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Abstract. This paper presents a new technique of forming improved exponential finite difference solution of

Burgers’ equation. The technique is called Crank-Nicolson exponential finite difference method for the solution of

Burgers’ equation. Since the equation is nonlinear the scheme leads to a system of nonlinear equations. At each

time-step Newton’s method is used to solve this nonlinear system. The results are compared with exact values

clearly show that results obtained using the method is precise and reliable.
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1. Introduction

In this paper, we consider the one-dimensional non-linear Burgers’ equation

(1)
∂u
∂ t

+u
∂u
∂x

−ν
∂ 2u
∂x2 = 0, a < x < b,
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with the initial condition

u(x,0) = g(x), a < x < b,

and the boundary conditions

u(a, t) = h1 (t) and u(b, t) = h2 (t) , t > 0,

where ν is the positive coefficient of kinematic viscosity and g, h1 and h2 are the prescribed

functions of the variables.

Burgers’ equation is found to describe various kind of phenomena such as mathematical

model of turbulence and the approximate theory of flow through a shock wave traveling in a

viscous fluid [1].

In literature, many numerical methods have been proposed and implemented for approximat-

ing solution of the Burgers’ equation. Many authors have used numerical techniques based on

finite difference [1-8] finite element [9-13] and boundary element [14] methods in attempting to

solve the equation. Kadalbajoo et al. [15] used a parameter-uniform implicit difference scheme

for solving time-dependent Burgers’ equation. The explicit exponential finite difference method

was originally developed by Bhattacharya for solving of heat equation [16]. Bhattacharya [17]

and Handschuh and Keith [18] used exponential finite difference method for the solution of

Burgers’ equation. Bahadır solved the KdV equation by using the exponential finite-difference

technique[19]. Implicit exponential finite difference method and fully implicit exponential fi-

nite difference method was applied to Burgers?equation by Inan and Bahadir[20]. Inan and

Bahadir solved the linearized Burgers’ equation by Hopf-Cole transformation using an explicit

exponential finite difference method[21].

In this paper, we design a new scheme for solving the Burgers’ equation. Some examples

are presented to show the ability of this method to solve the equation. It is clearly seen that

numerical method is reasonably in good agreement with the exact solution.

2. Crank-Nicolson exponential finite difference scheme
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We obtain numerical solution of the Burgers’ equation by Crank-Nicolson exponential finite

difference method for two standard problems. The accuracy of the proposed method is measured

using the L2 and L∞ error norms defined by

L2 = ∥u−U∥2 =

(
h

N

∑
i=0

|ui −Ui|2
) 1

2

,

L∞ = ∥u−U∥∞ = max
0≤i≤N

|ui −Ui| .

The solution domain is discretized into cells described by the nodes set (xi, tn) in which

xi = ih, (i = 0,1,2, ...,N) and tn = nk, (n = 0,1,2, ...), h = ∆x is the spatial mesh size and

k = ∆t is the time step.

Crank-Nicolson exponential finite difference scheme (CN-EFDM) for Eq. (1) takes the fol-

lowing nonlinear form

Un+1
i = Un

i exp

{
ν∆t

2(∆x)2

[
−

∆xUn
i

2ν

(
Un

i+1 −Un
i−1 +Un+1

i+1 −Un+1
i−1
)

Un
i

+

(
Un

i−1 −2Un
i +Un

i+1 +Un+1
i−1 −2Un+1

i +Un+1
i+1
)

Un
i

]}
,(2)

which is valid for values of i lying in the interval 1 ≤ i ≤ N −1.

Where Un
i denotes the exponential finite difference approximation to the exact solution u(x, t).

Eq. (2) is system of nonlinear difference equations. Let us consider the nonlinear system of e-

quations in the form

(3) F(V) = 0,

where F = [ f1, f2, ..., fN−1]
T and V =

[
Un+1

1 ,Un+1
2 , ...,Un+1

N−1
]T

. Newton’s method applied to

Eq. (3) results in the following iteration:

1. Set V(0), an initial guess.

2. For m = 0,1,2, .. until convergence do:
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Solve J(V(m))δ (m) =−F(V(m));

Set V(m+1) = V(m)+ δ (m), where J(V(m)) is the Jacobian matrix which is evaluated

analytically. The solution at the previous time-step is taken as the initial estimate. The Newton’s

iteration at each time-step is stopped when
∥∥∥F(V(m))

∥∥∥
∞
≤ 10−5. The convergence is generally

obtained in two or three iterations.

3. Numerical Results

Problem 1.

We first solve the Burgers’ equation (1) and the initial condition

u(x,0) = sin(πx) , 0 < x < 1

with the boundary conditions

u(0, t) = u(1, t) = 0, t > 0

and the exact solution given by

(4) u(x, t) =
2πν

∞
∑

n=1
an exp

(
−n2π2νt

)
nsin(nπx)

a0 +
∞
∑

n=1
an exp(−n2π2νt)cos(nπx)

with

a0 =

1∫
0

exp
{
−(2πν)−1 [1− cos(πx)]

}
dx

an = 2
1∫
0

exp
{
−(2πν)−1 [1− cos(πx)]

}
cos(nπx)dx, n = 1,2,3, . . .

The results for Problem 1 are displayed in Table 1-3 and Fig. 1. The numerical solutions

obtained by Crank-Nicolson exponential finite difference method and the exact solution for

different values of h are presented in Table 1. It is observed from Table 1 that the values of L2

and L∞ decrease with decrease of h. Comparison of numerical solutions with exact solutions

at different times for v = 1.0,v = 0.01, h = 0.0125 and k = 10−5 are given in Table 2. The



A NUMERICAL SOLUTION OF THE BURGERS’ EQUATION 853

obtained solutions by CN-EFDM are compared with other methods [3, 5, 11, 22] in Table 3.

All comparisons show that the present method offer better results than the others. In order to

show the behaviour of the numerical solutions of the Problem 1 obtained with Crank-Nicolson

exponential finite difference method, we give a graph in Fig. 1.

Table 1. Comparison of the solutions with the exact solution at t = 0.1

for ν = 1 and k = 10−5 using various mesh sizes.

x h = 0.05 h = 0.025 h = 0.0125 h = 0.01 Exact

0.1 0.109732 0.109590 0.109555 0.109551 0.109538

0.2 0.210174 0.209895 0.209825 0.209817 0.209792

0.3 0.292450 0.292045 0.291944 0.291931 0.291896

0.4 0.348620 0.348110 0.347983 0.347968 0.347924

0.5 0.372366 0.371788 0.371644 0.371626 0.371577

0.6 0.359854 0.359261 0.359113 0.359095 0.359046

0.7 0.310640 0.310101 0.309966 0.309950 0.309905

0.8 0.228381 0.227967 0.227864 0.227851 0.227817

0.9 0.120993 0.120768 0.120712 0.120705 0.120687

L2 0.000566 0.000151 0.000047 0.000035

L∞ 0.000809 0.000216 0.000068 0.000050
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Table 2. Comparison of the solutions with the exact solutions at different

times for ν = 1.0, v = 0.01, h = 0.0125 and k = 10−5.

ν = 1.0 ν = 0.01

x t CN-EFDM Exact CN-EFDM Exact

0.25 0.1 0.253678 0.253638 0.566352 0.566328

0.5 0.005070 0.005065 0.301166 0.301151

1.0 0.000037 0.000036 0.188200 0.188194

0.50 0.1 0.371644 0.371577 0.947456 0.947414

0.5 0.007176 0.007169 0.588736 0.588696

1.0 0.000052 0.000052 0.374435 0.374420

0.75 0.1 0.272636 0.272582 0.860119 0.860129

0.5 0.005078 0.005073 0.838163 0.838033

1.0 0.000037 0.000036 0.556081 0.556051



A NUMERICAL SOLUTION OF THE BURGERS’ EQUATION 855

Table 3. Comparison of the results for Problem 1 at different times for ν = 0.1,

h = 0.0125 and k = 10−4.

x t RHC [3] RPA [5] [11] [22] CN-EFDM Exact

0.25 0.4 0.317062 0.308776 0.31215 0.30415 0.308919 0.308894

0.6 0.248472 0.240654 0.24360 0.23629 0.240762 0.240739

0.8 0.202953 0.195579 0.19815 0.19150 0.195700 0.195676

1.0 0.169527 0.162513 0.16473 0.15861 0.162592 0.162565

0.50 0.4 0.583408 0.569527 0.57293 0.56711 0.569711 0.569632

0.6 0.461714 0.447117 0.40588 0.44360 0.447291 0.447206

0.8 0.373800 0.359161 0.36286 0.35486 0.359328 0.359236

1.0 0.306184 0.291843 0.29532 0.28710 0.292011 0.291916

0.75 0.4 0.638847 0.625341 0.63038 0.61874 0.625677 0.625438

0.6 0.506429 0.487089 0.49268 0.47855 0.487488 0.487215

0.8 0.393565 0.373827 0.37912 0.36467 0.374169 0.373922

1.0 0.305862 0.029726 0.03038 0.27860 0.287679 0.287474

Problem 2.

The initial condition for the current problem is u(x,0) = 4x(1− x) , 0 < x < 1 and the bound-

ary conditions u(0, t) = u(1, t) = 0, t > 0 with the exact solution also given by Eq. (4) but with

following coefficients.

a0 =

1∫
0

exp
[
−x2 (3ν)−1 (3−2x)

]
dx

an = 2
1∫
0

exp
[
−x2 (3ν)−1 (3−2x)

]
cos(nπx)dx, n = 1,2,3, . . .

The numerical solutions obtained by the present method and the exact solution for different

values of h are given in Table 4. In Table 5, we compare the numerical results of Problem 2



856 BILGE İNAN, AHMET REFIK BAHADIR

0.5
1

1.5
2

0

0.5

1
0

0.2

0.4

0.6

0.8

1

t

x

U

FIGURE 1. Numerical solutions at different times for ν = 0.1, h = 0.0125 and
k = 10−5.

with the exact solutions for both ν = 1.0 and ν = 0.01. The obtained solutions by CN-EFDM

are compared with the methods proposed in [3, 5, 11, 22] in Table 6. The comparison showed

that the present methods offer better results than the others.

Table 4. Comparison of the solutions with the exact solution at t = 0.1

for ν = 1 and k = 10−5 using various mesh sizes.

x h = 0.05 h = 0.025 h = 0.0125 h = 0.01 Exact

0.1 0.113091 0.112946 0.112909 0.112905 0.112892

0.2 0.216644 0.216358 0.216286 0.216277 0.216252

0.3 0.301535 0.301119 0.301015 0.301002 0.300966

0.4 0.359579 0.359055 0.358924 0.358908 0.358863

0.5 0.384235 0.383640 0.383491 0.383473 0.383422

0.6 0.371493 0.370881 0.370727 0.370709 0.370658

0.7 0.320828 0.320269 0.320129 0.320112 0.320066

0.8 0.235957 0.235527 0.235419 0.235406 0.235371

0.9 0.125037 0.124803 0.124744 0.124737 0.124718

L2 0.000584 0.000156 0.000049 0.000036

L∞ 0.000835 0.000224 0.000070 0.000052
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Table 5. Comparison of the solutions at different times for ν = 1.0,

ν = 0.01, h = 0.0125 and k = 10−5.

ν = 1.0 ν = 0.01

x t CN-EFDM Exact CN-EFDM Exact

0.25 0.1 0.261521 0.261480 0.607369 0.607363

0.5 0.005231 0.005227 0.317335 0.317320

1.0 0.000038 0.000038 0.194699 0.194690

0.50 0.1 0.383491 0.383422 0.956025 0.956007

0.5 0.007404 0.007398 0.609910 0.609886

1.0 0.000053 0.000053 0.385688 0.385676

0.75 0.1 0.281629 0.281573 0.886732 0.886707

0.5 0.005240 0.005235 0.852212 0.852123

1.0 0.000038 0.000038 0.569339 0.569319
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Table 6. Comparison of the results for Problem 2 at different times for ν = 0.1

and h = 0.0125.

(k = 10−5) (k = 10−4)

x t RHC [3] RPA [5] [11] [22] CN-EFDM Exact

0.25 0.4 0.306529 0.317399 0.32091 0.31247 0.317549 0.317523

0.6 0.236051 0.246058 0.24910 0.24148 0.246161 0.246138

0.8 0.190181 0.199437 0.20211 0.19524 0.199579 0.199555

1.0 0.156646 0.165529 0.16782 0.16153 0.165626 0.165599

0.50 0.4 0.565994 0.584429 0.58788 0.58176 0.584612 0.584537

0.6 0.438926 0.457888 0.46174 0.45414 0.458061 0.457976

0.8 0.348328 0.367320 0.37111 0.36283 0.367491 0.367398

1.0 0.280038 0.298271 0.30183 0.29336 0.298439 0.298343

0.75 0.4 0.626990 0.645527 0.65054 0.63858 0.645868 0.645616

0.6 0.477908 0.502564 0.50825 0.49362 0.502961 0.502676

0.8 0.360630 0.385232 0.39068 0.37570 0.385593 0.385336

1.0 0.272623 0.295779 0.30057 0.28663 0.296070 0.295857

4. Conclusion

In this paper, an exponential finite difference method was applied to the solution of Burgers’

equation. Numerical solutions for two different test problems were given. The results showed

that Crank-Nicolson exponential finite difference method offers high accuracy in the numerical

solution of the one-dimensional Burgers’ equation.
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[2] S. Kutluay, A. R. Bahadir, A. Özdeş, Numerical solution of one-dimensional Burgers equation: explicit and

exact-explicit finite difference methods, J. Comput. Appl. Math. 103 (1999), 251-261.
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[14] A. R. Bahadir, M. Sağlam, A mixed finite differnce and boundary element approach to one-dimensioanl

Burgers’ equation, Appl. Math. Comput. 160 (2005), 663-673.

[15] M. K. Kadalbajoo, K. K. Sharma, A. Awasthi, A parameter-uniform implicit difference scheme for solving

time-dependent Burgers’ equations, Appl. Math. Comput. 170 (2005), 1365-1393.
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