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Abstract. In this paper the prediction problem is studied under members of a class =∗ of multivariate

distributions, constructed by AL-Hussaini and Ateya [7−8]. More attention is paid to bivariate compound

Rayleigh (BV CR) distribution, which is a member of this class, as illustrative example.
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1. Introduction

Suppose that a class = of distribution functions is of the form

= =

{
F : F ≡ FX|Θ(x|θ) = 1− exp[−θδλη(x)],

0 ≤ a < x < b ≤ ∞, (θ, δ > 0, (θ, δ, η) ∈ Ω)

}
,

(1)

where a and b are non-negative real numbers such that a may assume the value zero and

b the value infinity, λη(x) is a continuous, monotone increasing and differentiable function
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of x such that λη(x)→ 0 as x→ a+, λη(x)→∞ as x→ b− and η is a parameter (could

be a vector), (θ, δ, η) belongs to a parameter space Ω . This class covers some important

distributions such as the Weibull, exponential, Rayleigh, compound Weibull, compound

exponential (Lomax), compound Rayleigh, Pareto, power function, beta, Gompertz and

compound Gompertz distributions, among others. The failure rate and survival functions

corresponding to F ∈ = are, respectively, δθλ′η(x) and e−θδλη(x), so that the probability

density function (pdf) is given, for 0 ≤ a < x < b ≤ ∞, by

(2) fX|Θ(x|θ) = δθλ′η(x)exp[−θδλη(x)], ′ ≡ d

dx
.

The class = was used by AL-Hussaini and Osman [9], AL-Hussaini [4], Ahmad [1 − 2],

Ahmad and Fawzy [3], AL-Hussaini and Ahmad [5− 6] and Jafar et al [12].

1.1. A Class of multivariate distributions

AL-Hussaini and Ateya [7−8] constructed a class of multivariate distributions by com-

pounding members of the class = with the gamma distribution. The resulting multivariate

distributions form a class =∗, given by

=∗ =

{
F ∗ : F ∗ ≡ FX(x) =

∫
fX(u)du

}
,

where
∫
≡
∫ x1

0
...
∫ xk

0
,u = (u1, ..., uk), du = duk...du1 and fX(x) is the pdf of the random

vector X = (X1, ..., Xk), given by

fX(x) =
Γ(α + k)

Γ(α)

[ k∏
i=1

ciλ
′
ηi

(xi)

][
1 +

k∑
i=1

ciληi(xi)

]−(α+k)

,

ci = δi/β, 0 ≤ a < xi < b ≤ ∞, i = 1, 2, ..., k.

(3)
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It was assumed that Θ is a positive random variable following the gamma(α, β) distri-

bution with pdfgΘ(θ) given by

(4) gΘ(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0, (α > 0, β > 0).

The pdf fX(x) in (1.3) was obtained by writing

fX(x) =

∫ ∞
0

[ k∏
i=1

fXi|Θ(xi|θ)
]
gΘ(θ)dθ.

Maximum likelihood and Bayes estimation of the parameters of members of the class =∗

were obtained by AL-Hussaini and Ateya [7 − 8] and particularly when the underlying

population distribution is bivariate compound Weibull or bivariate compound Gompertz.

In this paper, the prediction problem is studied under members of class =∗. More

attention is paid to bivariate compound Rayleigh (BV CR) distribution as illustrative

example.

1.2. Generation of a multivariate random sample of size n from

the class =∗

Knowing that FXi|Θ(xi|θ) = 1− exp[−θδiληi(xi)] and gΘ(θ) = βαθα−1e−βθ/Γ(α), an ob-

servation xij is obtained by first generating θj from Gamma(α, β), ui from Uniform(0, 1)

and then setting xij = λ−1
ηi

(
− (ln ui)/θjδi

)
, j = 1, 2, ..., n, i = 1, 2, ..., k. This is repeated

until we obtain the required multivariate random sample.

1.3. One-sample prediction

Suppose that X1 < X2 < ... < Xr is the informative sample, representing the first r

ordered lifetimes of a random sample of size n drawn from a population with probability

density function (pdf) fX(x), cumulative distribution function (cdf) FX(x) and reliability

function (rf) R(x). In one-sample scheme the Bayesian prediction intervals (BPI) for

the remaining unobserved future (n− r) lifetimes are sought based on the first r observed

ordered lifetimes.
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For the remaining (n− r) components, let Ys = Xr+s denote the future lifetime of the

sth component to fail, 1 ≤ s ≤ (n− r). The conditional density function of Ys given that

the r components had already failed is

(5) g1(ys|θ) ∝ [R(xr)−R(ys)]
(s−1)[R(ys)]

n−r−s[R(xr)]
−(n−r)fX(ys|θ), ys > xr,

θ is the vector of parameters.

The predictive density function is given by

(6) g∗1(ys|x) =

∫
Θ

g1(ys|θ)π∗(θ|x)dθ, ys > xr,

π∗(θ|x) is the posterior density function of θ given x and x = (x1, ..., xr).

A (1− τ) % BPI for ys is an interval (L,U) such that

(7) P (Ys > L|x) =

∫ ∞
L

g∗1(ys|x)dys = 1− τ

2
, L > xr,

(8) P (Ys > U |x) =

∫ ∞
U

g∗1(ys|x)dys =
τ

2
, U > xr.

By solving equations (7) and (8), we get the interval (L,U).

1.4. Two-sample prediction

Let X1 < X2 < ... < Xr and Z1 < Z2 < ... < Zm represent informative (type II

censored) sample from a random sample of size n and a future ordered sample of size

m, respectively. It is assumed that the two samples are independent and drawn from a

population with (pdf)fX(x), (cdf)FX(x) and (rf)R(x).

Our aim is to obtain the BPI for Zs, s = 1, 2, ...,m. The conditional density function

of Zs, given the vector of parameters θ, is

(9) g2(zs|θ) ∝ [1−R(zs)]
(s−1)[R(zs)]

m−sfX(zs|θ), zk > 0,

θ is the vector of parameters.

The predictive density function is given by

(10) g∗2(zs|x) =

∫
Θ

g2(zs|θ)π∗(θ|x)dθ, zs > 0,
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π∗(θ|x) is the posterior density function of θ given x and x = (x1, ..., xr).

A (1− τ) % BPI for zs is an interval (L,U) such that

(11) P (Zs > L|x) =

∫ ∞
L

g∗2(zs|x)dzs = 1− τ

2
,

(12) P (Zs > U |x) =

∫ ∞
U

g∗2(zs|x)dzs =
τ

2
.

By solving equations (11) and (12), we get the interval (L,U).

2. Baysian prediction intervals for future bivariate observations

The main goal in this section is to study the one-sample and two-sample prediction

problems in case of bivariate informative observations.

While ordering a set of univariate random variables is a clear and straight-forward

matter as it can be done by simply ordering the set of random variables, such ordering is

not as clear if we are dealing with a set of random vectors.

Barnett [10] classified the principles used for ordering multivariate date into four prin-

ciples : marginal, reduced (aggregate), partial and conditional (sequential) ordering. An

interesting detailed discussion of such principles with illustrative examples are given in

Barnett’s paper.

In our paper, we wish to predict bivariate random vectors. The first components of the

predicted random vectors are based on the ordered first components of the informative

sample, as is done in the univariate case. To predict the second components, we compute

the norms of each vector of the informative sample, order the norms and then predict the

future norms as is done in the univariate case. The relation between the components of

vectors and norms enables us to obtain the second components of the predicted vectors.

In other words, we obtain the second component of a predicted vector from the knowledge

of the values of the first component and the norm of the vector.

2.1. One-sample prediction



972 ESSAM K. AL-HUSSAINI1 AND SAIEED F. ATEYA2,3,∗

Let (X1, Y1), ..., (Xr, Yr) be the first r bivariate informative observations from a random

sample of size n of bivariate observations. Suppose that the first components of such

informative vectors are ordered, that is X1 < X2 < ... < Xr and that their norms are

given by Z1, Z2, ..., Zr.

To obtain BPI ′s for the remaining future vectors, denoted by (X∗1 , Y
∗

1 ), ..., (X∗n−r, Y
∗
n−r),

where X∗1 < X∗2 < ... < X∗n−r and norms Z∗1 < Z∗2 < ... < Z∗n−r we apply the following

steps:

(1) based on ordered Z1, Z2, ..., Zr, denoted by Z1:r, Z2:r, ..., Zr:r compute the BPI ′s

for Z∗s , s = 1, 2, ..., (n− r), say (L1s, U1s),

(2) based on X1 < X2 < ... < Xr compute the BPI ′s for X∗s , s = 1, 2, ..., (n− r), say

(L2s, U2s),

(3) from (1) and (2), compute the BPI ′s for Y ∗s , s = 1, 2, ..., (n− r) which are ([L2
1s−

L2
2s]

1/2, [U2
1s − U2

2s]
1/2). This is true, since z∗s = (x∗s

2 + y∗s
2)1/2,

(4) from (2) and (3), the BPI ′s for (X∗s , Y
∗
s ), s = 1, 2, ..., (n− r) is

(L2s, [L
2
1s − L2

2s]
1/2), (U2s, [U

2
1s − U2

2s]
1/2).

2.2. Two-sample prediction

In this case the first r bivariate informative observations (X1, Y1), ..., (Xr, Yr) from a

random sample of size n is such that X1 < X2 < ... < Xr with norms Z1, Z2, ..., Zr. An

independent future sample of size m is (X∗1 , Y
∗

1 ), ..., (X∗m, Y
∗
m), where X∗1 < X∗2 < ... < X∗m

and norms Z∗1 < Z∗2 < ... < Z∗m. To obtain the BPI ′s of the future sample, we apply the

following steps:

(1) based on ordered Z1, Z2, ..., Zr, denoted by Z1:r, Z2:r, ..., Zr:r compute the BPI ′s

for Z∗s , s = 1, 2, ...,m, say (L1s, U1s) ,

(2) based on X1 < X2 < ... < Xr compute the BPI ′s for X∗s , s = 1, 2, ...,m, say

(L2s, U2s),

(3) from (1) and (2), compute the BPI ′s for Y ∗s , s = 1, 2, ...,m which are ([L2
1s −

L2
2s]

1/2, [U2
1s − U2

2s]
1/2) .
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(4) from (2) and (3), the BPI ′s for (X∗s , Y
∗
s ), s = 1, 2, ...,m

is (L2s, [L
2
1s − L2

2s]
1/2), (U2s, [U

2
1s − U2

2s]
1/2).

3. One-sample prediction in case of (BVCR) distribution

If, in (3), k = 2, λη(x) = x2, λη(y) = y2, δ1 = δ2 = 1 so that c1 = c2 = 1/β = c, then

(X, Y ) has a bivariate compound Rayleigh (BV CR) pdf , given by

(13) fX,Y (x, y) = 4α (α + 1) c2 x y [1 + c(x2 + y2)]−(α+2), x > 0, y > 0.

The marginal pdf ′s of the random variables X and Y are given, respectively, by

(14) fX(x) = 2α c x [1 + c x2]−(α+1), x > 0,

(15) fY (y) = 2α c y [1 + c y2]−(α+1), y > 0.

In this section we apply the steps given in Subsection 2.1.

Step 1

The norm Z of the vector (X, Y ) is given by Z = (X2 + Y 2)1/2. In APPENDIX A

the pdf and hence cdf and rf are derived. Such functions are given by

(16) fZ(z) = 2α (α + 1) c2 z3 [1 + cz2]−(α+2), z > 0,

(17) FZ(z) = 1− α c z2 [1 + cz2]−(α+1) − [1 + cz2]−α, z > 0,

(18) R(z) = α c z2 [1 + cz2]−(α+1) + [1 + cz2]−α, z > 0.

From (16) and (18), the conditional density of Z∗s given (c, α) is obtained ( see APPENDIX

B ), as

g1(z∗s | c, α) ∝
∗∑
Bi,j,l,s c

k3 αk4 (α + 1) z∗(2(k1−j)+3)
s (1 + c z∗2s )−αk1−k1+j−α−2

.z2(k2−l)
r:r (1 + c z2

r:r)
−αk2−k2+l,

(19)
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where

∗∑
=

s−1∑
i=0

k1∑
j=0

k2∑
l=0

, Bi,j,l,s = (−1)i
(s−1

i

)( k1

j

)( k2

l

)
,

k1 = n− r + i− s, k2 = s− i− (n− r)− 1, k3 = 1− j − l, k4 = −j − l.

Suppose that the prior belief of the experimenter is given by the pdf

π(c, α) = π1(c|α) π2(α), c|α ∼ Gamma(c1, α) and α ∼ Gamma(c2, c3).

So that

(20) π(c, α) ∝ αc1+c2−1 cc1−1 e−α(c+c3).

The likelihood function of (c, α) given Z1:r, ..., Zr:r is given by

L(c, α|z1:r, ..., zr:r) ∝ [R(zr:r)]
n−r

r∏
i1=1

f(zi)

= 2r αr c2r(α + 1)r
( r∏

i1

zi1

)3( r∏
i1

(1 + cz2
i1

)

)−(α+2) n−r∑
l1

(n−r
l1

)
αn−r−l1cn−r−l1

z2(n−r−l1)
r:r (1 + c z2

r:r)
−α(n−r)−(n−r)+l1 .

(21)

Since the posterior density π∗(c, α|z1:r, ..., zr:r) ∝ π(c, α)L(c, α|z1:r, ..., zr:r), it follows,

from (19)− (21) that

g1(z∗s | c, α)π∗(c, α| z1:r, ..., zr:r) = A
∗∗∑
B∗i,j,l,s,l1 c

n+r+c1−j−l−l1

αn+c1+c2−j−l−l1−1(α + 1)r+1

( r∏
i1

zi1

)3( r∏
i1

(1 + cz2
i1

)

)−(α+2)

z∗(2(k1−j)+3)
s

(1 + c z∗2s )−αk1−k1+j−α−2 z2(s−i−l1−l−1)
r:r (1 + c z2

r:r)
−α (s−i−1)−s+i+l1+l+1

exp[−α c− α c3],

(22)

where A is a normalizing constant and

∗∗∑
=

∗∑ n−r∑
l1=0

, B∗i,j,l,s,l1 = Bi,j,l,s

(n−r
l1

)
.

It then follows, from (6) and (22) that the predictive density function of Z∗s is given by

g∗1(z∗s | z1:r, ..., zr:r) =

∫ ∞
0

∫ ∞
0

g1(z∗s | c, α)π∗(c, α| z1:r, ..., zr:r)dc dα.(23)



BAYESIAN PREDICTION UNDER A CLASS OF MULTIVARIATE DISTRIBUTIONS 975

To obtain (1 − τ) % BPI for Z∗s , say (L1s, U1s),we solve the following two nonlinear

equations, numerically,

(24) P (Z∗s > L1s| z1:r, ..., zr:r) =

∫ ∞
L1s

g∗1(z∗s | z1:r, ..., zr:r)dz
∗
s = 1− τ

2
, L1s > zr:r,

(25) P (Z∗s > U1s| z1:r, ..., zr:r) =

∫ ∞
U1s

g∗1(z∗s | z1:r, ..., zr:r)dz
∗
s =

τ

2
, U1s > zr:r.

Step 2

By using the pdf(14) and its cdf , the predictive density function of X∗s can be written as

follows

g∗1(x∗s|x1, ..., xr) =

∫ ∞
0

∫ ∞
0

g1(x∗s| c, α)π∗(c, α|x1, ..., xr)dc dα,(26)

where

g1(x∗s| c, α)π∗(c, α|x1, ..., xr) = A1

s−1∑
i=0

Bi,s c
c1+rαc1+c2+r

( r∏
i1

xi1

)
( r∏

i1

(1 + c x2
i1

)

)−(α+1)

x∗s (1 + c x∗2s )(−α (n−r+i−s+1)−1) (1 + c x2
r)
−α (s−i−1)

exp[−α c− α c3],

(27)

where A1 is a normalizing constant and Bi,s = (−1)i
(s−1

i

)
.

To obtain (1 − τ) % BPI for X∗s , say (L2s, U2s),we solve the following two nonlinear

equations, numerically,

(28) P (X∗s > L2s|x1, ..., xr) =

∫ ∞
L2s

g∗1(x∗s|x1, ..., xr)dx
∗
s = 1− τ

2
, L2s > xr,

(29) P (X∗s > U2s|x1, ..., xr) =

∫ ∞
U2s

g∗1(x∗s|x1, ..., xr)dx
∗
s =

τ

2
, U2s > xr.

Step 3

From steps 2 and 3, a (1− τ) % BPI for Y ∗s is ([L2
1s − L2

2s]
1/2, [U2

1s − U2
2s]

1/2).

4. Two-sample prediction in case of (BVCR) distribution
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In this case we apply the steps in Subsection 2.2 as follows

Step 1

Substituting from (16) and (18) in (9) and then using (20) and (21) we can write

g2(z∗s | c, α)π∗(c, α| z1:r, ..., zr:r) = A

∗∗∑
B∗i,j,s,m c

n+r+c1−l1+k−j+1

αn+c1+c2+k−j−l1(α + 1)r+1

( r∏
i1

zi1

)3( r∏
i1

(1 + cz2
i1

)

)−(α+2)

z∗(2(k−j)+3)
s

(1 + c z∗2s )−αk−k+j−α−2 z2(n−r−l1)
r:r (1 + c z2

r:r)
−α (n−r)−(n−r)+l1

exp[−α c− α c3],

(30)

where

∗∗∑
=

s−1∑
i=0

k∑
j=0

n−r∑
l1=0

, B∗i,j,s,m = (−1)i
(s−1

i

)(k
j

)(n−r
l1

)
, k = m− s+ i,

and A is a normalizing constant.

It then follows that the predictive density function of Z∗s is given by

g∗2(z∗s | z1:r, ..., zr:r) =

∫ ∞
0

∫ ∞
0

g1(z∗s | c, α)π∗(c, α| z1:r, ..., zr:r)dc dα.(31)

To obtain (1 − τ) % BPI for Z∗s , say (L1s, U1s),we solve the following two nonlinear

equations, numerically,

(32) P (Z∗s > L1s| z1:r, ..., zr:r) =

∫ ∞
L1s

g∗2(z∗s | z1:r, ..., zr:r)dz
∗
s = 1− τ

2
, L1s > 0,

(33) P (Z∗s > U1s| z1:r, ..., zr:r) =

∫ ∞
U1s

g∗2(z∗s | z1:r, ..., zr:r)dz
∗
s =

τ

2
, U1s > 0.

Step 2
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Using the pdf(14), its cdf and the same prior as in (20) the predictive density function of

X∗s is given by

g∗2(x∗s|x1, ..., xr) =

∫ ∞
0

∫ ∞
0

g2(x∗s| c, α)π∗(c, α|x1, ..., xr)dc dα,(34)

where

g2(x∗s| c, α)π∗(c, α|x1, ..., xr) = A1

s−1∑
i=0

Bi,s c
r+c1αc1+c2+r

( r∏
i1

xi1

)
( r∏

i1

(1 + c x2
i1

)

)−(α+1)

x∗s (1 + c x∗2s )(−α (m+i−s+1)−1) (1 + c x2
r)
−α (n−r)

exp[−α c− α c3],

(35)

where A1 is a normalizing constant and

Bi,s = (−1)i
(s−1

i

)
.

To obtain (1 − τ) % BPI for X∗s , say (L2s, U2s),we solve the following two nonlinear

equations, numerically,

(36) P (X∗s > L2s|x1, ..., xr) =

∫ ∞
L2s

g∗2(x∗s|x1, ..., xr)dx
∗
s = 1− τ

2
, L2s > 0,

(37) P (X∗s > U2s|x1, ..., xr) =

∫ ∞
U2s

g∗2(x∗s|x1, ..., xr)dx
∗
s =

τ

2
, U2s > 0.

Step 3

From steps 2 and 3, a (1− τ) % BPI for Y ∗s is ([L2
1s − L2

2s]
1/2, [U2

1s − U2
2s]

1/2).

5. Numerical example

In this section we follow the steps

(1) given the set of prior parameters, generate the parameters (c, α),

(2) using the generated population parameters, generate a bivariate random sample

of size n, say (X1, Y1), ..., (Xn, Yn) as shown in subsection 1.2
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(3) follow steps in Subsections 2.1 and 2.2.

In Tables (1) and (2) 95%BPI ′s are computed in case of the one- and two-sample

predictions, respectively, with the same parameters c, α, hyperparameters c1, c2, c3 and

using informative samples of different sizes, r.

Table(1):One-Sample prediction: 95 % BPI ′s for Z∗s , Y
∗
s and X∗s , s = 1, 2, 3.

r c1 = 1.0, c2 = 1.5, c3 = 2.0 z∗1 z∗2 z∗3

c = 1.3, α = 0.76

Coverage Percentage 97.43 98.65 98.97

10 BPI (3.9064,5.6565) (4.4398,6.6373) (4.8985,7.8809)

BPI Length 1.7501 2.1975 2.9824

Coverage Percentage 96.33 97.42 97.99

20 BPI (3.8761,5.4953) (4.4523,6.4451) (4.8723,7.1942)

BPI Length 1.6192 1.9928 2.3219

Coverage Percentage 95.80 96.12 96.87

45 BPI (3.7670,4.8779) (4.3687,6.1819) (4.7585,6.8615)

BPI Length 1.1109 1.8132 2.1030

r x∗1 x∗2 x∗3

Coverage Percentage 96.11 98.41 98.84

10 BPI (2.4110,3.0393) (2.7269,3.7051) (3.1654,4.4564)

BPI Length 0.6283 0.9782 1.2910

Coverage Percentage 95.88 96.23 97.16

20 BPI (2.3720,2.9688) (2.5971,3.4690) (3.0912,4.1933)

BPI Length 0.5968 0.8719 1.1021

Coverage Percentage 95.41 95.92 96.10

45 BPI (2.2891,2.7694) (2.4870,3.2379) (2.9714,3.9531)

BPI Length 0.4803 0.7509 0.9817

r y∗1 y∗2 y∗3

Coverage Percentage 97.40 98.04 98.67

10 BPI (3.0736,4.7706) (3.5036,5.5069) (3.7389,6.4999)

BPI Length 1.6970 2.0033 2.7610

Coverage Percentage 96.89 97.08 97.68

20 BPI (3.0655,4.6243) (3.6164,5.4319) (3.7661,5.8457)

BPI Length 1.5588 1.8154 2.0796

Coverage Percentage 95.88 96.50 97.12

45 BPI (2.9917,4.0155) (3.5917,5.2661) (3.7167,5.6083)

BPI Length 1.0238 1.6744 1.8916
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Table(2):Two-Sample prediction: 95 % BPI ′s for Z∗s , Y
∗
s and X∗s , s = 1, 2, 3.

r c1 = 1.0, c2 = 1.5, c3 = 2.0 z∗1 z∗2 z∗3

c = 1.3, α = 0.76

Coverage Percentage 96.98 97.78 98.65

10 BPI (1.4319,2.1823) (2.2627,3.4651) (3.3804,5.2912)

BPI Length 0.7501 1.2014 1.9108

Coverage Percentage 95.79 96.45 97.03

20 BPI (1.4053,2.0401) (2.2816,3.1608) (3.2239,4.5159)

BPI Length 0.6348 0.8792 1.2920

Coverage Percentage 94.98 95.14 96.39

45 BPI (1.7919,1.9721) (2.2502,3.0318) (3.1705,4.1634)

BPI Length 0.1801 0.7816 0.9925

r x∗1 x∗2 x∗3

Coverage Percentage 97.53 97.99 98.36

10 BPI (0.8941,1.2541) (1.3730,1.9512) (2.1106,2.9016)

BPI Length 0.3601 0.5782 0.7910

Coverage Percentage 96.55 96.98 97.13

20 BPI (0.8714,1.2152) (1.2537,1.6696) (2.0943,2.7255)

BPI Length 0.3438 0.4159 0.63111

Coverage Percentage 95.81 96.30 97.03

45 BPI (0.8680,0.6083) (1.2301,1.6013) (2.0805,2.5665)

BPI Length 0.2403 0.3709 0.5861

r y∗1 y∗2 y∗3

Coverage Percentage 98.63 98.70 99.49

10 BPI (1.1184,1.7859) (1.7985,3.2524) (2.6405,4.4264)

BPI Length 0.6676 1.4539 1.7840

Coverage Percentage 97.97 98.13 99.01

20 BPI (1.1025,1.6387) (1.9062,2.6839) (2.4510,3.6011)

BPI Length 0.5362 0.7776 1.1496

Coverage Percentage 96.78 96.90 97.62

45 BPI (1.0681,1.5677) (1.8842,2.5744) (2.3924,3.2783)

BPI Length 0.4816 0.6902 0.8859

6. Concluding remarks

In Tables (1) and (2) we take different sizes for the informative sample, 10, 20 and 45

and predict the first three future observations .

In these tables, we observe that
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(1) The length of the BPI ′s and the number of samples which cover these intervals

increase by increasing s and decrease by increasing the informative sample size.

(2) The results become better as the informative sample size r gets larger.

(3) In all cases, the simulated percentage coverages are at least 95%.

(4) There is no particular reason for choosing the hyperparameters (c1, c2, c3) as (1, 1.5, 2).

(5) If the hyperparameters are unknown, they can be estimated by using the empirical

Bayes method [see Maritz and Lwin[13]] or the hierarchical method [see Bernardo

and Smith[11]].

APPENDIX A

Proof of equations (16)-(18)

From the joint density function of the random variables X and Y which is given by (13)

and using the transforms X = Z cos Θ and Y = Z sin Θ we get the joint density function

of the random variables Z and Θ in the form

fZ,Θ(z, θ) = 4α (α + 1) c2 z3 sin θ cos θ [1 + c z2]−(α+2), z > 0, 0 ≤ θ ≤ π/2. (A.1)

Integrating (A.1) with respect to θ, we get the density function of Z as in (16).

The (cdf) of the random variable Z is given by

FZ(z) = 2α (α + 1) c2

∫ z

0

u3 [1 + c u2]−(α+2)du. (A.2)

The cdf(17) is obtained by integrating by parts the integral in (A.2). The rf is then

obtained as in (18), since R(z) = 1− FZ(z).

APPENDIX B

Proof of equation (19)

From (5), (16) and (18) we have

g1(z∗s |c, α) ∝[R(zr:r)−R(z∗s)]
(s−1)[R(z∗s)]

n−r−s[R(z∗r:r)]
−(n−r)fZ(z∗s)

=
s−1∑
i=0

(−1)i
(s−1

i

)
[R(z∗s)]

n−r−s+i [R(zr:r)]
s−i−(n−r)−1 fZ(z∗s), (B.1)
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where the reliability function R(z), given by (18) yields

[R(z)]k =
k∑
i=0

(k
i

)
ck−iαk−i z2(k−i) (1 + c z2)−αk−k+i. (B.2)

Using (B.2) and (16) in (B.1) we get (19)
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