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Abstract:  Consider the system of second order differential equations 

L 	  	0 

where 	 , , ,  finite or infinite; ,  complex parameter and 	 , ,  

                  , , 	
0

0
, 

, , , ,  are all assumed to be real-valued functions summable on , . 

In this paper we determine the resolution of the identity of the operator  generated by the matrix differential 

operator  under the general boundary conditions where ,  are assumed to be greater than zero for 

	 , , ,  being finite or infinite. 
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1. INTRODUCTION 

Consider the system of second order differential equations  

	 	0       (1) 

where 

	 		 , ≡  ,  	 , , 	
0

0
,(2) 

, , , ,  are all assumed to be real-valued functions summable on , , ,  

finite or infinite and  is a complex parameter. 

The boundary conditions at ,  satisfied by a solution ,  ,  , ,   of the 

equation (1) are  
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,  ,  	0, ,  ,  	0      (3) 

= 1, 2; = 3,4, where  	 ,  , 1, 2, 3, 4, called boundary condition vectors, are the 

solutions of (1) which together with their first derivatives take some prescribed values at 

,  and [. , .]() is the value at 	 of the bilinear-concomitant [., .]. (See Sengupta [10]). 

The boundary condition vectors  ,   at  and  ,  at  are linearly independent of 

each other and moreover if  

             [ ,  ](	 ) = [ ,  ]( ) = 0.       (4) 

then the boundary value problem (1)—(3) leads to a self-adjoint eigenvalue problem over the 

interval ( , ) (see Chakravarty[3]). 

For the system (1) with s( 1 the resolution of the identity of the operator L was 

investigated by Chakravarty and Roy Paladhi [5]. 

 In this paper we consider the boundary-value problem (1)-(3) with 

s( )> 0, t( )>0 for        (5) 

and following Naimark([9], Pp - 13), Levitan and Sargsjan ([8], Pp. 128-129) we determine the 

resolution of the identity of the operator  generated by the matrix differential  operator  as 

given in (2). 

In what follows the notations ,  ,  , (	 ,  , ,	 . , . , . ,  . ,  . , . , . , 

	 . , .  etc. are those introduced in Sengupta [11]. 

 

2. SOME AUXILIARY RESULTS 

Let  ,  be a function such that 	 , . Then following 

Bhagat  [1,2] the resolvent of , defined in (22) of Sengupta ([11] Pp. – 1570]), is given by 

(	 , , , ; , , , ,    

 = ∑     /             (6) 

Let us put    ,  , 	fixed) the eigenvector corresponding to the 

eigenvalue  . 

Then by the orthogonality of the eigenvectors, we have from (6) for the Green's matrix G(.), 

, , , ,    / 	 .    (7) 

Therefore 



RESOLUTION OF THE IDENTITY                                                               58 

, , , ,   
	

, 1, 2     (8) 

i.e.; are the Fourier Coefficient of , , , , , 1, 2,		 considered as a vector 

function of  for fixed    , . 

Applying the Parseval equality (39) of Sengupta [11] to the vectors , , , ,  and using (8) 

we obtain 

             , , , ,  , , , , ̅  

             = ∑
|  |

, 1, 2              (9) 

By using (21) of Sengupta [11] we have 

∑
|  |

∞, 1, 2,       (10) 

Applying the inequality ∑ ∑ .∑                    (11) 

We obtain from (10) that 

∑
|  |

∞        (12) 

Also for arbitrary but fixed , (-, ) (	 , ), 

 ∑
,

|  |
∞           (13) 

where ,            (14) 

and , , . 

Using the explicit representation for , as given in (37) of Sengupta [11] it follows from (10) 

after some manipulation that 

 ,   , ,   ,   ,   , ,   , 





 ,   , ,   ,   

        + ,   , ,   ,  . | | ∞            (15) 

Where ( 	 , ,  ,  , ,  ,  , ,   tend to (),(),() respectively as → ∞, → ∞ 

(For detail ref. Sengupta [11]).  

Hence by making → ∞, → ∞  first and then → ∞  we obtain from (15) the following 

theorem. 

Theorem 1: For real  0, 

 ,     ,   ,     ,   ,     ,    
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 ,     , . | | ∞                       (16) 

A consequence of Theorem-1 is the following. It is assumed that (),(),() are continued to 

the negative  axis as odd functions. 

Theorem 2:   For real  0,m 0 the integrals  

(i)    , (ii)     and  

(iii)    	 are all convergent. 

Proof: Putting 0 in (16) and making use of the initial conditions (5) and (6) of Sengupta [11], 

the theorem for () follows easily. 

Differentiating both sides of the relation (8) with reference to  we obtain 




, , , ,    = 


, 1,2. 

Applying the Parseval equality (39) of Sengupta [11] to the functions 



, , , ,  and 

arguing in exactly the same way as before for (), the theorem for () follows. 

Since   		|   |   , 	 , 1,2 the theorem for () also follows. 

Let us now put ∆ , , , ∆ , , , , , 1,2 

=
 ,   , ,   ,   ,   , ,   ,  ,   , ,   , 

 ,   , ,   , 	 	

 ∆

  

                          (17) 

where (.), (.), (.) are continuous at the end points  and +∆ . 

Let ∆ , , ,  tend to ∆ ,  and as before  , ,  ,  , ,  ,  , ,   tend to (), (), 

() as → ∞, → ∞. Then by making → ∞, → ∞ it follows from (17) that 

 ∆ , ∆ , , , 1,2 

=  ,     ,   ,     ,  ∆

  

+ ,     ,   ,     ,                    (18) 

We prove the following theorem. 

Theorem 3:    For every fixed y, ∆ , ∆ ,  ∞,∞         (19) 

Proof: From the explicit representation of the normalized eigenvector /√  (Ref. equation 

(38) of Sengupta [11]) we obtain by using (14) that 
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∑
,

∆ , , ,  ∆       (20) 

Using (20) and the orthogonality conditions for  it follows that 

∆ , , , ∆ , , , ∑ , /  ∆      (21) 

which is finite. 

For arbitrary but fixed , , , 		 ,  it follows from (21) that 

∆ , , , ∆ , , , ∑ , /  ∆      (22) 

Passing to the limit as → ∞, → ∞ we obtain from (22) that 

∆ , ∆ , ∑ , /  ∆       (23) 

As ,  are arbitrary, the theorem therefore follows.  

Let us now put ∆ , ∆ , , ∆ ,  

= ∆ ,          (24) 

where ,  is a vector such that  ∞,∞  

The existence of ∆ ,  is ensured by the Schwarz inequality, the Theorem-3 and the 

conditions on . 

In what follows we say that  ∞,∞  or   if  ∞,∞ . 

Theorem 4:    If f x L ∞,∞  and (, +∆) is any finite interval, then 

∆ ,  ,      ,    ∆

  ,    

 ,               (25) 

Proof: Let ≡ ,  be a vector with compact support i.e.;  

defined on ( ,  vanish outside the interval, where n<min{| |, | |}a<0, b>0. 

Then  

∆ , , ,   

 ,   , ,    ,   , ,   ∆

  ,   , ,  

 ,   , ,                  (26) 

Where  ,   are explicitly given in (82) of Sengupta [11]. 

Making → ∞, → ∞ from (26) we obtain 

∆ ,  ∆ ,  ,     ∆

   

                 +  ,      ,      ,             (27)   
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Now let ,  be an arbitrary vector such that  ∞,∞ . We 

approximate in mean to  by the sequence { }. 

From (25) it follows that for 1, 2 

∆ , ∆ , ∆ ,  , say. 

                           (28) 

Now  | | ∆ , ∆ , ⁄
⁄
. |

| /   

                           (29) 

As → ∞, → 0 and similarly → ∆ , . 

Therefore we obtain 

∆ , → ∆ , ≡ ∆ , ,			 1, 2         (30) 

Thus ∆ , → ∆ ,  as → ∞. 

Also in the right side of (27),  ,   converges in mean to  ,   as → ∞. 

(See Theorem-2 of Sengupta [11] ). 

Hence the theorem follows from (27). 

Theorem 5: If  ∞,∞  then for any finite interval (,+ ∆ ) as a function of 

, ∆ , ∆ , 	 ∞,∞            (31) 

Proof  With  defined in Theorem-4 we obtain by making use of (20), (21) that 

∆ , , , ∆ , , ,

∆ , , , ∆ , , ,

∑  ∆  (by (20) and the orthogonality of the eigenvectors) 

  (by Bessel's inequality)                     (32) 

where ,  are arbitrary but fixed and ( , )(	 , ). 

Making → ∞, → ∞ first and then → ∞, 	 → ∞ the theorem is established for the 

function . 

The general result for arbitrary ,  such that  ∞,∞  follows by 

approximating in mean to  by the sequence { } for which we take note of the fact that 
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) 

                             (33) 

Theorem 6:  

If  ∞,∞ , then for any non-real z, ( , ; ∆ , )≡ , , ∆ ,  

=  ,      ,      ,    ∆

   

+ ,                    (34) 

  

Proof.  With  defined in Theorem-4, we have for any non-real z 

 , , , ; 	 ∆ ,  

= , , , ; ∆ , ∑   ∆ ,   /       

(35) 

Using (20) and (24) it now follows from (35) that 

, , , ; ∆ , ∑      ∆  /      

                             (36) 

Replacing  by that given in (37) of Sengupta [11] we obtain from (36) that 

, , , ; ∆ ,   

=  ,   , ,    ,   , ,    ,   , ,   ∆

  

+ ,   , ,                  (37) 

where  ,   are given in (82) of Sengupta [11]. 

The convergence to the limit of the right side of the equality (37) as → ∞, → ∞ is obvious. 

By using (27) of Sengupta [11] and (31) and closely following Chakravarty ([4] Pp-410) we 

obtain that as → ∞, → ∞ ,  , , , ; ∆ ,  and , , , ;  tend to 

 , ; ∆ ,  and , ;  respectively. Since  , ,  ,  , ,  ,  , ,   tend to   , 

  ,    respectively as → ∞, → ∞ it follows from (37) by making → ∞, → ∞ that  

 , ; ∆ , , ; ∆ ,   

=  ,   ∆

    ,      ,      

+ ,  ()              (38) 
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Let ,  be such that  ∞,∞ . We approximate in mean to  by 

means of the sequence { }. 

By Theorem-5 and inequality (28) of Sengupta [11] as before it follows that  , ; ∆ ,  

tend to  , ; ∆ ,   as → ∞. Also the sequences  ,   converge in mean to  

 ,   respectively as → ∞  (See Theorem-2 of Sengupta [11]). Hence by the mean 

convergence theorems (Stated explicitly in Sengupta [11]) the theorem follows completely. 

Let ,  ∞,∞ . Then from (34) we have  

 , ; ∆ ,   

        ∆

       

+                            (39) 

  (The convergence problem being settled by (29) of Sengupta [11] and (31)). 

 

3. INTEGRAL REPRESENTATION OF THE RESOLVENT 

 

In what follows let us put 

 ,  ,     ,  ,     ,   ,     , 

 ,     ,  , for >0 

=  ,    ,   ,     ,   ,     , 

 ,     ,   , for <0 

0, for  = 0                       (40) 

and  ,  ,                    (41) 

where ,  be such that  ∞,∞ . 

Then  ,  ,  

=  ,      ,      ,      ,    
 

                        (42) 

 [Compare Theorem-4 and Theorem-5]. 

We prove the following theorems. 
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Theorem-7 : Let  ∞,∞ . Then as a function of ,  ,  is of bounded variation in 

every finite -interval. 

 

Proof : For   , write the system (1) in the form  

(                      (43) 

where  is the eigenvector corresponding to the eigenvalue  . 

Hence   , , , ;                          (44) 

satisfies the differential system (43). 

For definiteness let >0 and we prove the result for the vector  as defined in Theorem-4. By 

making use of (20) and (24) it follows that as → ∞, → ∞,  ,  is the limit of the 

function  

 , ∑ ,        

=∑                               (45) 

where   is any point on the finite -interval. 

By (44) it follows from (45) that 

∑   , , , ;    .              (46) 

Now, , , , ;     

 | , , , ;   , , , ; |  / . |    |  /  .        (47) 

Thus from (46) by using (21) of Sengupta [11] we obtain that ,  and consequently S is 

bounded uniformly in any finite -interval. 

Hence, the limit function is of bounded variation. This completes the proof of the Theorem. 

Theorem 8: Let  ∞,∞ . Then for any non-real   ,  0 and 

(	 , ; )=   , /               (48) 

where  ,  is given by (42). The integral in the right side of (48) converge absolutely. 

Proof:   Writing  explicitly as given in (37) of Sengupta [11] we obtain from (6) that 

 , , , ;  ,   , ,    ,   , ,    

                     + ,   , ,    ,   , ,         (49) 
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where the vector  is the same as that defined in Theorem-4. 

Passing to the limit as → ∞, → ∞ we obtain from (42) and (49) that  

(	 , ; )=   , /   

=  ,      ,      ,      

+ ,                              (50) 

We now approximate in mean to the vector ,  which satisfy that 

 ∞,∞  by means of the sequence { }. 

By using (24) of Sengupta [11], (	 , ; )→  , ; . Let us now consider the right side of 

the equality (50). Let us put 

(	 , ; )=   ,


  ,


  ,


 

= , say                           (51) 

where m is an arbitrary positive number. 

From the Parseval relation as given in (72) of Sengupta [11] it follows that as m→ ∞, 

                0 1   

                            (52) 

and from (16) we obtain as m→ ∞ 

 ,     ,   ,     ,   ,     ,    

+ ,     ,  | | 0 1                         (53) 

To each of the integrals , 1,2,3 ,we apply the inequality Hardy et al. ([7], Section 29, Pp – 

33). 

∑    ∑   
/ . ∑   

/  . 

where  , ∑    is a positive quadratic form (with real but not necessarily positive 

coefficients). Then using (52), (53) we obtain as in Chakravarty and Roy Paladhi ([6], Pp-150) 

that → 0 as → ∞. 

Similarly, → 0 as → ∞. 

 

 

Integrating by parts we get 

, ,
 , .                         (54) 
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By Theorem-7 we have 

lim
→

  ,


  ,


                        (55) 

Since  is arbitrary, the theorem follows from (55). 

Now from (50) we obtain that for any non-real z and vectors ,  ∞,∞  

 , ;        

        /                          (56) 

 

4. RESOLUTION OF THE IDENTITY 

Let , , ,  be two vectors such that 

,  ∞,∞ . For >0. put 

 , ,   ,              (57) 

and ,  , , ; where >0                         (58) 

(For notation compare Titchmarsh ([12]Pp-50))  

where  ,  is given by (41). 

Using the expressions for   ,  given in (42) in the usual manner we obtain 

, ,                 
  

                             (59) 

Now the equation (39) can be expressed as 

 , ; ∆ ,  , ,  /  ∆

 	          (60) 

Putting ∆ ,  for  in (56) and using (59) we also obtain 

 , ; ∆ ,  ∆ , ,  /            (61) 

From (57), (60), (61) and the uniqueness theorem for the Stieltjes transforms it follows that 

. ∆ ∩∆                 (62) 

where  ∩ ∆ = (-∞, )∩ ,  ∆  

(See Levitan and Sargsjan ([8], Pp-129 and Pp-503)) 

Let ∆	 	∆  denote the intervals (, +∆) and ( ,  ∆ ) respectively. Then 

∆ . ∆ , ∆ , ∆ 

              = , ∆ ∆ , ∆ 
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              = , ∆ ∩∆ , ∩∆ 

              = , ∆ , ∆= ∆ ∩∆           (63) 

We obtain the following theorem. 

Theorem 9: Let ∆≡ ,  ∆ , ∆ ≡  ,  ∆ , then  

∆ ,   ∆ ,  ∆∩∆ ,                        

(64) 

Proof    From the representation of ∆ ,  given by (20) and by the orthogonality conditions 

for the eigenvectors it follows that 

∆ ,   ∆ ,   

∑
,

   ∆ .  . ∑ ,
   ∆ .   

∑ , 
 ∆∩∆ 						 ∆∩∆ ,  . 

Hence the theorem is proved. 

Let  , , ∞ lim
→

, ,                           (65) 

The generalized Parseval formula (90) of Sengupta[11] now takes the form 

, , ∞ , , ∞             (66) 

By  (59) we also obtain 

, ,  , ,                  (67) 

Now  we apply the Stieltjes inversion formula (See Levitan and Sargsjan [8] Pp-502) to each of 

the elements of ( , ; ) (Z being non-real) given by (48) and obtain 

 , lim
→

 , , 
,   ,  0                      (68) 

By making use of the definition of  ,  given by (41) and that of ( , , ) by 

( ,, , ,                          (69) 

, ,   being the Green's matrix) which follows by making → ∞, → ∞ in (22) of 

Sengupta [11], we obtain by proceeding as in Chakravarty and Roy Paladhi ([6], Pp-141) that 

 , lim
→

, ,  
                        (70) 

From (6) 

 , , , ;   
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  , ,, ,      

∑


                       (71) 

Where  
√

    

              
√

           (72) 

the Fourier coefficients of  and  respectively. 

Therefore,  

lim
 →

  , ,, ;     
    

=∑
 

  
,				  

            (73) 

Where the integral 
 

  

  does not exceed . 

On taking ,  we have from (73) 

   , ,,   , ,,      0        (74) 

Hence if  vanish outside ( , 		 ,  we have 

   , ,,   , ,,      0  

By making → ∞, → ∞ we obtain 

 ,  ,    0           (75) 

From this it follows that in the usual way by a mean square approximation that for any 

 ∞,∞  

,  ,  for                           (76) 

(Compare Titchmarsh [12] Pp- 51-53). 

From the relations (63), (66), (67) and (76) it follows that the family of operators  ,  

defined by (40) satisfy the properties of (i) orthogonality (ii) completeness (iii) self-adjointness 

and (iv) monotonicity.  ,   thus plays on essential role in deriving the resolution of the 

identity of the operator  (See Levitan and Sargsjan [8] Pp - 129). Also compare Chakravarty 

and Roy Paladhi ([5]). 

We can define  ,  by (68) as in Chakravarty and Roy Paladhi [[5]] and obtain results of the 

forgoing section. 
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5. INTERPRETATION IN TERMS OF THE THEORY OF LINEAR OPERATORS 

Our analysis now closely follows Titchmarsh [12]. We simply outline the procedure giving 

details only when we considerably differ. 

From (68) it follows that 

 , lim
→

 , ,                         (77) 

Let the vectors , ; and (  given by (2)) which satisfy the equation 

(30) of Sengupta[11] and  ∞,∞ . Then  

 , ,  , ,                           (78) 

and  , lim
→

 , , 
 

        = lim
→

  , ;  lim
→

  , , 
  

        =  , say                            (79) 

By (70),   ,


. 

By Theorem-8,  , , 
 is finite. 

Hence → 0 as → 0. 

Thus  ,   ,


                          (80) 

Therefore ,  , ,  ,     

                     =   ,    

                     =   ,   
 

                     =  , ,
              (81) 

In view of the relation (41) the expansion formula as given in (91) of Sengupta [11] for the 

function  takes the form 

lim
→  ,   ,    , ( real) 

					 	 lim
→  ,  ,                           (82) 

Therefore,  

                  = lim
→  ,  ,  

                  = lim
→

, , , ,   
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                  = lim
→

 . ,
                           (83) 

For real , from (75) it follows that  

,   , ,   ,
  

															 	  ,
                           (84) 

Hence,   

            = , ∞ , ∞       by (66) 

           =  , ,                by (83) 

           =  ,                               (85) 

As , ,  are real-valued twice differentiable functions of  over (-∞,∞), the 

differential operator  generated by (2) is a symmetric operator on (-∞,∞). 

Put , ,   , , , ( real)                       (86) 

(For  notation See Chakravarty and Roy Paladhi [5]) 

Then the operator 

 : → , ,                             (87) 

(i.e;  , ,      

is a linear symmetric operator on ∞,∞  

(See Chakravarty and Roy Paladhi [5]), , ,   being a Carleman type kernel. 

We now argue as in Titchmarsh ([12], Pp-55). (Also Ref Chakravarty and Roy Paladhi [5], Pp- 

160-161) so as to obtain ultimately 

                              (88) 

where   is the resolution of the identity of the self-adjoint differential operator  generated 

by the given differential equation (1). 

Thus we obtain the follow theorem. 

Theorem 10: The matrix  ,  (-real) defined by (40) generates an operator   given by 

(87) which is associated with the differential operator  given by (2).  generated by the 

differential expression (1) is associated in the same way as the resolution of the identity of a 

given operator  is associated with .   is the resolution of the identity of the operator . 
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The matrix  ,  generating the operator   may be called the resolution matrix of the 

operator . 
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