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Abstract. In this paper an inequality of Popoviciu, which was improved by Vasić and Stanković [13], is generalized

by using Green function. An extension of Popoviciu type inequality is introduced. The mean value theorems, n-

exponential convexity and exponential convexity are presented for the differences of these inequalities and related

Cauchy means are also generated.
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1. Introduction

The inequality of Popoviciu as given by Vasić and Stanković in [13] can be written in the

following form (see page 173 [10]):
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Theorem 1.1. Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, [α,β ] ⊂ R, x = (x1, ...,xn) ∈ [α,β ]n, p =

(p1, ..., pn) be a positive n-tuple such that ∑
n
i=1 pi = 1. Also let f : [α,β ]→ R be a convex

function. Then

(1) fk,n(x,p)≤
n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p),

where

fk,n(x,p) :=
1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k

∑
j=1

pi j

)
f


k
∑
j=1

pi jxi j

k
∑
j=1

pi j

.

By inequality (1), we write

ϒ1(x,p; f ) :=
n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p)− fk,n(x,p)≥ 0.

The mean value theorems and exponential convexity of the functional ϒ1(x,p; f ) are given in

[5] for a positive n-tuple p. We used some special classes of convex functions to construct the

exponential convexity in [5]. But in this paper, we generalize the results related to ϒ1(x,p; f ).

First, we give the generalization of Theorem 1.1, then the mean value theorems with new meth-

ods from [9]. A new extension of Popoviciu type inequality is introduced. We also employ the

new exponential convexity method from [8] for functionals that appear in the sequel. In this

way our results are more general than the corresponding results given in [5] as well as in [2].

2. Generalization of Popoviciu’s Inequality

Consider the Green function G : [α,β ]× [α,β ]→ R defined as

(2) G(t,s) =


(t−β )(s−α)

β−α
, α ≤ s≤ t;

(s−β )(t−α)
β−α

, t ≤ s≤ β .

The function G is convex and continuous w.r.t s and due to symmetry also w.r.t t.

For any function h : [α,β ]→ R, h ∈C2([α,β ]), we have

(3) h(x) =
β − x
β −α

h(α)+
x−α

β −α
h(β )+

∫
β

α

G(x,s)h′′(s)ds,

where the function G is defined in (2) (see [14]).
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In Theorem 1.1 we have that pi (i = 1, ...,n) are positive real numbers. Now we give the

generalization of that result for real values of pi (i = 1, ...,n) with ∑
n
i=1 pi = 1 using the Green

function as defined in (2).

Theorem 2.1. Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, [α,β ] ⊂ R, x = (x1, ...,xn) ∈ [α,β ]n, p =

(p1, ..., pn) be a real n-tuple such that ∑
k
j=1 pi j 6= 0 for any 1≤ i1 < ... < ik ≤ n and ∑

n
i=1 pi =

1. Also let

k
∑

j=1
pi j xi j

k
∑

j=1
pi j

∈ [α,β ] for any 1≤ i1 < ... < ik ≤ n. Then the following statements are

equivalent:

(i) For every continuous convex function f : [α,β ]→ R

(4) fk,n(x,p)≤
n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p),

where

fk,n(x,p) :=
1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k

∑
j=1

pi j

)
f


k
∑
j=1

pi jxi j

k
∑
j=1

pi j

.

(ii) For all s ∈ [α,β ]

(5) Gk,n(x,s;p)≤ n− k
n−1

G1,n(x,s;p)+
k−1
n−1

Gn,n(x,s;p),

where

Gk,n(x,s;p)

:= 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑
j=1

pi j

)
G


k
∑

j=1
pi j xi j

k
∑

j=1
pi j

,s

; 1≤ k ≤ n,

for the function G : [α,β ]× [α,β ]→ R defined in (2).

Moreover, the statements (i) and (ii) are also equivalent if we change the sign of inequality in

both (4) and (5).

Proof. (i)⇒(ii): Let (i) be valid. Then as the function G(·,s) (s ∈ [α,β ]) is also continuous and

convex, it follows that also for this function (4) holds, i.e. (5) is valid.

(ii)⇒(i): Let f : [α,β ]→ R be a convex function, f ∈ C2([α,β ]) and (ii) holds. Then, we

can represent function f in the form (3). Now by means of some simple calculations we can
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write

(6)

n−k
n−1 f1,n(x,p)+ k−1

n−1 fn,n(x,p)− fk,n(x,p)

=
β∫

α

( n−k
n−1 G1,n(x,s; p)+ k−1

n−1Gn,n(x,s; p)−Gk,n(x,s; p)
)

f ′′(s)ds.

By the convexity of f , we have f
′′
(s) ≥ 0 for all s ∈ [α,β ]. Hence, if for every s ∈ [α,β ], (5)

is valid then it follows that for every convex function f : [α,β ]→R, with f ∈C2([α,β ]), (4) is

valid.

Here we can eliminate the differentiability condition due to the fact that it is possible to

approximate uniformly a continuous convex function by convex polynomials (see [10], page

172).

Analogous to the above proof we can give the proof of the last part of our theorem.

Remark 2.2. Consider n,k ∈N, n≥ 3, 2≤ k≤ n−1, [α,β ]⊂R, x = (x1, ...,xn) ∈ [α,β ]n, p =

(p1, ..., pn) be a real n-tuple such that ∑
k
j=1 pi j 6= 0 for any 1≤ i1 < ... < ik ≤ n and ∑

n
i=1 pi = 1.

Also assume that

k
∑

j=1
pi j xi j

k
∑

j=1
pi j

∈ [α,β ] for any 1≤ i1 < ... < ik ≤ n.

(a) If for all s ∈ [α,β ] the inequality holds in (5) then from above theorem we have

(7) ϒ2( f ) := ϒ2(x,p; f ) :=
n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p)− fk,n(x,p)≥ 0.

(b) If for all s ∈ [α,β ] the reverse inequality holds in (5) then from above theorem we have

(8) ϒ̄2( f ) := ϒ̄2(x,p; f ) := fk,n(x,p)−
n− k
n−1

f1,n(x,p)−
k−1
n−1

fn,n(x,p)≥ 0.

Remark 2.3. Note that in the case when p is a positive n-tuple, the inequality (4) gives (1).

Now we give two mean value theorems.

Theorem 2.4. Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, [α,β ] ⊂ R, x = (x1, ...,xn) ∈ [α,β ]n, p =

(p1, ..., pn) be a real n-tuple such that ∑
k
j=1 pi j 6= 0 for any 1≤ i1 < ... < ik ≤ n and ∑

n
i=1 pi = 1.

Also let

k
∑

j=1
pi j xi j

k
∑

j=1
pi j

∈ [α,β ] for any 1≤ i1 < ... < ik ≤ n and f : [α,β ]→R be a function such that
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f ∈C2([α,β ]). If for all s ∈ [α,β ] the inequality holds in (5) or if for all s ∈ [α,β ] the reverse

inequality holds in (5), then there exists ξ ∈ [α,β ] such that

n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p)− fk,n(x,p) =
1
2

f ′′(ξ )ϒ2(x,p; f0),

where x̄ =
n
∑

i=1
pixi and f0(x) = x2.

Proof. By the assumption, we have that the function f
′′

is continuous and

n− k
n−1

G1,n(x,s; p)+
k−1
n−1

Gn,n(x,s; p)−Gk,n(x,s; p)

does not change its positivity on [α,β ]. Also for our function f the equality (6) is valid and now

by applying the integral mean value theorem we get that there exists some ξ ∈ [α,β ] such that

(9)

n−k
n−1 f1,n(x,p)+ k−1

n−1 fn,n(x,p)− fk,n(x,p)

= f ′′(ξ )
β∫

α

( n−k
n−1G1,n(x,s; p)+ k−1

n−1Gn,n(x,s; p)−Gk,n(x,s; p)
)
ds.

Next by the definition of the function G, we observe that

(10)

β∫
α

G(t,s)ds =
1
2
(t−α)(t−β ).

We calculate the integral on right side of (9) with the help of (10) as follows:

n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p)− fk,n(x,p)

= f ′′(ξ )



n−k
n−1

n
∑

i=1
pi

β∫
α

G(xi,s)ds+ k−1
n−1

β∫
α

G(x2,s)ds

− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑
j=1

pi j

) β∫
α

G


k
∑
j=1

pi jxi j

k
∑
j=1

pi j

,s

ds



=
f ′′(ξ )

2


n−k
n−1

n
∑

i=1
pi(xi−α)(xi−β )+ k−1

n−1(x̄−α)(x̄−β )

− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑
j=1

pi j

)
k
∑

j=1
pi j xi j

k
∑

j=1
pi j

−α




k
∑

j=1
pi j xi j

k
∑

j=1
pi j

−β
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=
f ′′(ξ )

2

n− k
n−1

n

∑
i=1

pix2
i +

k−1
n−1

x̄2− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k

∑
j=1

pi j

)
k
∑
j=1

pi jxi j

k
∑
j=1

pi j


2
 ,

= 1
2 f ′′(ξ )ϒ2(x,p; f0), which completes the proof.

Theorem 2.5. Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, [α,β ] ⊂ R, x = (x1, ...,xn) ∈ [α,β ]n, p =

(p1, ..., pn) be a real n-tuple such that ∑
k
j=1 pi j 6= 0 for any 1≤ i1 < ... < ik ≤ n and ∑

n
i=1 pi = 1.

Also let

k
∑

j=1
pi j xi j

k
∑

j=1
pi j

∈ [α,β ] for any 1≤ i1 < ... < ik ≤ n and f ,g : [α,β ]→ R be functions such

that f ,g ∈C2([α,β ]). If for all s ∈ [α,β ] (5) holds or if for all s ∈ [α,β ] the reverse inequality

holds in (5), then there exists ξ ∈ [α,β ] such that

(11)
n−k
n−1 f1,n(x,p)+ k−1

n−1 fn,n(x,p)− fk,n(x,p)
n−k
n−1g1,n(x,p)+ k−1

n−1gn,n(x,p)−gk,n(x,p)
=

f ′′(ξ )
g′′(ξ )

.

for non zero values of denominators.

Proof. Consider the function

h(t) =
( n−k

n−1g1,n(x,p)+ k−1
n−1gn,n(x,p)−gk,n(x,p)

)
f (t)

−
( n−k

n−1 f1,n(x,p)+ k−1
n−1 fn,n(x,p)− fk,n(x,p)

)
g(t).

which is defined on [α,β ] and also h ∈C2([α,β ]). Therefore we can apply Theorem 2.4 on the

function h and then it follows that there exists some ξ ∈ [α,β ] such that

(12)
n− k
n−1

h1,n(x,p)+
k−1
n−1

hn,n(x,p)−hk,n(x,p) =
h′′(ξ )

2
[ϒ2(x,p; f0)] ,

where f0(x) = x2.

After some simple calculations we get that the LHS of this equation equals to zero. The term

in the square brackets on the RHS of (12) is nonzero, because otherwise, from the Theorem 2.4

applied on the function h, we would have that the denominator on the LHS of (11) equals to

zero, which contradicts the assumption of this theorem. Hence

h′′(ξ ) = 0,
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which completes the proof.

Next we give an extension of an inequality (6.4) page 174 of [10] by Popoviciu.

Theorem 2.6. Let n,k ∈ N, n≥ 3, 2≤ k ≤ n−1, (0,a]⊂ R, x = (x1, ...,xn) ∈ (0,a]n such that

∑
n
i=1 xi ∈ (0,a]. Also let f : (0,a]→ R be a function such that f (x)

x is convex. Then

(13) fk,n(x)≤
n− k
n−1

f1,n(x)+
k−1
n−1

fn,n(x),

where

fk,n(x) :=
1

Cn−1
k−1

∑
1≤i1<...<ik≤n

f

(
k

∑
j=1

xi j

)
.

Proof. For k = 2 and n = 3 the result is followed by inequality (6.4) on page 174 of [10]. Next

for k > 2 and n > 3 the result is followed by Theorem 6.9 on page 176 of [10]. �

Hence for convex function f (x)
x , (13) gives

(14) ϒ3( f ) := ϒ3(x; f ) :=
n− k
n−1

f1,n(x)+
k−1
n−1

fn,n(x)− fk,n(x)≥ 0.

The following lemma is given in [1]:

Lemma 2.7. Let h ∈C2(I) for an interval I ⊂ R\{0} and consider m,M ∈ R such that

m≤ x2h′′(x)−2xh′(x)+2h(x)
x3 ≤M.

Also let h1,h2 be real valued functions defined on I as follows

h1(x) = M
x3

2
−h(x),

h2(x) = h(x)−m
x3

2
.

Then h1(x)
x and h2(x)

x are convex.

Theorem 2.8. Let [α,β ]⊂ R+ and f ∈C([α,β ]) then there exists ξ ∈ [α,β ] such that

ϒ3(x; f ) =
ξ 2 f ′′(ξ )−2ξ f ′(ξ )+2 f (ξ )

2ξ 3 ϒ3(x;x3).

Proof. The idea of proof is same as given in Theorem 2.3 of [5]. �
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Theorem 2.9. Let [α,β ]⊂ R+ and f ,g ∈C([α,β ]) then there exists ξ ∈ [α,β ] such that

ϒ3(x; f )
ϒ3(x;g)

=
ξ 2 f ′′(ξ )−2ξ f ′(ξ )+2 f (ξ )
ξ 2g′′(ξ )−2ξ g′(ξ )+2g(ξ )

,

for non zero values of denominators.

Proof. The idea of proof is same as given in Theorem 2.4 of [5].

3. Exponential Convexity

The notion of n-exponentially convex function and the following properties of exponentially

convex function defined on an interval I ⊂ R, are given in [8].

Definition 1. A function g : I→ R is called n-exponentially convex in the Jensen sense if

n

∑
i, j=1

aia jg
(

xi + x j

2

)
≥ 0

holds for every ai ∈ R and every xi ∈ I, i = 1,2, ...,n.

A function g : I → R is n-exponentially convex if it is n-exponentially convex in the Jensen

sense and continuous on I.

Remark 3.1. From the definition it is clear that 1-exponentially convex functions in the Jensen

sense are in fact the nonnegative functions. Also, n-exponentially convex functions in the Jensen

sense are m-exponentially convex in the Jensen sense for every m ∈ N, m≤ n.

Definition 2. A function g : I → R is exponentially convex in the Jensen sense, if it is n-

exponentially convex in the Jensen sense for all n ∈ N.

A function g : I→R is exponentially convex if it is exponentially convex in the Jensen sense

and continuous.

Remark 3.2. It is easy to see that a positive function g : I→R is log-convex in the Jensen sense

if and only if it is 2-exponentially convex in the Jensen sense, that is

a2
1g(x)+2a1a2g

(
x+ y

2

)
+a2

2g(y)≥ 0
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holds for every a1,a2 ∈ R and x,y ∈ I.

Similarly, if g is 2-exponentially convex, then g is log-convex. Conversely, if g is log-convex

and continuous, then g is 2-exponentially convex.

Divided differences are fertile to study functions having different degree of smoothness.

Definition 3. The second order divided difference of a function g : I→ R at mutually different

points y0,y1,y2 ∈ I is defined recursively by

[yi;g] = g(yi), i = 0,1,2

[yi,yi+1;g] =
g(yi+1)−g(yi)

yi+1− yi
, i = 0,1

(15) [y0,y1,y2;g] =
[y1,y2;g]− [y0,y1;g]

y2− y0
.

Remark 3.3. The value [y0,y1,y2;g] is independent of the order of the points y0,y1, and y2. By

taking limits this definition may be extended to include the cases in which any two or all three

points coincide as follows: ∀ y0, y1, y2 ∈ I such that y2 6= y0

lim
y1→y0

[y0,y1,y2;g] = [y0,y0,y2;g] =
g(y2)−g(y0)−g

′
(y0)(y2− y0)

(y2− y0)
2

provided that g′ exists, and furthermore, taking the limits yi→ y0, i = 1,2 in (15), we get

[y0,y0,y0;g] = lim
yi→y0

[y0,y1,y2;g] =
g
′′
(y0)

2
for i = 1,2

provided that g
′′

exist on I.

Theorem 3.4. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is a family of con-

tinuous functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;φt ] (t ∈ J)

is n-exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ I. Consider ϒ2( f ) as given in (7). Then t → ϒ2(φt) (t ∈ J) is an n-exponentially

convex function in the Jensen sense on J. If the function t→ ϒ2(φt) (t ∈ J) is continuous, then

it is n-exponentially convex on J.
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Proof. Let tk, tl ∈ J, tkl := tk+tl
2 and bk,bl ∈ R for k, l = 1,2, ...,n, and define the function ω on

I by

ω :=
n

∑
k,l=1

bkblφtkl .

Then ω is continuous on I being the linear combination of continuous functions. Also by

hypothesis the function t→ [y0,y1,y2;φt ] (t ∈ J) is n-exponentially convex in the Jensen sense,

therefore we have

[y0,y1,y2;ω] =
n

∑
k,l=1

bkbl[y0,y1,y2;φtkl ]≥ 0,

which implies that ω is a convex function on I. Therefore we have ϒ2(ω)≥ 0, which yields by

the linearity of ϒ2, that
n

∑
k,l=1

bkblϒ2(φtkl)≥ 0.

We conclude that the function t → ϒ2(φt) (t ∈ J) is an n-exponentially convex function in the

Jensen sense on J.

If the function t → ϒ2(φt) (t ∈ J) is continuous on J, then it is n-exponentially convex on J

by definition.

As a consequence of the above theorem we can give the following corollaries.

Corollary 3.5. Assume J ⊂R is an interval, and assume Λ = {φt | t ∈ J} is a family of continu-

ous functions defined on an interval I ⊂R, such that the function t→ [y0,y1,y2;φt ] (t ∈ J) is ex-

ponentially convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I.

Consider ϒ2( f ) as given in (7). Then t→ ϒ2(φt) (t ∈ J) is an exponentially convex function in

the Jensen sense on J. If the function t → ϒ2(φt) (t ∈ J) is continuous, then it is exponentially

convex on J.

Corollary 3.6. Assume J ⊂ R is an interval, and assume Λ = {φt : t ∈ J} is a family of con-

tinuous functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;φt ] (t ∈ J)

is 2-exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ I. Consider ϒ2( f ) as given in (7). Then the following two statements hold:

(i) If the function t → ϒ2(φt) (t ∈ J) is continuous, then it is 2-exponentially convex on J,

and thus log-convex.



GENERALIZATION OF POPOVICIU TYPE INEQUALITIES 1101

(ii) If the function t→ ϒ2(φt) (t ∈ J) is positive, then for every s, t,u,v ∈ J, such that s≤ u

and t ≤ v, we have

(16) us,t(ϒ2,Λ)≤ uu,v(ϒ2,Λ)

where

(17) us,t(ϒ2,Λ) :=


(

ϒ2(φs)
ϒ2(φt)

) 1
s−t

, s 6= t,

exp
(

d
ds ϒ2(φs)

ϒ2(φs)

)
, s = t

for φs,φt ∈ Λ and we consider that the function t→ ϒ2(φt) is differentiable when t = s.

Proof.

(i) See Remark 3.2 and Theorem 3.4.

(ii) From the definition of a convex function ψ on J, we have the following inequality (see

[10, page 2])

(18)
ψ (s) − ψ (t)

s − t
≤ ψ (u) − ψ (v)

u − v
,

∀s, t,u,v ∈ J such that s≤ u, t ≤ v, s 6= t, u 6= v.

By (i), s→ ϒ2(φs), s ∈ J is log-convex, and hence (18) shows with ψ(s) = logϒ2(φs),

s ∈ J that

(19)
logϒ2(φs) − logϒ2(φt)

s− t
≤ logϒ2(φu)− logϒ2(φv)

u− v

for s≤ u, t ≤ v, s 6= t, u 6= v, which is equivalent to (16). For s = t or u = v (16) follows

from (19) by taking limit.

Remark 3.7. Note that the results from Theorem 3.4, Corollary 3.5, Corollary 3.6 are valid

when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differentiable func-

tions φt such that the function t → [y0,y1,y2;φt ] is n-exponentially convex in the Jensen sense

(exponentially convex in the Jensen sense, log-convex in the Jensen sense), and moreover, they

are are also valid when all three points coincide for a family of twice differentiable function-

s with the same property. The proofs can be obtained by recalling Remark 3.3 and suitable

characterization of convexity.
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Remark 3.8. The results similar to Theorem 3.4, Corollary 3.5 and Corollary 3.6 can also be

given for ϒ̄2( f ) as defined in (8).

Remark 3.9. A refinement of the inequality of Popoviciu from [11] is given by Niculescu and

Popovici in [7]. Also an integral version of Theorem 1.1 is given by Niculescu in [6]. The results

similar to Theorem 2.1, Theorem 2.4, Theorem 2.5, Theorem 3.4, Corollary 3.5 and Corollary

3.6 can also be given for refinement results of [7] as well as for integral version of Popociciu’s

inequality.

Theorem 3.10. Assume J ⊂ R is an interval, and assume Φ = {φt | t ∈ J} is a family of

functions defined on an interval (0,a] ⊂ R, such that the function t → [y0,y1,y2; φt(y)
y ] (t ∈ J)

is n-exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ (0,a]. Consider ϒ3( f ) as given in (14). Then t→ϒ3(φt) (t ∈ J) is an n-exponentially

convex function in the Jensen sense on J. If the function t→ ϒ3(φt) (t ∈ J) is continuous, then

it is n-exponentially convex on J.

Proof. Proof is similar to the proof of Theorem 3.4, but we consider the convex function f (y)
y

instead of f .

As a consequence of the above theorem we can give the following corollaries.

Corollary 3.11. Assume J ⊂ R is an interval, and assume Φ = {φt | t ∈ J} is a family of

functions defined on an interval (0,a] ⊂ R, such that the function t → [y0,y1,y2; φt(y)
y ] (t ∈

J) is exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ (0,a]. Consider ϒ3( f ) as given in (14). Then t→ ϒ3(φt) (t ∈ J) is an exponentially

convex function in the Jensen sense on J. If the function t→ ϒ3(φt) (t ∈ J) is continuous, then

it is exponentially convex on J.

Corollary 3.12. Assume J ⊂ R is an interval, and assume Φ = {φt : t ∈ J} is a family of

functions defined on an interval (0,a] ⊂ R, such that the function t → [y0,y1,y2; φt(y)
y ] (t ∈ J)

is 2-exponentially convex in the Jensen sense on J for every three mutually different points

y0,y1,y2 ∈ (0,a]. Consider ϒ3( f ) as given in (14). Then the following two statements hold:
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(i) If the function t → ϒ3(φt) (t ∈ J) is continuous, then it is 2-exponentially convex on J,

and thus log-convex.

(ii) If the function t → ϒ3(φt) (t ∈ J) is positive then for every s, t,u,v ∈ J, such that s ≤ u

and t ≤ v, we have

(20) ūs,t(ϒ3,Φ)≤ ūu,v(ϒ3,Φ)

where

(21) ūs,t(ϒ3,Φ) :=


(

ϒ3(φs)
ϒ3(φt)

) 1
s−t

, s 6= t,

exp
(

d
ds ϒ3(φs)

ϒ3(φs)

)
, s = t

for φs,φt ∈Φ and we consider that the function t→ ϒ3(φt) is differentiable when t = s.

Proof. Proof is similar to the proof of Corollary 3.6, but we consider the convex function f (y)
y

instead of f .

Remark 3.13. Note that the results from Theorem 3.10, Corollary 3.11, Corollary 3.12 are

valid when two of the points y0,y1,y2 ∈ (0,a] coincide, say y1 = y0, for a family of differentiable

functions φt such that the function t → [y0,y1,y2; φt(y)
y ] is n-exponentially convex in the Jensen

sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense), and moreover,

they are are also valid when all three points coincide for a family of twice differentiable func-

tions with the same property. The proofs can be obtained by recalling Remark 3.3 and suitable

characterization of convexity.

The following result is given in [3].

Theorem 3.14. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is a family of twice

differentiable functions defined on an interval I ⊂ R such that the function t 7→ φ ′′t (x) (t ∈ J)

is exponentially convex for every fixed x ∈ I. Then the function t 7→ [y0,y1,y2;φt ] (t ∈ J) is

exponentially convex in the Jensen sense for any three points y0, y1, y2 ∈ I.
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4. Applications to Cauchy Means

In this section we generate new Cauchy means with the help of some classes of functions from

[8].

Throughout in Examples (4.1-4.4) we mention that the functional ϒ2, defined in (7) is linear

on the vector space C(I) for the interval I ⊂ R, and ϒ2( f ) ≥ 0 for every continuous convex

function defined on I. We also assume that n,k ∈ N, n≥ 3, 2≤ k ≤ n−1, x = (x1, ...,xn) ∈ In,

p = (p1, ..., pn) be real n-tuple such that ∑
n
i=1 pi = 1.

Example 4.1. Assume I = R and consider the class of continuous convex functions

Λ1 := {φt : R→ [0,∞) | t ∈ R},

where

φt(x) :=

 1
t2 etx; t 6= 0,
1
2x2; t = 0.

Then t 7→ φ ′′t (x) (t ∈R) is exponentially convex for every fixed x ∈R (see [4]), thus by Theorem

3.14, the function t 7→ [y0,y1,y2;φt ], t ∈ R is exponentially convex in the Jensen sense for every

three mutually different points y0,y1,y2 ∈ R.

By applying Corollary 3.5 with Λ=Λ1, we get the exponential convexity of t 7→ϒ2(φt) (t ∈R)

in the Jensen sense. This mapping is also differentiable, therefore exponentially convex, and the

expression in (17) has the form

us,t(ϒ2,Λ1) =



(
ϒ2(φs)
ϒ2(φt)

) 1
s−t

, s 6= t,

exp
(

ϒ2(id φs)
ϒ2(φs)

− 2
s

)
, s = t 6= 0,

exp
(

ϒ2(id φ0)
3ϒ2(φ0)

)
, s = t = 0,

where “id” means the identity function on R.

From (16) we have the monotonicity of the functions us,t(ϒ2,Λ1) in both parameters.

Suppose ϒ2(φt)> 0 (t ∈ R), a := min{x1, ...,xn}, b := max{x1, ...,xn}, and let

Ms,t(ϒ2,Λ1) := logus,t(ϒ2,Λ1); s, t ∈ R.
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Then from Theorem 2.5 we have

a≤Ms,t(ϒ2,Λ1)≤ b,

and thus Ms,t(ϒ2,Λ1) (s, t ∈ R) are means. The monotonicity of these means is followed by

(16).

Example 4.2. Assume I = (0,∞) and consider the class of continuous convex functions

Λ2 = {ψt : (0,∞)→ R | t ∈ R},

where

ψt(x) :=


xt

t(t−1) ; t 6= 0,1,

− logx; t = 0,

x logx; t = 1.

Then t 7→ψ ′′t (x) = xt−2 = e(t−2) logx (t ∈R) is exponentially convex for every fixed x ∈ (0,∞).

By similar arguments as given in Example 4.1 we get the exponential convexity of t 7→ ϒ2(ψt)

(t ∈ R) in the Jensen sense. This mapping is differentiable too, therefore exponentially convex.

It is easy to calculate that (17) can be written as

us,t(x,p,ϒ2,Λ2) =



(
ϒ2(ψs)
ϒ2(ψt)

) 1
s−t ; s 6= t,

exp
(

1−2s
s(s−1) −

ϒ2(ψsψ0)
ϒ2(ψs)

)
; s = t 6= 0,1,

exp
(

1− ϒ2(ψ
2
0 )

2ϒ2(ψ0)

)
; s = t = 0,

exp
(
−1− ϒ2(ψ0ψ1)

2ϒ2(ψ1)

)
; s = t = 1.

Suppose ϒ2(ψt)> 0 (t ∈ R), and let a := min{x1, ...,xn}, b := max{x1, ...,xn}.

By Theorem 2.5, we can check that

a≤ us,t(x,p,ϒ2,Λ2)≤ b; s, t ∈ R.

The means us,t(x,p,ϒ2,Λ2) (s, t ∈ R) are continuous, symmetric and monotone in both param-

eters (by use of (16)).

Let s, t,r ∈R such that r 6= 0. By the substitutions s→ s
r , t→ t

r , (x1, . . . ,xn)→ (xr
1, . . . ,x

r
n) in

(22), we get
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ā≤ us,r(xr,p,ϒ2,Λ2)≤ b̄,

where ā := min{xr
1, . . . ,x

r
n} and b̄ := max{xr

1, . . . ,x
r
n}. Thus new means can be defined with

three parameters:

us,t,r(x,p,ϒ2,Λ2) :=

 (us/r,t/r(xr,p,ϒ2,Λ2))
1
r ; r 6= 0,

us,t(logx,p,ϒ2,Λ1); r = 0,

where logx = (logx1, ..., logxn).

The monotonicity of these three parameter means is followed by the monotonicity and conti-

nuity of the two parameter means.

Example 4.3. Assume I = (0,∞) and consider the class of continuous convex functions

Λ3 = {ηt : (0,∞)→ (0,∞) | t ∈ (0,∞)},

where

ηt(x) :=


t−x

log2t
; t 6= 1,

x2

2 ; t = 1.

t 7→ η ′′t (x) (t ∈ (0,∞)) is exponentially convex for every fixed x ∈ (0,∞), being the restriction

of the Laplace transform of a nonnegative function (see [4] or [12] page 210).

We can get the exponential convexity of t 7→ ϒ2(ψt) (t ∈R+) as in Example 4.1. For the class

Λ3, (17) has the form

us,t(ϒ2,Λ3) =



(
ϒ2(ηs)
ϒ2(ηt)

) 1
s−t ; s 6= t,

exp
(
− 2

slogs −
ϒ2(idηs)
sϒ2(ηs)

)
; s = t 6= 1,

exp
(
−ϒ2(idη1)

3ϒ2(η1)

)
; s = t = 1.

The monotonicity of us,t(ϒ2,Λ3) (s, t ∈ (0,∞)) comes from (16).

Suppose ϒ2(ηt)> 0 (t ∈ (0,∞)), and let a := min{x1, ...,xn}, b := max{x1, ...,xn}, and define

Ms,t(ϒ2,Λ3) :=−L(s, t) logus,t(ϒ2,Λ3), s, t ∈ (0,∞),
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where L(s, t) is the well known logarithmic mean

L(s, t) :=

 s−t
logs−log t ; s 6= t,

t; s = t.

From Theorem 2.5 we have

a≤Ms,t(ϒ2,Λ3)≤ b, s, t ∈ (0,∞),

and therefore we get means.

Example 4.4. Assume I = (0,∞) and consider the class of continuous convex functions

Λ4 = {γt : (0,∞)→ (0,∞) | t ∈ (0,∞)},

where

γt(x) :=
e−x
√

t

t
.

t 7→ γ ′′t (x) = e−x
√

t , t ∈ (0,∞) is exponentially convex for every fixed x ∈ (0,∞), being the

restriction of the Laplace transform of a non-negative function (see [4] or [12] page 214).

As before t 7→ ϒ2(ψt) (t ∈ R+) is exponentially convex and differentiable. For the class Λ4,

(17) becomes

us,t(ϒ2,Λ4) =


(

ϒ2(γs)
ϒ2(γt)

) 1
s−t ; s 6= t,

exp
(
−1

t −
ϒ2(idγt)

2
√

tϒ2(γt)

)
; s = t,

where ‘id’ means the identity function on (0,∞). The monotonicity of us,t(ϒ2,Λ4) (s, t ∈ (0,∞))

is followed by (16).

Suppose ϒ2(ηt)> 0 (t ∈ (0,∞)), let a := min{x1, ...,xn}, b := max{x1, ...,xn}, and define

Ms,t(ϒ2,Λ4) :=−(
√

s+
√

t) logus,t(ϒ2,Λ4), s, t ∈ (0,∞).

Then Theorem 2.5 yields that

a≤Ms,t(ϒ2,Λ4)≤ b,

thus we have new means.
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For remaining Examples (4.5-4.8) we assume that n,k ∈ N, n≥ 3, 2≤ k ≤ n−1, I = (0,∞),

x = (x1, ...,xn) ∈ In such that x = ∑
n
i=1 xi ∈ I and consider the linear functionals ϒ3 defined in

(14).

Example 4.5. Consider the class of continuous convex functions

Φ1 := {τt : (0,∞)→ (0,∞) | t ∈ R},

where

τt(x) :=

 xetx

t2 ; t 6= 0,
x3

2 ; t = 0.

Then t 7→
(

τt(x)
x

)′′
(t ∈ R) is exponentially convex for every fixed x ∈ R (see [4]), thus by

Theorem 3.14, the function t 7→ [y0,y1,y2;φt ], t ∈ R is exponentially convex in the Jensen sense

for every three mutually different points y0,y1,y2 ∈ R.

By applying Corollary 3.11 with Λ = Φ1, we get the exponential convexity of t 7→ ϒ3(φt)

(t ∈R) in the Jensen sense. This mapping is also differentiable, therefore exponentially convex,

and the expression in (21) has the form

us,t(ϒ3,Φ1) =

 t2

s2

n−k
n−1

n
∑

i=1
xiesxi+ k−1

n−1 xesx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
e

s

(
k
∑

j=1
xi j

)

n−k
n−1

n
∑

i=1
xietxi+ k−1

n−1 xetx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
e

t

(
k
∑

j=1
xi j

)


1

s−t

;s 6= t,s, t 6= 0,

exp


n−k
n−1

n
∑

i=1
x2

i esxi+ k−1
n−1 x2esx− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)2

e
s

(
k
∑

j=1
xi j

)

n−k
n−1

n
∑

i=1
xiesxi+ k−1

n−1 xesx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
e

s

(
k
∑

j=1
xi j

) − 2
s

 ;s = t 6= 0,

exp

 2
s2

n−k
n−1

n
∑

i=1
xiesxi+ k−1

n−1 xesx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
e

s

(
k
∑

j=1
xi j

)

n−k
n−1

n
∑

i=1
x3

i +
k−1
n−1 x3− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)3

 ;s 6= 0,

exp

 1
3

n−k
n−1

n
∑

i=1
x4

i esxi+ k−1
n−1 x4esx− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)4

e
s

(
k
∑

j=1
xi j

)

n−k
n−1

n
∑

i=1
x3

i esxi+ k−1
n−1 x3esx− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)3

e
s

(
k
∑

j=1
xi j

)

 ;s = t = 0.

From (20) we have the monotonicity of the functions ūs,t(ϒ3,Φ1) in both parameters.

Suppose ϒ3(φt)> 0 (t ∈ R), a := min{x1, ...,xn}, b := max{x1, ...,xn}, and let

M̄s,t(ϒ3,Φ1) := log ūs,t(ϒ3,Φ1); s, t ∈ R.
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Then from Theorem 2.9 we have

a≤ M̄s,t(ϒ3,Φ1)≤ b,

and thus M̄s,t(ϒ3,Φ1) (s, t ∈ R) are means. The monotonicity of these means is followed by

(20).

Example 4.6. Consider the class of continuous convex functions

Φ2 = {µt : (0,∞)→ R | t ∈ R},

where

µt(x) :=


xt+1

t(t−1) ; t 6= 0,1,

−x logx; t = 0,

x2 logx; t = 1.

Then t 7→
(

µt(x)
x

)′′
= xt−2 = e(t−2) logx (t ∈ R) is exponentially convex for every fixed x ∈

(0,∞).

By similar arguments as given in Example 4.5 we get the exponential convexity of t 7→ ϒ3(µt)

(t ∈ R) in the Jensen sense. This mapping is differentiable too, therefore exponentially convex.

In this case (21) gives

ūs,t(x,ϒ3,Φ2) =

 t(t−1)
s(s−1)

n−k
n−1

n
∑

i=1
xi

s+1+ k−1
n−1 xs+1− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)s+1

n−k
n−1

n
∑

i=1
xit+1+ k−1

n−1 xt+1− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)t+1


1

s−t

;s 6= t,s, t 6= 0,1,

exp

 1−2s
s(s−1) +

n−k
n−1

n
∑

i=1
xi

s+1 logxi+
k−1
n−1 xs+1 logx− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)s+1

log

(
k
∑

j=1
xi j

)

n−k
n−1

n
∑

i=1
xis+1+ k−1

n−1 xs+1− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)s+1

 ;s = t 6= 0,1,

 −1
s(s−1)

n−k
n−1

n
∑

i=1
xi

s+1+ k−1
n−1 xs+1− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)s+1

n−k
n−1

n
∑

i=1
xi logxi+

k−1
n−1 x logx− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
log

(
k
∑

j=1
xi j

)


1
s

; t = 0, s 6= 0,1,

 1
s(s−1)

n−k
n−1

n
∑

i=1
xi

s+1+ k−1
n−1 xs+1− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)s+1

n−k
n−1

n
∑

i=1
x2

i logxi+
k−1
n−1 x logx2− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)2

log

(
k
∑

j=1
xi j

)


1
s−1

; t = 1, s 6= 0,1,

exp

1+

n−k
n−1

n
∑

i=1
xilog2xi+

k−1
n−1 xlog2x− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
log2

(
k
∑

j=1
xi j

)

2

(
n−k
n−1

n
∑

i=1
xi logxi+

k−1
n−1 x logx− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
log

(
k
∑

j=1
xi j

))
 ;s = t = 0,

exp

−1+

n−k
n−1

n
∑

i=1
x2

i log2xi+
k−1
n−1 x2(logx)2− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)2(
log

(
k
∑

j=1
xi j

))2

2

 n−k
n−1

n
∑

i=1
x2

i logxi+
k−1
n−1 x2 logx− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)2

log

(
k
∑

j=1
xi j

)

 ;s = t = 1.
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Suppose ϒ3(µt)> 0 (t ∈ R), and let a := min{x1, ...,xn}, b := max{x1, ...,xn}.

By Theorem 2.9, we can check that

(22) a≤ ūs,t(x,ϒ3,Φ2)≤ b; s, t ∈ R.

The means ūs,t(x,ϒ3,Φ2) (s, t ∈R) are continuous, symmetric and monotone in both parameters

(by use of (20)).

Let s, t,r ∈R such that r 6= 0. By the substitutions s→ s
r , t→ t

r , (x1, . . . ,xn)→ (xr
1, . . . ,x

r
n) in

(22), we get

ā≤ ūs,r(xr,ϒ3,Φ2)≤ b̄,

where ā := min{xr
1, . . . ,x

r
n} and b̄ := max{xr

1, . . . ,x
r
n}. Thus new means can be defined with

three parameters:

ūs,t,r(x,ϒ3,Φ2) :=

 (ūs/r,t/r(xr,ϒ3,Φ2))
1
r ; r 6= 0,

ūs,t(logx,ϒ3,Φ1); r = 0,

where logx = (logx1, ..., logxn).

The monotonicity of these three parameter means is followed by the monotonicity and conti-

nuity of the two parameter means.

Example 4.7. Consider the class of continuous convex functions

Φ3 = {χt : (0,∞)→ (0,∞) | t ∈ (0,∞)},

where

χt(x) :=


xt−x

log2t
; t 6= 1,

x3

2 ; t = 1.

t 7→
(

χt(x)
x

)′′
(t ∈ (0,∞)) is exponentially convex for every fixed x ∈ (0,∞), as discussed in

Example 4.3.

We can get the exponential convexity of t 7→ ϒ3(ψt) (t ∈R+) as in Example 4.5. For the class

Φ3, (21) has the form
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ūs,t(ϒ3,Φ3) =

 log2t
log2s

n−k
n−1

n
∑

i=1
xis−xi+ k−1

n−1 xs−x− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
s
−

(
k
∑

j=1
xi j

)

n−k
n−1

n
∑

i=1
xit−xi+ k−1

n−1 xt−x− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
t
−

(
k
∑

j=1
xi j

)


1

s−t

; s 6= t, s, t 6= 1,

exp

−
2

s logs −
n−k
n−1

n
∑

i=1
x2

i s−xi+ k−1
n−1 x2s−x− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)2

s
−

(
k
∑

j=1
xi j

)

s

 n−k
n−1

n
∑

i=1
xis−xi+ k−1

n−1 xs−x− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
s
−

(
k
∑

j=1
xi j

)

 ; s = t 6= 1,

 2
log2s

n−k
n−1

n
∑

i=1
xis−xi+ k−1

n−1 xs−x− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
s
−

(
k
∑

j=1
xi j

)

n−k
n−1

n
∑

i=1
x3

i +
k−1
n−1 x3− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)3


1

s−1

; t = 1, s 6= 1,

exp

− 1
3

n−k
n−1

n
∑

i=1
x4

i +
k−1
n−1 x4− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)4

n−k
n−1

n
∑

i=1
x3

i +
k−1
n−1 x3− 1

Cn−1
k−1

∑
1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)3

 ; s = t = 1.

The monotonicity of ūs,t(ϒ3,Φ3) (s, t ∈ (0,∞)) comes from (20).

Suppose ϒ3(χt)> 0 (t ∈ (0,∞)), and let a := min{x1, ...,xn}, b := max{x1, ...,xn}, and define

M̄s,t(ϒ3,Φ3) :=−L(s, t) log ūs,t(ϒ3,Φ3), s, t ∈ (0,∞),

where L(s, t) is the logarithmic mean as defined in Example 4.3.

From Theorem 2.9 we have

a≤ M̄s,t(ϒ3,Φ3)≤ b, s, t ∈ (0,∞),

and therefore we get means.

Example 4.8. Consider the class of continuous convex functions

Φ4 = {δt : (0,∞)→ (0,∞) | t ∈ (0,∞)},

where

δt(x) :=
xe−x

√
t

t
.

t 7→
(

δt(x)
x

)′′
= e−x

√
t , t ∈ (0,∞) is exponentially convex for every fixed x ∈ (0,∞), as discussed

in Example 4.4. Also as before t 7→ ϒ3(δt) (t ∈ R+) is exponentially convex and differentiable.

Hence for the class Φ4, (21) becomes
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us,t(ϒ3,Λ4) =



 t
s

n−k
n−1

n
∑

i=1
xie−xi

√
s+ k−1

n−1 xe−
√

sx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
e
−

(
k
∑

j=1
xi j

)
√

s

n−k
n−1

n
∑

i=1
xie−xi

√
t+ k−1

n−1 xe−
√

tx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
e
−

(
k
∑

j=1
xi j

)
√

t


1

s−t

; s 6= t,

exp

− 1
s −

1
2
√

s

n−k
n−1

n
∑

i=1
x2

i e−xi
√

s+ k−1
n−1

2x2e−
√

sx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)2

e
−

(
k
∑

j=1
xi j

)
√

s

n−k
n−1

n
∑

i=1
xie−xi

√
s+ k−1

n−1 xe−
√

sx− 1
Cn−1

k−1
∑

1≤i1<...<ik≤n

(
k
∑

j=1
xi j

)
e
−

(
k
∑

j=1
xi j

)
√

s

 ; s = t.

The monotonicity of us,t(ϒ3,Φ4) (s, t ∈ (0,∞)) is followed by (16).

Suppose ϒ3(ηt)> 0 (t ∈ (0,∞)), let a := min{x1, ...,xn}, b := max{x1, ...,xn}, and define

M̄s,t(ϒ2,Λ4) :=−(
√

s+
√

t) logus,t(ϒ2,Λ4), s, t ∈ (0,∞).

Then Theorem 2.9 yields that

a≤ M̄s,t(ϒ3,Φ4)≤ b,

thus we have new means.
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