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1. Introduction

Variational inequality was introduced by Stampacchia [15] in the early sixties. It has

been shown that a wide class of linear, nonlinear problems arising in various branches

of mathematical and engineering sciences can be studied within the unified and general

framework of variational inequalities. Variational inequalities have been generalized and

extended in several directions using novel techniques. Variational inequalities and gen-

eralized variational inequalities are powerful tools for studying nonconvex optimization

∗ Corresponding author

E-mail addresses: salahuddin12@mailcity.com(Salahuddin), ahmad kalimuddin@yahoo.co.in (M. K.

Ahmad)

Received November 30, 2011

125



126 SALAHUDDIN∗ AND M.K. AHMAD

problems, nonconvex and non differential optimization problems respectively, for example

see the references [4, 5, 7, 12, 16].

Recently by using the combination of demicontinuity and pseudomonotonicity, Fang

and Huang [7] studied a new class of vector F-complementarity problems with demipseudo

monotone mappings in Banach spaces. They also presented the solvability of this class

of vector F-complementarity problems with demipseudomonotone mappings and finite

dimensional continuous mappings in reflexive Banach spaces. For some related works we

refer to [10, 12, 13, 18].

2. Preliminaries

Let X, Y be two arbitrary real Hausdorff topological vector spaces, L(X, Y ) denotes

the space of all continuous linear mapping from X to Y . Let K be a nonempty set of

X,C : K → Y be a set valued mapping such that for each x ∈ K,C(x) is a proper

closed convex pointed cone with apex at the origin and intC(x) 6= ∅. The mappings

F : K → Y, g : K → K,A : L(X, Y ) × L(X, Y ) → L(X, Y ) and S, T : K → 2L(X,Y ) are

given.

For each x ∈ K, we define the relations ≤C(x) and 6≤C(x) as follows:

(i) z ≤C(x) y ⇔ y − z ∈ C(x)

(ii) z �C(x) y ⇔ y − z 6∈ C(x).

If we replace the set C(x) by intC(x) we can define the relations ≤intC(x) and �intC(x). If

the mapping C(x) is constant then we write C(x) as C.

Now consider the set valued vector F-implicit variational inequality problems (weak)

: Find x0 ∈ K for some s0 ∈ S(x0), t0 ∈ T (x0) such that

(1) 〈A(s0, t0), y − g(x0)〉+ F (y)− F (g(x0)) �intC(x0) 0, ∀ y ∈ K.

If s0 and t0 does not depend on y, that is, to find an x0 ∈ K with s0 ∈ S(x0), t0 ∈

T (x0) such that

(2) 〈A(s0, t0), y − g(x0)〉+ F (y)− F (g(x0)) �intC(x0) 0,∀y ∈ K,
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we call this solution a strong solutions of the set valued vector F-implicit variational

inequality.

Lemma 2.1. [6] Let K be a nonempty subset of the Hausdorff topological vector space X.

Let G : K ⇒ X be a KKM mapping such that for any y ∈ K,G(y) is closed and G(y∗) is

compact for some y∗ ∈ K. Then there exists x∗ ∈ K such that x∗ ∈ G(y) for all y ∈ K.

Definition 2.1. Let Ω be a vector space, Σ a topological vector space, K a nonempty

convex subset of Ω, C : K ⇒ Σ a set valued mapping such that for each x ∈ K,C(x) is

a proper closed convex pointed cone with apex at the origin and intC(x) 6= ∅. For any

x ∈ K,ψ : K → Σ is said to be

(i) C(x)-convex iff ψ(αx1 + (1 − α)x2) ≤C(x) αψ(x1) + (1 − α)ψ(x2) for x1, x2 ∈ K

and α ∈ [0, 1],

(ii) Properly quasi C(x)-convex iff we have either

ψ(αx1 + (1− α)x2) ≤C(x) ψ(x1) or

ψ(αx1 + (1− α)x2) ≤C(x) ψ(x2) for x1, x2 ∈ K and α ∈ [0, 1].

Definition 2.2.[12] Let Ω be a vector space, Σ a topological vector space, K a nonempty

convex subset of Ω, C : K ⇒ Σ a set valued mapping such that for each x ∈ K,C(x) is

a proper closed convex pointed cone with apex at the origin and intC(x) 6= ∅. If A is a

nonempty subset of Σ, therefore any x ∈ K:

(i) a point z ∈ A is called a minimal point of A with respect to the cone C(x) iff

A ∩ (z −C(x)) = {z};MinC(x)A is the set of all minimal points of A with respect

to the cone C(x);

(ii) a point z ∈ A is called a maximal point of A with respect to the cone C(x) iff

A∩ (z+C(x)) = {z};MaxC(x)A is the set of all maximal points of A with respect

to the cone C(x);

(iii) a point z ∈ A is called a weakly minimal point of A with respect to the cone C(x)

iff A ∩ (z − intC(x)) = ∅;Min
C(x)
w A is the set of all weakly minimal points of A

with respect to the cone C(x);
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(iv) a point z ∈ A is called a weakly maximal point of A with respect to the cone C(x)

iff A ∩ (z + intC(x)) = ∅;Max
C(x)
w A is the set of all weakly maximal point of A

with respect to the cone C(x).

Lemma 2.2. [14] Let X, Y, Z be the real topological vector spaces and K,C be two

nonempty subsets of X and Y respectively. Let F : K × C ⇒ Z, S : K ⇒ Y be set

valued mappings, F and S be the upper semicontinuous with nonempty compact values,

then the multivalued mapping T : K ⇒ Z defined by

T (x) =
⋃

y∈S(x)

F (x, y) = F (x, S(x))

is upper semicontinuous with nonempty compact values.

Definition 2.3. Let X and Y be real topological vector spaces. The set valued mapping

T : X ⇒ Y is a closed mapping iff the following condition holds:

the net {xα} → x0, {yα} → y0, yα ∈ T (xα)⇒ y0 ∈ T (x0).

3. Main results

1. Existence of weak solution for set valued vector F-implicit

variational inequality (Weak)

Theorem 3.1. Let X, Y be real Hausdorff topological vector spaces, K a nonempty closed

convex subset of X,C : K ⇒ Y a set valued mapping such that for each x ∈ K,C(x)

is a proper closed convex pointed cone with apex at the origin and intC(x) 6= ∅. Let

A : L(X, Y )× L(X, Y )→ L(X, Y ), v : K ×K → Y, F : K → Y, g : K → K and S, T :

K ⇒ 2L(X,Y ) be the mappings. Suppose that

(i) 0 ≤C(x) v(x, x) for all x ∈ K,

(ii) for each x ∈ K, t ∈ T (x), s ∈ S(x) such that

v(x, y)− 〈A(s, t), y − g(x)〉 ≤C(x) F (y)− F (g(x)), for all y ∈ K;

(iii) for each x ∈ K, the set

{y ∈ K : 0 �C(x) v(x, y)} is convex;
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(iv) there is a nonempty compact convex subset D of K such that for every x ∈ K\D,

there is y ∈ D such that for all t ∈ T (x), s ∈ S(x)

〈A(s, t), y − g(x)〉 ≤intC(x) F (g(x))− F (y);

(v) for each y ∈ K, the set

{x ∈ K : 〈A(s, t), y − g(x)〉 ≤intC(x) F (g(x))− F (y), for all s ∈ S(x), t ∈ T (x)}

is open in K.

Then there exists x0 ∈ K which is a solution of the set valued vector F-implicit variational

inequality (weak). That is there is x0 ∈ K such that

〈A(s0, t0), y−g(x0)〉+F (y)−F (g(x0)) �intC(x0) 0, for all y ∈ K and s0 ∈ S(x0), t0 ∈ T (x0).

Proof. Define Q : K ⇒ D by

Q(y) = {x ∈ D : 〈A(s, t), y−g(x)〉 �intC(x) F (g(x))−F (y) for s ∈ S(x), t ∈ T (x)},∀ y ∈ K.

From condition (v) the set Q(y) is closed in K and compact in D because of the com-

pactness of D. Next we claim that the family {Q(y) : y ∈ K} has the finite intersection

property, then the whole intersection
⋂
y∈K

Q(y) is nonempty and any element in the inter-

section
⋂
y∈K

Q(y) is a solution of (1). For any given nonempty finite subset N of K, let

DN = conv{D ∪N} the convex hull of D ∪N . Then DN is a compact convex subset of

K. Define P,R : DN ⇒ DN by

P (y) = {x ∈ DN : 〈A(s, t), y − g(x)〉 �intC(x) F (g(x))− F (y), for s ∈ S(x), t ∈ T (x)}.

R(y) = {x ∈ DN : 0 ≤C(x) v(x, y)} for each y ∈ DN .

From (i) and (ii) we have

(3) 0 ≤C(y) v(y, y), for all y ∈ DN ,

and each y ∈ K, there are s ∈ S(y), t ∈ T (y) such that

v(y, y)− 〈A(s, t), y − g(y)〉 ≤C(y) F (y)− F (g(y)).
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Hence

0 ≤C(y) 〈A(s, t), y − g(y)〉+ F (y)− F (g(y))

and then y ∈ P (y) for all y ∈ DN .

Since P has closed valued in DN , for each y ∈ DN , Q(y) = P (y)
⋂
D. Next show that

the whole intersection of the family {P (y) : y ∈ DN} is nonempty. Now we can deduce

that the family {Q(y) : y ∈ K} has the finite intersection property because N ⊂ DN and

(iv). In order to deduce the conclusion of our theorem, we can apply Lemma 2.1, if we

claim that P is a KKM mapping. Indeed if P is not a KKM mapping, neither is R, since

R(y) ⊂ P (y) for each y ∈ DN , then there is a nonempty finite subset M of DN such that

convM 6⊂
⋃
u∈M

R(u).

Thus there is an element ū ∈ convM ⊂ DN such that ū 6∈ R(u) for all u ∈ M , that is

0 �C(ū) v(ū, u) for all u ∈M . By (iii)

ū ∈ convM ⊂ {y ∈ K : 0 �C(ū) v(ū, y)}

and hence 0 �C(ū) v(ū, ū) which contradict (3). Hence R is a KKM mapping and so is

P . Therefore there exists x0 ∈ K, s0 ∈ S(x0), t0 ∈ T (x0) which is a solutions of the set

valued vector F-implicit variational inequality (weak). This completes the proof.

Theorem 3.2. Let X, Y,K,C,A, F, g, S, T be as in Theorem 3.1. Assume that for each

x ∈ K,F is C(x)-convex on K such that

(i) for each x ∈ K, there are s ∈ S(x), t ∈ T (x) such that

〈A(s, t), x− g(x)〉+ F (x)− F (g(x)) �intC(x) 0;

(ii) there is a nonempty compact convex subset D of K such that for every x ∈

K\D, y ∈ D, s ∈ S(x), t ∈ T (x) and

〈A(s, t), y − g(x)〉 ≤intC(x) F (g(x))− F (y);

(iii) for each y ∈ K, the set

{x ∈ K : 〈A(s, t), y − g(x)〉 ≤intC(x) F (g(x))− F (y), for all s ∈ S(x), t ∈ T (x)}
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is open in K. Then there are x0 ∈ K, s0 ∈ S(x0), t0 ∈ T (x0), which is a weak solutions of

problem (1).

Proof. For any given nonempty finite subset N of K, let DN = conv(D ∪N), then DN

is a nonempty compact convex subset of K. Define P : DN ⇒ DN as in the proof of

Theorem 3.1 and for each y ∈ K let

Q(y) = {x ∈ D : 〈A(s, t), y − g(x)〉 �intC(x) F (g(x))− F (y) for some s ∈ S(x), t ∈ T (x)}.

We remark that for each x ∈ DN , P (x) is nonempty and closed since x ∈ P (x) by

conditions (i) and (ii). For each y ∈ K,Q(y) is compact in D. Next we claim that P is a

KKM-mapping. Indeed if not there is a nonempty finite subset M of DN such that conv

M 6⊂
⋃
x∈M

P (x). There is an x∗ ∈ convM ⊂ DN such that

〈A(s, t), x− g(x∗)〉 ≤intC(x∗) F (g(x∗))− F (x) for all x ∈M, s ∈ S(x∗), t ∈ T (x∗).

Since F is C(x∗)-convex, the mapping

x→ 〈A(s, t), x− g(x∗)〉+ F (x)− F (g(x))

is C(x∗)-convex on DN . Hence we can deduce that

〈A(s, t), x∗ − g(x∗)〉 ≤intC(x∗) F (g(x∗))− F (x∗),

for all s ∈ S(x∗), t ∈ T (x∗), this contradicts the condition (i) therefore P is a KKM-

mapping and by Lemma 2.1, we have ⋂
x∈DN

P (x) 6= ∅.

Note that for any u ∈
⋂

x∈DN

P (x) we have u ∈ D by condition (ii). Hence we have

⋂
y∈N

Q(y) =
⋂
y∈N

(P (y)
⋂

D) 6= ∅,

for each nonempty finite subset N of K. Therefore, the whole intersection
⋂
y∈K

Q(y) is

nonempty. Let x0 ∈
⋂
y∈K

Q(y). Then x0 ∈ K, s0 ∈ S(x0), t0 ∈ T (x0) is a solution of

problem (1)(weak). This completes the proof.
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2. Existence of strong solutions for set valued vector F-implicit

variational inequality (Weak)

In this section we discuss the existence for the strong solutions of set valued vector

F-implicit variational inequality. We define the condition (**), it is obviously full filled if

y ∈ R and C(x) = [0,∞) for all x ∈ K.

Theorem 3.3. Let X be a real Banach space, Y,K,C,D,A, F, g and v be as in Theo-

rem 3.1, under the assumptions of Theorem 3.1, we have a weak solution x0 of the (1)

(weak) with s0 ∈ S(x0), t0 ∈ T (x0). In addition if K is compact, x → Y \(−intC(x))

is a closed mapping on K,F is C(x0)-convex and continuous on K, the mappings A :

L(X, Y )× L(X, Y )→ L(X, Y ), g : K → K are continuous, S, T : K ⇒ 2L(X,Y ) is upper

semicontinuous with nonempty compact valued mapping. Assume that

(∗∗) MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

MinC(x0)
w

⋃
x∈K

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)} ⊂

MinC(x0)
w

⋃
x∈K

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)}+ C(x0),∀s ∈ S(x0), t ∈ T (x0).

Assume also that

(i) for any x ∈ K, if

δ ∈MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)}

and δ can not be compared with

〈A(s0, t0), x− g(x0)〉 − F (g(x0)) + F (x)

which does not equal to δ, then

δ �intC(x0) 0,

(ii) if

MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

MinC(x0)
w

⋃
x∈K

{〈A(s, t), x−g(x0)〉−F (g(x0))+F (x)} ⊂ Y \(−intC(x0)),

there exists s ∈ S(x0), t ∈ T (x0) such that

MinC(x0)
w

⋃
x∈K

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)} ⊂ Y \(−intC(x0)).
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Then x0 is a strong solution of the problem (1)(weak) that is there exists s0 ∈ S(x0), t0 ∈

T (x0) such that

〈A(s0, t0), x− g(x0)〉+ F (x)− F (g(x0)) �intC(x0) 0,∀x ∈ K.

Further more, the set of all strong solutions of (1)(weak) is compact.

Proof.

Since F is C(x0)-convex on K, the mapping

x→ 〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)

is C(x0)-convex on K. From Theorem 3.1, we know that x0 ∈ K such that (1) holds for

all x ∈ K and for some s0 ∈ S(x0), t0 ∈ T (x0). Then

∀γ ∈MinC(x0)
⋃
x∈K

MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)},

by (i) we have γ �intC(x) 0.

From condition (**), Ferro Minimax Theorem [8] tells us, for every

α ∈MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

MinC(x0)
w

⋃
x∈K

{〈A(s, t), x−g(x0)〉−F (g(x0))+F (x)}, α �intC(x0) 0.

This implies that

MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

MinC(x0)
w

⋃
x∈K

{〈A(s, t), x−g(x0)〉−F (g(x0))+F (x)} ⊂ Y \(−intC(x0)).

From (ii) there is s0 ∈ S(x0), t0 ∈ T (x0) such that

MinC(x0)
w

⋃
x∈K

{〈A(s0, t0), x− g(x0)〉 − F (g(x0)) + F (x)} ⊂ Y \(−intC(x0)).

Hence

∀ρ ∈
⋃
x∈K

{〈A(s0, t0), x− g(x0)〉 − F (g(x0)) + F (x)},

we have that ρ �intC(x0) 0. Hence there exists s0 ∈ S(x0), t0 ∈ T (x0) such that

〈A(s0, t0), x− g(x0)〉 − F (g(x0)) + F (x) �intC(x0) 0, ∀x ∈ K
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such that x0 is a strong solution of the problem (1)(weak). Finally, to see that the solution

set of problem (1) (weak) is compact. It is sufficient to prove that the solution set is closed

due to the coercivity condition (iv) of Theorem 3.1. To this end, let Γ denote the solution

set of (1)(weak). Suppose {xn} ⊂ Γ, which converges to some ρ. Fix any y ∈ K, each n

there is sn ∈ S(xn), tn ∈ T (xn) such that

(4) 〈A(sn, tn), y − g(xn)〉 �intC(xn) F (g(xn))− F (y).

Since S, T are upper semicontinuous with nonempty compact values and the set {xn}∪{p}

is compact, therefore, without loss of generality, we may assume that the sequence {sn}

converges to s and also {tn} converges to t. Then s ∈ S(p), t ∈ T (p) and

F (g(xn))− F (y)− 〈A(sn, tn), y − g(xn)〉 6∈ intC(xn).

This implies that

F (g(xn))− F (y)− 〈A(sn, tn), y − g(xn)〉 ∈ Y \intC(xn)

we note that

F (g(xn))− F (y)− 〈A(sn, tn), y − g(xn)〉

(5) = F (g(xn))− F (y)− 〈A(sn, tn)− A(s, t), y − g(xn)〉 − 〈A(s, t), y − g(xn)〉

= F (g(xn))−F (y)− 〈A(sn, tn)−A(s, t), y− g(xn)〉 − 〈A(s, t), (y− g(xn))− (y− g(p))〉 −

〈A(s, t), y − g(p)〉.

Since {xn} ∪ {p} is compact and g is continuous g({xn}
⋃
{p}) is also compact. Hence it

is bounded. Thus

〈A(sn, tn)− A(s, t), y − g(xn)〉 → 0 as n→∞.

〈A(s, t), (y − g(xn))− (y − g(p))〉 = 〈A(s, t), g(p)− g(xn)〉 → 0 as n→∞

by continuity of g. Since F is continuous and x→ Y \intC(x) is a closed mapping on K,

from (5) we have

F (g(p))− F (y)− 〈A(s, t), y − g(p)〉
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= lim
n→∞

F (g(xn))− F (y)− 〈A(sn, tn), y − g(xn)〉 ∈ Y \intC(p),

we obtain

〈A(s, t), y − g(p)〉+ F (y)− F (g(p)) �intC(p) 0.

Hence p ∈ Γ and Γ is closed. This completes the proof.

Next, we consider the result of existence theorem for the strong solutions of (1)(weak)

with the set K without compactness.

Theorem 3.4. Let X be a finite dimensional real Banach space, Y,K,C,D,A, F, g, S, T

and v be as in Theorem 3.1. Under the assumptions of Theorem 3.1, we have a weak

solution x0 of the problem (1)(weak) with s0 ∈ S(x0), t0 ∈ T (x0). In addition, if F

is C(x0)-convex, x → Y \(−intC(x)) is a closed mapping on K, the mappings A :

L(X, Y ) × L(X, Y ) → L(X, Y ), g : K → K are continuous, S, T : K ⇒ 2L(X,Y ) is

upper semicontinuous with nonempty compact values. Assume for any nonempty compact

subset M of K:

(∗ ∗ ∗) MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

MinC(x0)
w

⋃
x∈M

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (y)}

⊂MinC(x0)
w

⋃
x∈M

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)}+ C, ∀s ∈ S(x0), t ∈ T (x0).

Assume also that:

(i) for any fixed x ∈M , if

δ ∈MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)}

and δ can not be compared with

〈A(s0, t0), x− g(x0)〉 − F (g(x0)) + F (x)

which is not equal to δ, then

δ �intC(x0) 0,

(ii) if

MaxC(x0)
⋃

s∈S(x0),t∈T (x0)

MinC(x0)
w

⋃
x∈M

{〈A(s, t), x−g(x0)〉−F (g(x0))+F (x)} ⊂ Y \(−intC(x0)),
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there exists s ∈ S(x0), t ∈ T (x0) such that

MinC(x0)
w

⋃
x∈M

{〈A(s, t), x− g(x0)〉 − F (g(x0)) + F (x)} ⊂ Y \(−intC(x0)).

Then, x0 is a strong solution of the problem (1)(weak), that is there exists s0 ∈ S(x0), t0 ∈

T (x0) such that

〈A(s0, t0), x− g(x0)〉+ F (x)− F (g(x0)) �intC(x0) 0, ∀ x ∈ K.

Furthermore, the set of all strong solutions of the problem (1)(weak) is compact.

Proof. Let B̄(0, r) = {x ∈ X : ‖x‖ ≤ r} for each r > 0; then the set Kr = B̄(0, r)
⋂
K

is compact in X. If Kr 6= ∅ and we replace K by Kr in Theorem 3.3, all the conditions of

Theorem 3.3 hold. Hence by Theorem 3.3, there exists s0 ∈ S(x0), t0 ∈ T (x0) such that

(6) 〈A(s0, t0), z − g(x0)〉+ F (z)− F (g(x0)) �intC(x0) 0, ∀ z ∈ Kr.

Let us choose r > ‖g(x0)‖. For any x ∈ K, choose α ∈ (0, 1] small enough such that

(1− α)g(x0) + αx ∈ Kr. Putting z = (1− α)g(x0) + αx in (6), we have

〈A(s0, t0), α(x− g(x0))〉+ F ((1− α)g(x0) + αx)− F (g(x0)) �intC(x0) 0.

We note that

〈A(s0, t0), α(x− g(x0))〉+ F ((1− α)g(x0) + αx)− F (g(x0)) ≤C(x0)

α〈A(s0, t0), x− g(x0)〉+ (1− α)F (g(x0)) + αF (x)− F (g(x0))

= α{〈A(s0, t0), x− g(x0)〉+ F (x)− F (g(x0))}

implies that

〈A(s0, t0), x− g(x0)〉+ F (x)− F (g(x0)) �intC(x0) 0,∀x ∈ K.

This completes the proof.
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