D_1(0,2,\rho,1) = D(\rho)$ which has been investigated by Frasin and Darus [12].

In this note we provide a sufficient condition for functions to be in the class $\mathcal{R}_n^\lambda(m,\mu,\rho,\alpha,\beta)$.

Theorem 2.4. Let $m \in \mathbb{N}_0, n \in \mathbb{N}, \lambda \geq 0, \mu \geq 0, \frac{1}{2} \leq \rho < 1, \gamma = \frac{3\rho - 1}{2\rho}, \beta > 0, \alpha$ a real number with $\alpha + \beta > 0$ and $f \in A(n)$. If

\[
(2.3) \quad (m + 2) \frac{RI_{\alpha,\beta,\lambda}^{m+1} f(z)}{RI_{\alpha,\beta,\lambda}^m f(z)} = \mu(m + 1) \frac{RI_{\alpha,\beta,\lambda}^{m+1} f(z)}{RI_{\alpha,\beta,\lambda}^m f(z)} + \lambda \left(\frac{\alpha + \beta}{\beta} - m - 1 \right) \frac{RI_{\alpha,\beta,\lambda}^{m+1} f(z)}{RI_{\alpha,\beta,\lambda}^m f(z)} - \\
- \lambda \mu \left(\frac{\alpha + \beta}{\beta} - m - 1 \right) \frac{RI_{\alpha,\beta,\lambda}^{m+1} f(z)}{RI_{\alpha,\beta,\lambda}^m f(z)} - \lambda \left(\frac{\alpha}{\beta} - m - 1 \right) \frac{RI_{\alpha,\beta,\lambda}^{m+1} f(z)}{RI_{\alpha,\beta,\lambda}^m f(z)} + \\
+ \lambda \mu \left(\frac{\alpha}{\beta} - m \right) \frac{RI_{\alpha,\beta,\lambda}^m f(z)}{RI_{\alpha,\beta,\lambda}^{m+1} f(z)} + (m + 1)(\mu - 1) z^\gamma, z \in U,
\]

then $f \in \mathcal{R}_n^\lambda(m,\mu,\rho,\alpha,\beta)$.

Proof. Define the function $u(z)$ by

\[
(2.4) \quad u(z) = \left(\frac{RI_{\alpha,\beta,\lambda}^{m+1} f(z)}{z} \right) \left(\frac{z}{RI_{\alpha,\beta,\lambda}^m f(z)} \right)^\mu.
\]

Then the function $u(z)$ is analytic in U with $u(0) = 1$. Differentiating (2.4) logarithmically with respect to z and using (1.3), we obtain
\[
\frac{zu'(z)}{u(z)} = (m + 2) \frac{RI_{\mu,\beta,\lambda}^{m+2} f(z)}{RI_{\mu,\beta,\lambda}^{m+1} f(z)} - \mu(m + 1) \frac{RI_{\mu,\beta,\lambda}^{m+1} f(z)}{RI_{\mu,\beta,\lambda}^{m} f(z)} + \lambda \left(\frac{\alpha + \beta}{\beta} - m - 2 \right) \frac{RI_{\mu,\beta,\lambda}^{m+1} f(z)}{RI_{\mu,\beta,\lambda}^{m+1} f(z)} - \\
- \lambda \mu \left(\frac{\alpha + \beta}{\beta} - m - 1 \right) \frac{RI_{\mu,\beta,\lambda}^{m+1} f(z)}{RI_{\mu,\beta,\lambda}^{m} f(z)} - \lambda \left(\frac{\alpha}{\beta} - m - 1 \right) \frac{RI_{\mu,\beta,\lambda}^{m+1} f(z)}{RI_{\mu,\beta,\lambda}^{m} f(z)} + \\
+ \lambda \mu \left(\frac{\alpha}{\beta} - m \right) \frac{RI_{\mu,\beta,\lambda}^{m} f(z)}{RI_{\mu,\beta,\lambda}^{m} f(z)} + (m + 1)(\mu - 1) - 1
\]

From (1.4) and (2.3) we get \(\text{Re} \left(1 + \frac{zu'(z)}{u(z)} \right) > \frac{3\rho - 1}{2\rho}, z \in U \). Applying Lemma 1.4 we deduce that

\[
\text{Re} \left(\left(\frac{RI_{\mu,\beta,\lambda}^{m+1} f(z)}{z} \right) \left(\frac{z}{RI_{\mu,\beta,\lambda}^{m} f(z)} \right)^m \right) > \rho, z \in U.
\]

Therefore, \(f \in R I_{\mu}^{1}(m, \rho, \alpha, \beta) \), by Definition 2.3.

Taking \(\lambda = 1 \) in Theorem 2.4, we obtain

Theorem 2.5. Let \(m \in N_0, n \in N, \mu \geq 0, \frac{1}{2} \leq \rho < 1, \gamma = \frac{3\rho - 1}{2\rho}, \beta > 0, \alpha \) a real number with \(\alpha + \beta > 0 \) and \(f \in A(n) \). If

\[
\left(\frac{\alpha + \beta}{\beta} \right) \left(\frac{RI_{\mu,\beta,\lambda}^{m+2} f(z)}{RI_{\mu,\beta,\lambda}^{m+1} f(z)} - \mu \frac{RI_{\mu,\beta,\lambda}^{m+1} f(z)}{RI_{\mu,\beta,\lambda}^{m} f(z)} + (\mu - 1) \right) + 1 < 1 + \gamma z, z \in U,
\]

then \(f \in I_{\mu}^{1}(m, \rho, \alpha, \beta), z \in U \).

As consequences of the above theorem, we have the following interesting corollary:
Corollary 2.6. Let \(f \in A(n), \rho = \frac{1}{2}, \lambda = 1, \beta > 0 \) and \(\alpha \) a real number with \(\alpha + \beta > 0 \).

(a) Let \(m = 1, \mu = 1 \). If \(\Re \left(\frac{\alpha + \beta}{\beta} \left(\frac{I_{\alpha,\beta} f(z)}{I_{\alpha,\beta}^3 f(z)} - \frac{I_{\alpha,\beta}^2 f(z)}{I_{\alpha,\beta} f(z)} \right) \right) > -\frac{1}{2}, z \in U, \) then

\[
\Re \left(\frac{I_{\alpha,\beta} f(z)}{I_{\alpha,\beta} f(z)} \right) > \frac{1}{2}, z \in U. \text{ That is } f \in I_n(1,1,\frac{1}{2},\alpha,\beta).
\]

(b) Let \(m = 1, \mu = 0 \) If \(\Re \left(\frac{\alpha + \beta}{\beta} \left(\frac{I_{\alpha,\beta} f(z)}{I_{\alpha,\beta}^3 f(z)} - 1 \right) \right) > -\frac{1}{2}, z \in U, \) the \(\Re \left(\frac{I_{\alpha,\beta} f(z)}{z} \right) > \frac{1}{2}, z \in U. \)

That is \(f \in I_n(1,0,\frac{1}{2},\alpha,\beta). \)

(c) Let \(m = 0, \mu = 1 \). If \(\Re \left(\frac{\alpha + \beta}{\beta} \left(\frac{I_{\alpha,\beta} f(z)}{I_{\alpha,\beta}^3 f(z)} \right) \right) > -\frac{1}{2}, z \in U, \) then

\[
\Re \left(\frac{I_{\alpha,\beta} f(z)}{f(z)} \right) > \frac{1}{2}, z \in U. \text{ That is } f \in I_n(0,1,\frac{1}{2},\alpha,\beta).
\]

(d) Let \(m = 0, \mu = 0 \) If \(\Re \left(\frac{\alpha + \beta}{\beta} \left(\frac{I_{\alpha,\beta} f(z)}{I_{\alpha,\beta}^3 f(z)} - 1 \right) \right) > -\frac{1}{2}, z \in U, \) then

\[
\Re \left(\frac{I_{\alpha,\beta} f(z)}{z} \right) > \frac{1}{2}, z \in U. \text{ That is } f \in I_n(0,0,\frac{1}{2},\alpha,\beta).
\]

\(\alpha = 0 \) in Corollary 2.6, we have

Corollary 2.7. Let \(f \in A(n). \)

(a) If \(\Re \left(\frac{2zf''(z) + z^2 f'''(z)}{f'(z) + zf''(z)} \right) > -\frac{1}{2}, z \in U, \) then \(f \) is convex of order \(1/2 \)

(i.e. \(f \in K_n(1/2) \)).

(b) If \(\Re \left(\frac{2zf''(z) + z^2 f'''(z)}{f'(z) + zf''(z)} \right) > -\frac{1}{2}, z \in U, \) then \(\Re (f'(z) + zf''(z)) > \frac{1}{2}, z \in U. \)
(c) If \(\Re \left(\frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) > \frac{3}{2}, \) \(z \in U, \) then \(f \) is starlike of order \(1/2 \) (i.e. \(f \in S^*(1/2) \)).

(d) If \(f \) is convex of order \(1/2 \), then \(f \in R_n(1/2) \).

REFERENCES