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Abstract. The purpose of the present paper is to give some results related to a class of linear bounded operators,

known as A(m, p)-expansive operators acting on infinite complex Banach space X recently introduced in [29].

A(m, p)-expansive operators is extension of A(m, p)-isometric operators was defined by P.B.Duggal in [19], where

he has given some of their properties. A Banach space operator T ∈B(X) is A(m, p)- expansive (resp., A(m, p)-

hyperexpansive) for some A ∈B(X) , integer m≥ 1 and p ∈ (0, ∞) if, for any x ∈ X

∑
0≤k≤m

(−1)k
(

m
k

)∥∥AT kx
∥∥p ≤ 0

(
resp., ∑

0≤k≤n
(−1)k

(
n
k

)∥∥AT kx
∥∥p ≤ 0, for all n : 1≤ n≤ m

)
.

Keywords: Banach space, A(m, p)-isometric operator; A(m, p)-expansive operator; A(m, p)-hyperexpansive oper-

ator.

2010 AMS Subject Classification: 47A80, 47A10, 47B47.

1. Introduction and notations

In this paper (X , ‖ ‖) denotes a infinite-dimensional Banach space on K = C (the complex

plane). N is the set of positive integers and N0 = N∪{0}. Let B(X) be the set of bounded

linear operators from X into itself. The authors, Sid Ahmed and Saddi introduced the concept
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of (A,m)-isometric operators. They gave several generalizations of well known facts on m-

isometric operators according to semi-Hilbertian space structures.We refer the reader to [31] for

more information about (A,m)-isometric operators. Recently, Duggal has introduced the notion

of an A(m, p)-isometry of a Banach space, following a definition of Bayart in the Banach space

setting.

An operator acting on a Hilbert space H is called m-isometric for some integer m≥ 1 if

T ∗mT m−
(

m
1

)
T ∗m−1T m−1 + ....+(−1)m−1

(
m

m−1

)
T ∗T +(−1)mI = 0,(1.1)

where
(m

k

)
be the binomial coefficient. A simple manipulation proves that (1.1) is equivalent to

m

∑
k=0

(−1)m−k
(

m
k

)
‖T kx‖2 = 0, for all x ∈H .(1.2)

Evidently, an isometric operator (i.e., a 1-isometric operator) is m-isometric for all integers

m ≥ 1. Indeed the class of m-isometric operators is a generalization of the class of isometric

operators and a detailed study of this class and in particular 2-isometric operators on a Hilbert

space has been the object of some intensive study, especially by J.Agler and Stankus in [1],

[2] and [3], also by Richter [34], Shimorin [36], Patel [32] and Duggal in [17] and [18]. m-

Isometries are not only a natural extension of an isometry, but they are also important in the

study of Dirichlet operators and some other classes of operators.

A generalization of m-isometries to operators on general Banach spaces has been presented

by several authors in the last years. Botelho [14] and Sid Ahmed [30] discuss operators defined

via (1.2) on (complex) Banach spaces. Bayart introduces in [9] the notion of (m, p)-isometries

on general (real or complex) Banach spaces. An operator T ∈B(X) on a Banach space X is

called an (m, p)-isometry if there exists an integer m≥ 1 and a p ∈ [1,∞), with

(1.3) ∀ x ∈ X ,
m

∑
k=0

(−1)k
(

m
k

)
‖T m−kx‖p = 0.

It is easy to see that, if X = H is a Hilbert space and p = 2, this definition coincides with

the original definition (1.1) of m-isometries. In [26] the authors took off the restriction p ≥ 1

and defined (m, p)-isometries for all p > 0 . They studied when an (m, p)-isometry is an (µ,q)-

isometry for some pair (µ,q). In particular, for any positive real number p they gave an example

of an operator T that is a (2, p)-isometry, but is not a (2,q)-isometry for any q different from
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p. In [10] and 12] it is proven that the powers on an m-isometry are m-isometries and some

products of m-isometries are again m-isometries. For any T ∈B(H ) we set

(1.4) θm(T ) :=
m

∑
j=0

(−1) j
(

m
j

)
T ∗ jT j.

The Concept of completely hyperexpansive operators on Hilbert space has attracted much

attention of various authors. In [4], J. Agler characterized subnormality with the positivity of

θm(T ) in (1.4) and also extended his inequalities to the concept of m-isometry.

Definition 1.1.
(
[20]
)

An operator T ∈B(H ) is

(i) m-isometry (m≥ 1) if θm(T ) = 0 .

(ii) m-expansive (m≥ 1) if θm(T )≤ 0.

(iii) m-hyperexpensive (m≥ 1), if θk(T )≤ 0 for k = 1,2, ...,m.

(iv) Completely hyperexpansive if θm(T )≤ 0 for all m.

We refer the reader to [6], [7], [8], [20] ,[27] and [37] for recent articles concerning this subject.

In [9] the author defined β
(p)
k (T, .) : X −→ R : x 7−→ β

(p)
k (T, x) by

(1.5) β
(p)
k (T, x) =

1
k!

k

∑
j=0

(−1)k− j
(

k
j

)
‖T jx‖p, ∀ x ∈ X .

For k,n ∈ N denote the (descending Pochhammer) symbol by n(k), i.e.

n(k) =



0, if n = 0,

0 if n > 0 and k > n,

(n
k

)
k! if n > 0 and k ≤ n.

Then for n > 0, k > 0 and k ≤ n we have

n(k) = n(n−1)...(n− k+1).



126 OULD AHMED MAHMOUD SID AHMED

Then [9, Proposition 2.1],

(1.6) ‖T nx‖p =
m−1

∑
k=0

n(k)β (p)
k (T, x)

for all integers n≥ 0 and x ∈ X . In particular,

β
(p)
m−1(T, x) = lim

n−→∞

‖T nx‖p( n
m−1

)
(m−1)!

≥ 0

with equality if and only if T is (m−1, p)-isometric.

Definition 1.2.
(
[19]
)

Let T and A ∈B(X) , m is a positive integer and p > 0 a real number.

We say that T is an A(m, p)-isometry if, for every x ∈ X

(1.7)
m

∑
k=0

(−1)k
(

m
k

)
‖AT m−kx‖p = 0.

For any p > 0; A(1, p)-isometry coincide with A-isometry, that is ‖AT x‖ = ‖Ax‖ for all

x ∈ X . Every A-isometry is an A(m, p)-isometry for all m≥ 1 and p > 0.

It is clear that the definition of m-isometry given by Agler [1] is equivalent to I(m,2)-isometry.

It is well known that if T is an A(m, p)-isometry, then T is A(n, p)-isometry for all n≥ m.

Let T and A∈B(X) such that T is an A(m, p)-isometry. In [19] the author defined β
(p)
k (A, T, x)

by :

(1.8) β
(p)
k (A, T, x) =

1
k!

k

∑
j=0

(−1)k− j
(

k
j

)
‖AT jx‖p, ∀ x ∈ X .

We have from (1.8) that

(1.9) ‖AT nx‖p =
m−1

∑
k=0

n(k)β (p)
k (A, T, x)

for all n≥ 0 and x ∈ X . Furthermore,

β
(p)
m−1(A, T, x) = lim

n−→∞

‖AT nx‖p( n
m−1

)
(m−1)!

≥ 0

with equality if and only if T is A(m−1, p)-isometric . (See [19]).

The concept of (A,m)-expansive operators on Hilbert space is introduced in [28].



ON A(m, p)- EXPANSIVE AND A(m, p)-HYPEREXPANSIVE OPERATORS ON BANACH SPACES 127

Throughout this paper, fix a bounded operator A ∈B(X) , and we denote

Θ
(p)
m (A,T,x) :=

m

∑
j=0

(−1) j
(

m
j

)∥∥AT jx
∥∥p

for an operator T ∈B(X) and a nonnegative integer m.

As an extension of the classes of expansive and hyperexpansive operators on Hilbert space, the

following definition describes the classes of operators we will study in this paper.

Definition 1.3. ([29]) Let T ∈B(X) , m ∈ N and p > 0. We say that

(i) T is A(m, p)-expansive if Θ
(p)
m (A, T, x)≤ 0 for some positive integer m and ∀ x ∈ X

(ii) T is A(m, p)-hyperexpansive if Θ
(p)
k (A, T, x)≤ 0 ∀ k = 1,2, ...,m and x ∈ X .

(iii) T is completely A- hyperexpansive if Θ
(p)
m (A, T, x)≤ 0 for all m ∈ N.

(iv) T is A(m, p)-contractive if Θ
(p)
m (A,T,x)≥ 0 for some positive integer m and ∀ x ∈ X .

(v) T is A(m, p)-hypercontractive if Θ
(p)
k (A, T, x)≥ 0 ∀ k = 1,2, ...,m and x ∈ X .

(vi) T is completely A-contractive if T is A(k, p)-contractive for all positive integer k.

It is clear that this definition coincides with Definition 1.1 if X =H is a Hilbert space , A = I

and p = 2.

Remark 1.1. We make the following remarks

(1) A(m, p)-isometries are special cases of the class of A(m, p)-expansive operators.

(2)

Θ
(p)
m (A, T, x) = ∑

0≤ k ≤ m

(k even)

(
m
k

)∥∥AT kx
∥∥p− ∑

0≤ k ≤ m

(k odd)

(
m
k

)∥∥AT kx
∥∥p

, ∀ x ∈ X .

In this article we are interested in some of the properties of the A(m, p)-expansive operators

class. The contents of the paper are the following. In Section 1 we set up notation and terminol-

ogy. Furthermore, we collect some facts about A(m; p)-isometries. We prove in section 2 that

A(2, p)-hyperexpansive operators which are A(m, p)-expansive must be A(m− 1, p)-expansive
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for m≥ 2. Recall that if T is m-isometric (resp.k-expansive or (A,m)-expansive) operator, then

so are all its power T n; for n≥ 1 (see [10], [20], , [28] and [32]). It turns out that the same asser-

tion remains true for completely A-hyperexpensive operators ( Theorem 2.3). Moreocver, we

prove that the intersection of the class of completely A-hyperexpansive operators and the class

of A(m, p)-isometries for m ≥ 2 is the class of A(2, p)-isometries (Proposition 2.4). The sec-

tion 3 of this paper is an attempt to develop some properties of the class of A(m, p)-isometries

parallel to those of m-isometries.

2. Main results

In this section we collect some further results about our classes and we begin with the fol-

lowing Lemma inspired from [30].

Lemma 2.1. ([29]) Let T ∈B(X) be an A(2, p)-expansive, then the following properties hold

(1) ‖AT x‖p ≥ n−1
n
‖Ax‖p, n≥ 1, x ∈ X .

(2) ‖AT x‖ ≥ ‖Ax‖, x ∈ X .

(3) If A is left invertible, then T is one-to-one.

(4) ‖AT n(x)‖p +(n−1)‖Ax‖p ≤ n‖AT x‖p, x ∈ X , n ∈ N0.

(5) ‖AT 2nx‖p ≤ n‖AT n+1x‖p−n(n−1)‖AT x‖p +(n−1)2‖Ax‖p, n≥ 1, x ∈ X .

(6) If T is an invertible , then T is A(1, p)-isometric.

Proposition 2.1. Let T,S ∈B(X) such that T S = ST and R(S) ⊂N (A), then the following

are true

(i) T is A(m, p)-expansive if and only if, T +S is A(m, p)-expansive.

(ii) T is A(m, p)-expansive if and only if, λT is A(m, p)-expansive for all λ : |λ |= 1,

(iii) If T is A(2, p)-expansive, then

(1) λT is A(2, p)-expansive for |λ |< 1. if λT 2 is A-expansive.

(2) λT is A(2, p)-expansive for |λ |> 1, if λT 2 is A-contractive.



ON A(m, p)- EXPANSIVE AND A(m, p)-HYPEREXPANSIVE OPERATORS ON BANACH SPACES 129

Proof. (i) Note that, for all p > 0 and all x ∈ X ,

Θ
(p)
m (A,T +S,x) =

m

∑
j=0

(−1) j
(

m
j

)∥∥A(T +S) jx
∥∥p

=
m

∑
j=0

(−1) j
(

m
j

)∥∥A
j

∑
i=0

(
j
i

)
T iS j−ix

∥∥p

=
m

∑
j=0

(−1) j
(

m
j

)∥∥AT jx
∥∥p

(since R(S)⊂N (A))

= Θ
(p)
m (A,T,x).

Hence, Θ
(p)
m (A,T +S,x)≤ 0 if and only if, Θ

(p)
m (A,T,x)≤ 0.

(ii) Let x ∈ X and λ ∈ C, we have

Θ
(p)
m (A,T,x) = Θ

(p)
m (A,λT,x), |λ |= 1.

(iii) If T is A(2, p)-expansive, then

−2|λ |p‖AT x‖p ≤ |λ |p
[
−‖AT 2x‖p−‖Ax‖p] for every λ ∈ C.

So we have for every λ ∈ C

|λ |2p‖AT 2x‖p−2|λ |p‖AT x‖p +‖Ax‖p ≤
(
|λ |p−1

)(
|λ |p‖AT 2x‖p−‖Ax‖p)

This completes the proof of the Proposition.

Proposition 2.2. Let T be a A(2, p)-expansive operator. Then the following statements hold.

(1) T is A(2, p)-hyperexpansive.

(2) ‖AT x‖2p ≥ ‖Ax‖p‖AT 2x‖p for all x ∈ X .

(3) For each n and a non-zero x ∈ X such that x /∈N (A),the sequence

(2.1)
(
‖AT n+1x‖p

‖AT nx‖p

)
n≥0

monotonically decreases to 1,

Proof. (1) Follows from part (2) of Lemma 2.1.
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(2) Since T is A(2, p)-hyperexpansive, we have

‖AT x‖2p ≥
(
‖Ax‖p +‖AT 2x‖p

2

)2

≥
(
‖Ax‖

p
2 ‖AT 2x‖

p
2

)2

≥ ‖Ax‖p‖AT 2x‖p.

(3) Observe that the A(2, p)-expansivity of T implies that

(2.2) ‖AT n+1x‖p−2‖AT nx‖p +‖AT n−1x‖p ≤ 0,

and it follows that

‖AT n−1x‖
p
2 ‖AT n+1x‖

p
2 ≤ ‖AT n+1x‖p +‖AT n−1x‖p

2

≤ ‖AT nx‖p

Therefore,

‖AT n+1x‖p

‖AT nx‖p ≤
‖AT nx‖p

‖AT n−1x‖p ,

so the sequence (2.1) is monotonically decreasing. To calculate its limit,in view of part (2) of

Lemma 2.1 , we observe that ‖AT n−1x‖ 6= 0 for x /∈N (A). Divided (2.2) by ‖AT n−1x‖p to get

1−2
‖AT nx‖p

‖AT n−1x‖p +
‖AT n+1x‖p

‖AT nx‖p
‖AT nx‖p

‖AT n−1x‖p ≤ 0.

Hence, we have (
1− ‖AT nx‖p

‖AT n−1x‖p

)2

≤ 0

and let n tend to infinity.

Proposition 2.3. For any integer m≥ 1,real number p > 0 and x ∈ X,

(2.3) Θ
(p)
m (A,T,x) = Θ

(p)
m−1(A,T,x)−Θ

(p)
m−1(A,T,T x).

Proof. By the standard formula
(m

j

)
=
(m−1

j

)
+
(m−1

j−1

)
for binomial coefficients we have the

equalities
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Θ
(p)
m (A, T, x) =

m

∑
j=0

(−1) j
(

m
j

)
‖AT jx‖p

= ‖Ax‖p +
m−1

∑
j=1

(−1) j
(

m
j

)
‖AT jx‖p +(−1)m‖AT mx‖p

= ‖Ax‖p +
m−1

∑
j=1

(−1) j
((

m−1
j

)
+

(
m−1
j−1

))
‖AT jx‖p+(−1)m‖AT mx‖p

= Θ
(p)
m−1(A,T,x)−Θ

(p)
m−1(A,T,T x).

Equation (2.3) immediately implies the next statements

Corollary 2.1. The following are then true.

(i) If T is an A(m, p)-isometry such that T is an A(m−1, p)-isometry on R(T ),

then T is an A(m−1, p)-isometry on X.

(ii) If T is A(m, p)-expansive and A(m−1, p)-expansive on R(T ) , then T is

A(m−1, p)-expansive.

Remark 2.1. Proposition 2.2 (1) shows that the notion of A(2, p)-expansive and A(2, p) - hyper-

expansive coincide. However this result does not true for the class A(3, p)-expansive operators

as shown the following example.

Example 2.1. Let T = αI, where I is the identity operator and α ∈ C. It is easy to see that

‖Ax‖p−3‖AT x‖p +3‖AT 2x‖p−‖AT 3x‖p =
(
1−|α|p

)3‖Ax‖p ≤ 0 for all α : |α| ≥ 1

and

‖Ax‖p−2‖AT x‖p +‖AT 2x‖p =
(
1−|α|p

)2‖Ax‖p ≥ 0.

Thus, T is a A(3, p)-expansive but not a A(2, p)-expansive for any p > 0.

The following theorem gives a sufficient condition for which the A(m, p)-expansivity implies

the A(m−1, p)-expansivity for m≥ 2.

Theorem 2.1. Let T be a A(2, p)-hyperexpansive and assume that T is A(m, p)-expansive for

some m≥ 2. Then T is A(m−1, p)-expansive.
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Proof. The conditions ‖Ax‖p−‖AT x‖p ≤ 0 and ‖Ax‖p− 2‖AT x‖p + ‖AT 2x‖p ≤ 0 guarantee

that the sequence
(
‖AT n+1x‖p−‖AT nx‖p

)
n≥0

is monotonically non-increasing and bounded,

so that is converges. Thus there exists a positive constant C such that

‖AT n+1x‖p−‖AT nx‖p −→C as n−→ ∞.

Suppose that Θ
(p)
m (A,T,x)≤ 0 with m≥ 3. Since

Θ
(p)
m (A,T,x) = Θ

(p)
m−1(A,T,x)−Θ

(p)
m−1(A,T,T x),

we have

Θ
(p)
m−1(A,T,x)≤Θ

(p)
m−1(A,T,T x).

An induction argument shows that

Θ
(p)
m−1(A,T,x)≤Θ

(p)
m−1(A,T,T

nx), n≥ 1.

Thus, it suffices to show that

Θ
(p)
m−1(A,T,T

nx)−→ 0 as n−→ ∞.

Note that

Θ
(p)
m−1(A,T,x) = Θ

(p)
m−2(A,T,x)−Θ

(p)
m−2(A,T,T x),

so that

Θ
(p)
m−1(A,T,T

nx) =
m−2

∑
j=0

(−1) j
(

m−2
j

)[
‖AT n+ jx‖p−‖AT n+1+ jx‖p

]
.

Letting n−→ ∞ in the preceding equality leads to

Θ
(p)
m−1(A,T,T

nx)−→
m−2

∑
j=0

(−1) j
(

m−2
j

)
C = 0.

This completes the proof.

Note that every power of k-expansive (resp. (A,m)-expansive ) operators on Hilbert space are

k-expansive (resp. (A,m)-expansive ) operators. ( See [20], Theorem 2.3 and [28], Proposition

3.9).

For the class of A(m, p)-expansive operators it was proved in [29] that positive integral power

of A(2, p)-expansive operators on Banach space is again a A(2, p)-expansive operators.
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Theorem 2.2. ([29]) Let T ∈B(X) be an A(2, p)-expansive. Then for any positive integer n ,

T n is A(2, p)-expansive.

In the following theorem we investigate the powers of completely A-hyperexpansive operator

on Banach space as well as completely A-hyperexpansive operators.

According to [ [6],Proposition 2 and Remark 2] for every completely A-hyperexpansive opera-

tor, the condition that n 7−→ ‖AT nx‖p be completely alternating on N forces, for every x ∈ X ,

the representation

(2.4) ‖AT nx‖p = ‖Ax‖p +nµx({1})+
∫
[0,1)

(1− tn)
dµx(t)
1− t

,

where µx is a positive regular Borel measure on [0; 1] (for more details see [6]).

Theorem 2.3. Any positive integral power of a completely A-hyperexpansive operator is com-

pletely A-hyperexpansive.

Proof. Let T be a completely A-hyperexpansive operator and let k ≥ 1. In view of (2.4) we

have that

‖A(T k)nx‖p = ‖AT nkx‖p = ‖Ax‖p +nkµx({1})+
∫
[0,1)

(1− tnk)
dµx(t)
1− t

= ‖Ax‖p +n(kµx({1}))+
∫
[0,1)

(1− sn)
dµ ′x(s)

1− s
1
k
.

Whence n 7−→‖AT nkx‖p is completely alternating and so that T k is completely A-hyperexpansive.

The next proposition describes the intersection of the class of completely A-hyperexpansive

operators with the class of A(m, p)-isometries.

It is proved in [37, Proposition 3.4] that if T ∈B(H ) ( Hilbert space operators) is completely

hyperexpansive and m-isometry, then T is an 2-isometry. It turns out that this assertion remains

true for completely A-hyperexpansive operators on Banach space.

Proposition 2.4. If T ∈B(X) is completely A-hyperexpansive and A(m, p)-isometric then T

must be A(2, p)-isometric.
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Proof. First, if T is A-isometric, then T is A(2, p)-isometric. Assume that T is A(m, p)-isometric

with m≥ 2. Then we have that Θ
(p)
m (A,T,x) = 0 and from (2.4) it follows that

0 =
m

∑
k=0

(−1)k
(

m
k

)
kµx({1})+

m

∑
k=0

(−1)k
(

m
k

)∫
[0, 1)

(1− tk)
dµx(t)
1− t

= −
∫
[0, 1)

(1− t)m−1dµx(t)

Now
∫
[0, 1)

(1− t)m−1dµx(t) = 0 gives that

‖AT kx‖p = ‖Ax‖p + kµx({1}) for all k

and therefore

Θ
(p)
2 (A,T,x) = 0.

3. A(m, p)-Isometries

In this section,we collect some results about A(m, p)-isometries as a special case of A(m, p)-

expansive operators.Our inspiration came from [1], [9], [10], [13], [16], [19], [21], [30], and [33].

3.1. General properties.

Proposition 3.1. ([29]) Let T ∈B(X) be an invertible A(m, p)-isometry, then T−1 is also an

A(m, p)-isometry.

Recall that an operator T : X −→ X is called power bounded provided there exists a positive

number M such that ‖T n‖ ≤M for every positive integer n.

Theorem 3.1. Let A ∈B(X) and let T ∈B(X). If T is a power bounded A(m, p)-isometric,

then T is A-isometric.

Proof. Since T is A(m, p)-isometric, we have β
(p)
n (A,T,x) = 0 for all n ≥ m. Using equality

(1.9) we obtained

‖AT nx‖p = n(m−1)
β
(p)
m−1(A,T,x)+ ∑

0≤k≤m−2
n(k)β (p)

k (A,T,x)
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or equivalently

‖AT nx‖p

(m−1)!
( n

m−1

) = β
(p)
m−1(A,T,x)+

1
(m−1)!

( n
m−1

)( ∑
0≤k≤m−2

n(k)β (p)
k (A,T,x)

)
.

The assumption that T is power bounded implies that β
(p)
m−1(A,T,x) = 0 by setting n−→ ∞.

Therefore by (1.9), we have

‖AT nx‖p

(m−2)!
( n

m−2

) = β
(p)
m−1(A,T,x)+

1
(m−2)!

( n
m−2

)( ∑
0≤k≤m−3

n(k)β (p)
k (A,T,x)

)
.

Form the assumption, we see that β
(p)
m−2(A,T,x) = 0.

Using similar arguments and (1.9) we can obtain that

β
(p)
m−3(A,T,x) = ...= β

(p)
1 (A,T,x) = β

(p)
0 (A,T,x) = 0.

This is a contradiction, so our theorem is therefore established.

The following proposition is a straightforward generalization of Proposition 2.2 in [9] and

Proposition 4.2 in [13].

Proposition 3.2. If T is an A(m, p)-isometry,then the following properties hold

(1) For all x ∈ X, β
(p)
m−1(A,T,x)≥ 0 and if r = sup

k
{β (p)

k (A,T,x) 6= 0 }, β
p
r (A,T,x)≥ 0.

(2) For x ∈ X. Define the map Np :=
(
β
(p)
m−1(A,T, .)

) 1
p : X −→ R. Then Np is

a semi-norm satisfying

(
β
(p)
m−1(A,T,x)

) 1
p ≤ ‖A‖(1+‖T‖p)

m−1
p ‖x‖.

(3) T
(

N
(
β
(p)
m−1(A,T, .)

) 1
p

)
⊂N

((
β
(p)
m−1(A,T, .)

) 1
p

)
. Moreover if T is invertible then

T
(

N
(
β
(p)
m−1(A,T, .)

) 1
p

)
= N

((
β
(p)
m−1(A,T, .)

) 1
p

)
Proof. The hypothesis T is an A(m, p)-isometry implies that

‖AT nx‖p =
m−1

∑
k=0

n(k)β (p)
k (A, T, x), for all x ∈ X ,
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and so 0≤ β
(p)
m−1(A,T ;x) = lim

n−→∞

‖AT nx‖p

n(m−1)
. Moreover if q≥ r we have

0≤ β
(p)
q (A,T,x) = lim

n−→∞

‖AT nx‖p

n(q−1)
.

(2) We show that Np is a semi-norm. By (1) it is clear that Np ≥ 0.

The homogeneity property follows from

Np(λx) = β
(p)
m−1(A,T,λx)

1
p = lim

n−→∞

‖AT nλx‖
p√n(m−1)

= |λ | lim
n−→∞

‖AT nx‖
p√n(m−1)

.

Next to prove the triangle inequality, we have that for all x,y ∈ X

Np(x+ y) = β
(p)
m−1(A,T,x+ y)

1
p = lim

n−→∞

‖AT n(x+ y)‖
p√n(m−1)

≤ lim
n−→∞

‖AT nx‖
p√n(m−1)

+ lim
n−→∞

‖AT ny‖
p√n(m−1)

(since A and T are bounded )

≤ Np(x)+Np(y).

From (1.8) it follows that

β
(p)
m−1(A,T,x) ≤

m−1

∑
k=0

(
m−1

k

)
‖AT kx‖p

≤ ‖A‖p
m−1

∑
k=0

(
m−1

k

)
‖T‖kp‖x‖p

≤ ‖A‖p(1+‖T‖p)m−1‖x‖p.

i.e.,

β
(p)
m−1(A,T,x)

1
p ≤C‖x‖.

(3) Let x ∈N (Np)

Np(T x) = β
(p)
m−1(A,T,T x)

1
p = lim

n−→∞

‖AT n+1x‖
p√n(m−1)

= lim
n−→∞

‖AT n+1x‖
p
√
(n+1)(m−1)

p
√
(n+1)(m−1)

p√n(m−1)

= lim
n−→∞

‖AT nx‖
p√n(m−1)

= β
(p)
m−1(A,T,x)

1
p .
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Hence,

(3.1) β
(p)
m−1(A,T,T x)

1
p = β

(p)
m−1(A,T,x)

1
p .

This equation now immediately implies that T (N (Np))⊂N (Np).

On the other hand, if we assume that T is invertible,we have for x ∈N (Np)

Np(T−1x) = β
(p)
m−1(A,T,T

−1x)
1
p = lim

n−→∞

‖AT n−1x‖
p√n(m−1)

= lim
n−→∞

‖AT n−1x‖
p
√

(n−1)(m−1)

p
√
(n−1)(m−1)

p√n(m−1)

= 0.

Thus,N (Np)⊂ T (N (Np)).

The following result is a direct consequence of Proposition 2.3 and Proposition 3.2.

Corollary 3.1. For T ∈B(X) be an A(m, p)-isometry, then

T : (X , β
(p)
m−1(A,T, .)

1
p )−→ (X , β

(p)
m−1(A,T, .)

1
p )

is an isometry.

In [1, Proposition 1.23], J. Agler and M. Stankus have proved that, for an even integer m,

every invertible m-isometry is also an (m−1)-isometry. This result was proved in [16, Proposi-

tion A ].The following theorem shows that this property is also satisfied by the class of A(m, p)-

isometries.

Theorem 3.2. Let T ∈B(X) be an invertible A(m, p)-isometry and m is even. then T is an

A(m−1, p)-isometry.

Proof. Since T and T−1 are an A(m, p)-isometry, we have by Proposition 3.2 (1) that

m−1

∑
k=0

(−1)m−1−k
(

m−1
k

)
‖AT kx‖p ≥ 0, ∀ x ∈ X

and
m−1

∑
k=0

(−1)m−1−k
(

m−1
k

)
‖AT−kx‖p ≥ 0, ∀ x ∈ X .
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Then one has

m−1

∑
k=0

(−1)m−1−k
(

m−1
k

)
‖AT−kx‖p ≥ 0, ∀ x ∈ X

=⇒
m−1

∑
k=0

(−1)m−1−k
(

m−1
m−1− k

)
‖AT m−1−kx‖p ≥ 0

=⇒
m−1

∑
k=0

(−1)k
(

m−1
k

)
‖AT kx‖p ≥ 0, ∀ x ∈ X

=⇒ −
m−1

∑
k=0

(−1)m−1−k
(

m−1
k

)
‖AT kx‖p ≥ 0 (since m is even integer)

=⇒
m−1

∑
k=0

(−1)m−1−k
(

m−1
k

)
‖AT kx‖p ≤ 0, ∀ x ∈ X .

Hence we have

m−1

∑
k=0

(−1)m−1−k
(

m−1
k

)
‖AT kx‖p = 0, ∀ x ∈ X .

So the proof is complete.

In the next theorem, we show that if T is an A(m, p)-isometry, then ‖AT n‖p have the same

behavior as nm−1. (Similar to [11], Proposition 2.3 ).

Theorem 3.3. Let T ∈B(X) be an A(m, p)-isometry, then the following properties hold

(1)
‖AT nx‖p

nm−1 converge uniformly to β
(p)
m−1(A,T,x) on the unit ball of X.

(2)
‖AT n‖p

nm−1 converge to sup
x

β
(p)
m−1(A,T,x).

Proof. By (1.9) it follows that

‖AT nx‖p

nm−1 −β
(p)
m−1(A,T,x)=

(
n(m−1)

nm−1 −1
)

β
(p)
m−1(A,T,x)+

m−2

∑
k=0

n(k)

nm−1 β
(p)
k (A,T,x)−→ 0 as n−→∞.
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On the other hand we have∣∣∣∣‖AT nx‖p

nm−1 −β
(p)
m−1(A,T,x)

∣∣∣∣ ≤ (
n(m−1)

nm−1 −1
)∣∣β (p)

m−1(A,T,x)
∣∣+m−2

∑
k=0

n(k)

nm−1

∣∣β (p)
k (A,T,x)

∣∣
≤

(
n(m−1)

nm−1 −1
)m−1

∑
k=0

1
k!(m−1− k)!

‖AT kx‖p

+
m−2

∑
k=0

n(k)

nm−1

k

∑
j=0

1
j!(k− j)!

‖AT jx‖p

≤
(

n(m−1)

nm−1 −1
)m−1

∑
k=0

1
k!(m−1− k)!

M

+
m−2

∑
k=0

n(k)

nm−1

k

∑
j=0

1
j!(k− j)!

M −→ 0 as n−→ ∞,

where M = sup
0≤k≤m−1

‖AT k‖p. Hence the result.

(2) Since

‖AT n‖p

nm−1 = sup
‖x‖≤1

‖AT nx‖p

nm−1

we deduce from (1) that

lim
n−→∞

‖AT n‖p

nm−1 = lim
n−→∞

sup
‖x‖≤1

‖AT nx‖p

nm−1 = sup
‖x‖≤1

lim
n−→∞

‖AT nx‖p

nm−1

= sup
‖x‖≤1

β
(p)
m−1(A,T,x).

Theorem 3.4. Let T ∈B(X) be an A(m, p)-isometry.Then, for all x∈X the sequence (‖AT nx‖p)n

is eventually increasing; that is, there is a positive integer n0 such that

‖AT n+1x‖p−‖AT nx‖p ≥ 0

for all n≥ n0.

Proof. We prove the statement by induction on m. For m = 1, it is clear. Suppose it is true for

m− 1 and let us prove it for m. Assume that m > 1. Now, for every positive integer n, using

(1.9), we observe that

‖AT nx‖p =
m−2

∑
k=0

n(k)β (p)
k (A,T,x)+n(m−1)

β
(p)
m−1(A,T,x).
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Since β
(p)
m−1(A,T,x) ≥ 0, it follows that if β

(p)
m−1(A,T,x) = 0, T is an A(m− 1, p)-isometry and

the result is true. If β
(p)
m−1(A,T,x)> 0 we have that

lim
n−→+∞

‖AT nx‖p = ∞.

hence, there exists a positive integer n0 so that the sequence (‖AT nx‖p)n≥n0 is strictly increasing.

Definition 3.1. ([15]) An operator T acting on X is called recurrent if for every open set U ⊂ X

there exists some k ∈ N such that

U ∩T−k(U) 6= /0.

A vector x ∈ X is called recurrent for T if there exists a strictly increasing sequence of positive

integers (kn)n≥0 ⊂ N such that

T knx−→ x

as n−→ ∞. We will denote by Rec(T ) the set of recurrent vectors for T .

Proposition 3.3. ( [15] ) Let T : X −→ X be a bounded linear operator acting on a Banach

space X. The following are equivalent

(i) The operator T is recurrent.

(ii) Rec(T ) = X .

The following proposition is a generalization of the result in [15].

Proposition 3.4. If the operator T ∈ B(X) is an A(m, p)-isometry and recurrent then T is

A-expansive operator.

Proof Let x ∈ X be a recurrent vector for T ,then there exists a strictly increasing sequence

of positive integers (kn)n≥0 ⊂ N such that T knx −→ x as n −→ ∞ and hence T kn+1x −→ T x.

By Theorem 3.4 we deduce that ‖Ax‖ ≤ ‖AT x‖. Since Rec(T ) is dense in X we have that

‖Ax‖ ≤ ‖AT x‖ ,∀ x ∈ X .
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3.2. Supercyclicity and N-supercyclicity of A(m, p)-isometric Operators.

We first fix some notation.Consider any subset C of X and let T ∈B(X). The symbol O(T,C)

denotes the orbit of C under T i.e. O(T,C) = {T nx : x ∈ C ,n = 0,1,2, ...}. If C = {x} is a

singleton we write the orbit O(T,C) = O(T,x) .

Definition 3.2. A vector x ∈ X is said hypercyclic for T if its orbit

O(x,T ) := {T nx}∞
0 = { x,T x,T 2x,T 3x, .... }

is dense in X. The set of all hypercyclic vectors for T is denoted by H C (T ) ,i.e.,

H C (T ) = {x ∈ X : O(x,T ) = X }. The operator T is said to be hypercyclic if H C (T ) 6= /0.

One may remove linearity in this definition, then under the same.

Definition 3.3. A vector x ∈ X is said supercyclic for T if its projective orbit

Opr := {λT nx}∞
0 = {λx,λT x,λT 2x, λT 3x, ..., ,λ ∈ C}

is dense in X. The set of all hypercyclic vectors for T is denoted by S C (T ). The operator T is

called supercyclic if S C (T ) 6= /0.

A nice source of examples and properties of hypercyclic and supercyclic operators is the survey

article [24]. Observe that in case the operator T is hypercyclic the underlying Banach space X

should be separable. Then it is well known and easy to show that an operator T : X −→ X is

hypercyclic if and only if for every pair of non-empty open sets U , V of X there exists a positive

integer n such that T n(U)∩V 6= /0.

During the past years much research has been done about hypercyclic operators. Hilden and

Wallen in [25] proved that isometries on Hilbert spaces with dimension more than one are not

supercyclic. Ansari and Bourdon in [5] proved this fact on Banach spaces. Moreover, recent-

ly it is shown in [21] that m-isometric operators on Hilbert spaces,which forms a larger class

than isometries,are neither supercyclic nor weakly hypercyclic. In [11], it is proven that an

m-isometry acting on a Hilbert space H and whose covariance operator is injective cannot be

N-supercyclic.Recently,Bayart [9] extended this result by showing that, for any N and m ≥ 1:
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Any m-isometries on Banach spaces cannot be N-supercyclic.Yarmahmoodi,Hedayatian and Y-

ousefi [38] proved that if A is an isometry and Q is a nilpotent operator that commutes with A,

then the operator A+Q is not supercyclic.

In this section we shows that certain class of A(m, p)-isometries are not supercyclic.

Definition 3.4. An operator T is said to be N-supercyclic, N ≥ 1, if there is a subspace of

dimension N in X with dense orbit.

P.B.Duggal proved that if T is an A(m, p)− isometry with A is left invertible, then T can not be

supercyclic (see [19], Corollary 2.6).

Theorem 3.5. Let T ∈B(X) be an power bounded A-isometry, then T cannot be supercyclic.

Proof. Suppose that T is a supercyclic A-isometry and suppose that x0 is supercyclic vector

for T .Thus,for any x ∈ X there is a sequence (nk)k of positive integers and a sequence (ak)k of

scalars such that akT nkx0 −→ x as k −→ ∞.

Furthermore,

akAT nkx0 −→ Ax or |ak|‖AT nkx0‖ −→ ‖Ax‖.

The assumption that T is an A-isometry implies that

|ak|‖Ax0‖ −→ ‖Ax‖ as k −→ ∞.

Note that x0 /∈N (A), otherwise A≡ 0. If N (A) 6= {0}. Let x∈N (A) it follows that |ak| −→ 0

as k −→ ∞ and hence ,‖AT nkx0‖ −→ ∞ as k −→ ∞ but this is impossible. If N (A) = {0}, let

x ∈ X ,x 6= 0 and it follows that lim
k−→∞

|ak| exists and nonzero.So, (‖AT nkx0‖)k converges and

AT nkx0 6−→ 0 (or T nkx0 6−→ 0), which is impossible( see [23], Theorem 2.2). Hence, the proof

is complete.

Proposition 3.5. ([ 11, Lemma 3.1]) Let Ti : Xi −→ Xi be a (linear and continuous) operator on

the Banach space Xi(i = 1,2) and let S : X1 −→ X2 be an operator with dense range, such that
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T2S = ST1, that is, such that the following diagram commutes:

X1
T1
//

S
��

X1

S
��

X2
T2

// X2

If T1 is N-supercyclic, then T2 is N-supercyclic.

Theorem 3.6. On a complex infinite-dimensional Banach space X, an A(m, p)- isometry T ∈

B(X) with A invertible is not N-supercyclic, given any N ∈ N.

Proof. Since A is invertible it follows that T is an A(m, p)-isometry if and only if, S = ATA−1

is an (m, p)-isometry. By [9, Theorem 3.3]) it is know that an (m, p)-isometry is not N-

supercyclic.This implies that S can not be N-supercyclic and the desired result follows from

Proposition 3.5 .

The proof of the following theorem is inspired from [9, Theorem 3.3] and [11, Theorem 3.4]

Theorem 3.7. Let T ∈B(X) be an A(m, p)-isometry and assume that N (Np) = {0}. Then T

cannot be N-supercyclic.

Proof. Since N (Np) = {0} by Proposition 3.2 Np defines a new norm on X satisfies Np(x)≤

C‖x‖ and Np(T x)) = Np(x) for all x ∈ X . Moreover Corollary 3.1 gives that T is an isometry

form (X ,Np) to itself and that Np(x)≤C‖x‖.

Let X̃ denote the completion of X with respect to this new norm. Then, T extends to an isometry

T̃ from (X̃ ,Np) to itself. The density of X in X̃ and the estimation Np(x)≤C‖x‖ show that every

supercyclic vector x in (X ,‖ ‖) is supercyclic for T̃ . [9, Theorem 3.4] implies that T̃ is not N-

supercyclic and the desired result follows.

Theorem 3.8. Let A ∈B(X) such that 0 /∈ σap(A) (the approximate point spectrum) and m is a

positive even integer. Let T ∈B(X) be an A(m, p)-isometry. If T is not an A(m−1, p)-isometry

then T is not N-supercyclic.

Proof. We argue by contradiction. Suppose that T is N-supercyclic A(m, p)-isometry. As

was observed in [19], if 0 /∈ σap(A) then T is bounded below. Combining the observation and
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the N-supercyclicity gives the invertibility of T . Applying Theorem 3.2 we have that T is

an A(m− 1, p)-isometry. But this leads to a contradiction of the assumption that T is not an

A(m−1, p)-isometry.

Corollary 3.2. Let T,A ∈B(X) and assume that 0 /∈ σap(A). The following properties hold

(i) If T is A-isometric, then T is never N- supercyclic.

(ii) If T is A(2, p)-isometric, then T is never N- supercyclic.

Proof. (i) Since 0 /∈ σap(A) we have that N (β
(p)
0 (A,T, .)

1
p ) = {0} and the result follows from

Theorem 3.7.

(ii) If T is A-isometric it is clear by (i) that (ii) holds. If T is not A-isometric. The required

result is now immediate from Theorem 3.8.

3.3. Weak hypercyclicity of A(m, p)-isometries.

In this section we will use the deep theorem of K. Ball (see [22] and as well as his references )

to prove that some of A(m, p)-isometric operator cannot be wealky hypercyclic. In a separable,

infinite dimensional Banach space X , the weak topology is strictly weaker than the norm topol-

ogy. A vector x ∈ X is weakly hypercyclic for T if its orbit {x,T x,T 2x, ...,} is weakly dense in

X . An operator T is called weakly hypercyclic if it has a weakly hypercyclic vector. Despite

this fact, a weakly hypercyclic operator shares many of the same properties as a hypercyclic

operator. For example, it clearly follows from the definitions that every hypercyclic vector for

a bounded linear operator T : X −→ X is automatically a cyclic vector for T . These operators

have been studied in [35] and many other articles.

In [21] it is proven that m-isometries are never weakly supercyclic. Similar results was found

in [33] for A−m-isometries. Our next goal is to get a similar result for the class of A(m, p)-

isometric operators.

Definition 3.5. ([22]) Let n be a positive integer, X a locally convex space and S⊆ X. Then we

have the following definitions
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(1) The set S is n-weakly open if for every x0 ∈ S there is an ε > 0 and a set F ⊂ X∗ with

|F| ≤ n such that N(x0,F,ε)⊆ S.

(2) The set S is n-weakly closed if the complement of S is weakly open.

Where, for F= { f1, f2.... fn} ⊂ X∗ and ε > 0, let

N(x0,F,ε) = N(x0, f1, ..., fn,ε) = {x ∈ X : | f (x)− f (x0)|< ε ∀ f ∈ F }

and |F| the cardinality of F.

Theorem 3.9. ([22],Ball’s Theorem) Let S = {(xn)
∞
n=0} be a sequence of nonzero vectors in

Banach space X.

(1) If
∞

∑
n=0

1
‖xn‖

< ∞, then S is 1-weakly closed in X.

(2) If X is a Hilbert space and
∞

∑
n=0

1
‖xn‖2 < ∞, then the following hold

(a) If X is a complex Hilbert space, then S is 1-weakly closed in X.

(b) If X is a real Hilbert space, then S is 2-weakly closed in X.

Theorem 3.10. Let A∈L (X) and let T ∈L (X) be an A(m, p)-isometric. If A is left invertible,

then T can not be weakly hypercyclic.

Proof. First, assume that T is A-isometric. Then for x ∈ X , the O(T,x) lies in the ball

B(0,C‖Ax‖), C > 0. and so T cannot be weakly hypercyclic.

If T is A(2, p)-isometric, then T is bounded below (see Lemma 2.1). If we assume that T is

weakly hypercyclic, then T will be a dense range operator. Hence, T is invertible and part (6)

of Lemma 2.1 implies that T is A- isometric this leads to a contradiction.

Let m > 2 and assume, on the contrary, that T is a weakly hypercyclic A(m, p)-isometry with a

weakly hypercyclic vector x0 and set

Np(x) =
(

β
(p)
m−1(A,T,x)

) 1
p

= lim
n−→∞

‖AT nx‖

n
m−1

p
.

By Proposition 3.2 we have that Np is a semi-norm on X satisfies

T (N (Np))⊂N (Np) and Np(x) = Np(T x).
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We have from (1.9) that

‖AT nx0‖p =
m−1

∑
k=0

n(k) β
(p)
k (A,T,x0) , n = 0,1,2, ....

If β
(p)
m−1(A,T,x0) 6= 0, then the positivity of β

(p)
m−1(A,T,x0) shows that β

(p)
m−1(A,T,x0) > 0 and

hence

‖AT nx0‖−p ≈∞ 1

β
(p)
m−1(A,T,x0)

1
n(m−1)

.

This, implies the convergence of the series
∞

∑
n=1
‖AT nx0‖−p and hence thus, in view of the The-

orem 3.9, we get a contradiction. Hence, β
(p)
m−1(A,T,x0) = 0. Since for every n, T nx0 is also a

weakly hypercyclic vector for T, we see that

β
(p)
m−1(A,T,T

nx0) = 0, for n = 0,1,2, ....

This along with the fact that N (Np) is weakly closed, implies that β
(p)
m−1(A,T,x) = 0. Hence,

T is an A(m−1, p)-isometry. Repeating the argument (as above) it follows that T is a A(2, p)-

isometry, which is impossible. The proof is complete.

Conflict of Interests

The author declares that there is no conflict of interests.

Acknowledgements

The author was deeply grateful to the authors who sent their papers at his request for their help.

REFERENCES

[1] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space I, Integral Equations and Operator Theory

21 (1995), 383-429.

[2] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space II, Integral Equations Operator Theory 23

(1995), 1–48.

[3] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space III, Integral Equations Operator Theory

24 (1996), 379–421.

[4] J. Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985) 203–217.

[5] S. I. Ansari and P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. 63 (1997), 195-207.



ON A(m, p)- EXPANSIVE AND A(m, p)-HYPEREXPANSIVE OPERATORS ON BANACH SPACES 147

[6] A. Athavale, On completely hyperexpansive operators, Proc. Amer. Math. Soc. 124 (1996), 3745–3752.

[7] A. Athavale, A. Ranjekar, Bernstein functions, complete hyperexpansivity and subnormality. I. Integral E-

quations Operator Theory 43 (2002), 253-263.

[8] A. Athavale, A. Ranjekar, Bernstein functions, complete hyperexpansivity and subnormality, II, Integral

Equations Operator Theory 44 (2002), 1–9.

[9] F. Bayart, m-isometries on Banach spaces, Math. Nachr. 284 (2011), 2141–2147.
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[26] P. Hoffman, M. Mackey and M. Ó Searcóid, On the second parameter of an (m; p)-isometry, Integral Equat.

Oper. Theory 71 (2011), 389–405.



148 OULD AHMED MAHMOUD SID AHMED
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