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Abstract. The inequality of Popoviciu for convex functions is generalized via Abel-Gontscharoff interpolating

polynomial for higher order convex functions. Bounds are found for new identities, exponential convexity and

Cauchy means are presented for linear functionals coming from the general inequality.
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1. Introduction and preliminary results

A characterization of convex function established by T. Popoviciu [14] is studied by many

people (see [15, 13] and references with in). For recent work, we refer [5, 8, 9, 10, 11]. The

following form of Popoviciu’s inequality is by Vasić and Stanković in [15] (see page 173 [13]):
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Theorem 1.1. Let m,k ∈ N, m ≥ 3, 2 ≤ k ≤ m− 1, [α,β ] ⊂ R, x = (x1, ...,xm) ∈ [α,β ]m,

p = (p1, ..., pm) be a positive m-tuple such that ∑
m
i=1 pi = 1. Also let f : [α,β ]→R be a convex

function. Then

(1) pk,m(x,p; f )≤ m− k
m−1

p1,m(x,p; f )+
k−1
m−1

pm,m(x,p; f ),

where

pk,m(x,p; f ) = pk,m(x,p; f (x)) :=
1

Cm−1
k−1

∑
1≤i1<...<ik≤m

(
k

∑
j=1

pi j

)
f


k
∑
j=1

pi jxi j

k
∑
j=1

pi j


is the linear functional with respect to f .

By inequality (1), we write

(2) ϒ(x,p; f ) :=
m− k
m−1

p1,m(x,p; f )+
k−1
m−1

pm,m(x,p; f )− pk,m(x,p; f ).

Remark 1.2. It is important to note that under the assumptions of Theorem 1.1, if the function

f is convex then ϒ(x,p; f )≥ 0 and ϒ(x,p; f ) = 0 for f (x) = x or f is constant function.

The mean value theorems and exponential convexity of the linear functional ϒ(x,p; f ) are

given in [8] for a positive m-tuple p. Some special classes of convex functions are considered to

construct the exponential convexity of ϒ(x,p; f ) in [8]. In [9] (see also [5]), the results related

to ϒ(x,p; f ) are generalized with help of Green function and n-exponential convexity is proved

instead of exponential convexity.

The presentation of the present paper is: in section 2 of this paper, we use Abel-Gontscharoff

interpolating polynomial to generalize the Popoviciu inequality. In section 3, the Čebyšev func-

tional is used to find the bounds for new identities. Grüss type and Ostrowski type inequalities

related to generalized Popoviciu inequalities are constructed. In section 4, higher order convex-

ity is used to produce exponential convexity of positive linear functionals coming from section

2. Last section is devoted to the respective Cauchy means. We employ the similar method as

adopted in [7] for Steffensen’s inequality. Hence the work in this paper is the extension of [9].
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Consider the Green function G : [α,β ]× [α,β ]→ R defined as

(3) G(t,s) =


(t−β )(s−α)

β−α
, α ≤ s≤ t;

(s−β )(t−α)
β−α

, t ≤ s≤ β .

The function G is convex and continuous w.r.t s and due to symmetry also w.r.t t.

For any function φ : [α,β ]→ R, φ ∈C2([α,β ]), we have

(4) φ(x) =
β − x
β −α

φ(α)+
x−α

β −α
φ(β )+

∫
β

α

G(x,s)φ ′′(s)ds,

where the function G is defined in (3) (see [16]).

The following theorem is Abel-Gontscharoff theorem (see [1]) for two points with integral

remainder.

Theorem 1.3. Let n, l ∈ N, n≥ 2, 0≤ l ≤ n−1 and φ ∈Cn([α,β ]). Then we have

(5) φ(s) = Tn−1(α,β ,s;φ)+R(s;φ),

where Tn−1(α,β ,s;φ) is the Abel-Gontscharoff interpolating polynomial of degree n−1 for two

points, i.e.

Tn−1(α,β ,s;φ) =
l

∑
v=0

(s−α)v

v!
φ
(v)(α)+

n−l−2

∑
w=0

[ w

∑
v=0

(s−α)l+1+v(α−β )w−v

(l +1+ v)!(w− v)!

]
φ
(l+1+w)(β )

and the remainder is given by

R(s;φ) =
∫

β

α

Gn(s, t)φ (n)(t)dt,

where as Gn(s, t) is defined by

(6) Gn(s, t) =
1

(n−1)!


l

∑
v=0

(
n−1

v

)
(s−α)v(α− t)n−v−1, α ≤ t ≤ s,

−
n−l

∑
v=l+1

(
n−1

v

)
(s−α)v(α− t)n−v−1, s≤ t ≤ β .

Further, for α ≤ s, t ≤ β the following inequalities hold

(7) (−1)n−l−1 ∂ vGn(s, t)
∂ sv ≥ 0, 0≤ v≤ l,

(8) (−1)n−l ∂ vGn(s, t)
∂ sv ≥ 0, l +1≤ v≤ n−1.
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In the next section, we will present our main results using Green’s function and Abel-Gontscharoff’s

theorem with the integral remainder.

2. Generalization of Popoviciu’s Inequality

Motivated by identity (2), we construct the following identity with help of (4) and Abel-Gontscharoff’s

interpolating polynomial for two points.

Theorem 2.1. Let n, l ∈ N, n ≥ 4, 0 ≤ l ≤ n− 1 and φ ∈Cn([α,β ]) and let m,k ∈ N, m ≥ 3,

2 ≤ k ≤ m− 1, [α,β ] ⊂ R, x = (x1, ...,xm) ∈ [α,β ]m, p = (p1, ..., pm) be a real m-tuple such

that ∑
k
j=1 pi j 6= 0 for any 1≤ i1 < ... < ik ≤ m and ∑

m
i=1 pi = 1. Also let

k
∑

j=1
pi j xi j

k
∑

j=1
pi j

∈ [α,β ] for

any 1≤ i1 < ... < ik ≤ m with G and Gn defined in (3) and (6) respectively. Then we have the

following identity:

(9) ϒ(x,p;φ(x)) =
l

∑
v=0

φ (v+2)(α)

v!

∫
β

α

ϒ(x,p;G(x,s))(s−α)vds

+
n−l−4

∑
w=0

[ w

∑
v=0

(−1)w−v(β −α)w−vφ (l+3+w)(β )

(l +1+ v)!(w− v)!

]∫
β

α

ϒ(x,p;G(x,s))(s−α)l+1+vds

+
∫

β

α

∫
β

α

ϒ(x,p;G(x,s))Gn−2(s, t)φ (n)(t)dtds.

Proof. Using (4) in (2) and following Remark 1.2, we have

(10) ϒ(x,p;φ(x)) =
∫

β

α

ϒ(x,p;G(x,s))φ
′′
(s)ds.

By Theorem 1.3, φ
′′
(s) can be expressed as:

(11) φ
′′
(s) =

l

∑
v=0

(s−α)v

v!
φ
(v+2)(α)+

n−l−4

∑
w=0

[ w

∑
v=0

(s−α)l+1+v(α−β )w−v

(l +1+ v)!(w− v)!

]
φ
(l+3+w)(β )

+
∫

β

α

Gn−2(s, t)φ n(t)dt.

Using (11) in (10), we get (9). �

In the following theorem we obtain generalizations of Popoviciu’s inequality for n−convex

functions.
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Theorem 2.2. Let n, l ∈N, n≥ 4, 0≤ l≤ n−1 and let m,k∈N, m≥ 3, 2≤ k≤m−1, [α,β ]⊂

R, x = (x1, ...,xm) ∈ [α,β ]m, p = (p1, ..., pm) be a real m-tuple such that ∑
k
j=1 pi j 6= 0 for any

1≤ i1 < ... < ik ≤ m and ∑
m
i=1 pi = 1. Also let

k
∑

j=1
pi j xi j

k
∑

j=1
pi j

∈ [α,β ] for any 1≤ i1 < ... < ik ≤ m

with G and Gn defined in (3) and (6) respectively. If φ : [α,β ]→ R is n-convex function and

(12)
∫

β

α

ϒ(x,p;G(x,s))Gn−2(s, t)ds≥ 0, t ∈ [α,β ].

Then

(13) ϒ(x,p;φ(x))≥
l

∑
v=0

φ (v+2)(α)

v!

∫
β

α

ϒ(x,p;G(x,s))(s−α)vds

+
n−l−4

∑
w=0

[ w

∑
v=0

(−1)w−v(β −α)w−vφ (l+3+w)(β )

(l +1+ v)!(w− v)!

]∫
β

α

ϒ(x,p;G(x,s))(s−α)l+1+vds.

Proof. Since the function φ is n-convex, therefore without loss of generality we can assume that

φ is n-times differentiable and φ (n)(x) ≥ 0 for all x ∈ [α,β ] ( see [13], p. 16 ). Hence we can

apply Theorem 2.1 to obtain (13). �

Remark 2.3. As from (7) we have (−1)n−l−3Gn−2(s, t)≥ 0, therefore for the cases when (n =

even, l = odd) and (l = even, n = odd), it is sufficient to assume that ϒ(x,p;G(x,s))≥ 0, s ∈

[α,β ], instead of assumption (12) in Theorem 2.2.

Now, we give generalization of Popoviciu’s inequality for m-tuples. As the weights are pos-

itive in Theorem 1.1, therefore in next theorem p = (p1, ..., pm) be a positive m-tuple such that

∑
m
i=1 pi = 1.

Theorem 2.4. Let n, l,m,k ∈ N such that n≥ 4, 0≤ l ≤ n−1, m ≥ 3 and 2≤ k ≤ m−1, also

let [α,β ] ⊂ R, x = (x1, ...,xm) ∈ [α,β ]m and φ : [α,β ]→ R be n-convex function, with G and

Gn defined in (3) and (6) respectively.

(i) If (n = even, l = odd) or (l = even, n = odd). Then

(14) ϒ(x,p;φ(x))≥
l

∑
v=0

φ (v+2)(α)

v!

∫
β

α

ϒ(x,p;G(x,s))(s−α)vds

+
n−l−4

∑
w=0

[ w

∑
v=0

(−1)w−v(β −α)w−vφ (l+3+w)(β )

(l +1+ v)!(w− v)!

]∫
β

α

ϒ(x,p;G(x,s))(s−α)l+1+vds.
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Moreover if φ (v+2)(α)≥ 0 for v = 0,1,2, ..., l and φ (l+3+w)(β )≥ 0 if w−v is even and

φ (l+3+w)(β )≤ 0 if w−v is odd, for v= 0, . . . ,w and w= 0, . . . ,n− l−4, then the R.H.S.

of (14) will be non negative, that is (1) holds.

(ii) If (n = even, l = even) or (l = odd, n = odd). Then (14) holds in reverse direction.

Moreover if φ (v+2)(α) ≤ 0 for v = 0,1,2, ..., l and φ (l+3+w)(β ) ≤ 0 if w− v is even

and φ (l+3+w)(β ) ≥ 0 if w− v is odd, for v = 0, . . . ,w and w = 0, . . . ,n− l−4, then the

R.H.S. of the reverse inequality in (14) will be non positive, that is reverse inequality in

(1) holds.

Proof. By using (7) we have (−1)n−l−3Gn−2(s, t)≥ 0, α ≤ s, t ≤ β , therefore if (n= even, l =

odd) or (l = even, n = odd) then Gn−2 ≥ 0. Also as G is convex so by Remark 1.2 and

non negativity of Gn−2, the inequality (12) holds for m-tuples. Hence by Theorem 2.2, the

inequality (14) holds. By using other conditions the non negativity of the R.H.S. (14) is quite

understandable.

Similarly, we can prove (ii). �

3. Bounds for Identities Related to Generalization of Popoviciu’s Inequal-

ity

For two Lebesgue integrable functions f ,h : [α,β ]→ R, we consider the Čebyšev functional

∆( f ,h) =
1

β −α

∫
β

α

f (t)h(t)dt− 1
β −α

∫
β

α

f (t)dt.
1

β −α

∫
β

α

h(t)dt.

In [4] the authors proved the following theorems:

Theorem 3.1. Let f : [α,β ]→ R be a Lebesgue integrable function and h : [α,β ]→ R be an

absolutely continuous function with (.−α)(β − .)[h′]2 ∈ L[α,β ]. Then we have the inequality

(15) |∆( f ,h)| ≤ 1√
2
[∆( f , f )]

1
2

1√
β −α

(∫
β

α

(x−α)(β − x)[h′(x)]2dx
) 1

2

.

The constant 1√
2

in (15) is the best possible.
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Theorem 3.2. Assume that h : [α,β ]→R is monotonic nondecreasing on [α,β ] and f : [α,β ]→

R be an absolutely continuous with f ′ ∈ L∞[α,β ]. Then we have the inequality

(16) |∆( f ,h)| ≤ 1
2(β −α)

|| f ′||∞
∫

β

α

(x−α)(β − x)dh(x).

The constant 1
2 in (16) is the best possible.

In the sequel, we consider above theorems to derive generalizations of the results proved in

the previous section. In order to avoid many notions let us denote

(17) R(t) =
∫

β

α

ϒ(x,p;G(x,s))Gn−2(s, t)ds≥ 0, t ∈ [α,β ],

Consider the Čebyšev functional ∆(R,R) given as:

(18) ∆(R,R) =
1

β −α

∫
β

α

R2(t)dt−
(

1
β −α

∫
β

α

R(t)dt
)2

,

Theorem 3.3. Let n, l ∈N, n≥ 4, 0≤ l ≤ n−1, φ ∈Cn([α,β ]) with (.−α)(β − .)[φ (n+1)]2 ∈

L[α,β ] and let m,k ∈ N, m ≥ 3, 2 ≤ k ≤ m− 1, [α,β ] ⊂ R, x = (x1, ...,xm) ∈ [α,β ]m, p =

(p1, ..., pm) be a real m-tuple such that ∑
k
j=1 pi j 6= 0 for any 1≤ i1 < ... < ik ≤ m and ∑

m
i=1 pi =

1. Also let

k
∑

j=1
pi j xi j

k
∑

j=1
pi j

∈ [α,β ] for any 1≤ i1 < ... < ik ≤ m with G, Gn and R defined in (3), (6)

and (17) respectively. Then

(19) ϒ(x,p;φ(x)) =
l

∑
v=0

φ (v+2)(α)

v!

∫
β

α

ϒ(x,p;G(x,s))(s−α)vds

+
n−l−4

∑
w=0

[ w

∑
v=0

(−1)w−v(β −α)w−vφ (l+3+w)(β )

(l +1+ v)!(w− v)!

]∫
β

α

ϒ(x,p;G(x,s))(s−α)l+1+vds

+
φ (n−1)(β )−φ (n−1)(α)

(β −α)

∫
β

α

R(t)dt +Kn(α,β ;φ),

where the remainder Kn(α,β ;φ) satisfies the bound

(20) |Kn(α,β ;φ)| ≤
√

β −α√
2

[∆(R,R)]
1
2

∣∣∣∣∫ β

α

(t−α)(β − t)[φ (n+1)(t)]2dt
∣∣∣∣ 1

2

.
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Proof. If we apply Theorem 3.1 for f 7→R and h 7→ φ (n), we get∣∣∣∣ 1
β −α

∫
β

α

R(t)φ (n)(t)dt− 1
β −α

∫
β

α

R(t)dt.
1

β −α

∫
β

α

φ
(n)(t)dt

∣∣∣∣
≤ 1√

2
[∆(R,R)]

1
2

1√
β −α

∣∣∣∣∫ β

α

(t−α)(β − t)[φ (n+1)(t)]2dt
∣∣∣∣ 1

2

.

Hence, we have∫
β

α

R(t)φ (n)(t)dt =
φ (n−1)(β )−φ (n−1)(α)

(β −α)

∫
β

α

R(t)dt +Kn(α,β ;φ),

where the remainder Kn(α,β ;φ) satisfies the estimation (20). Now from identity (9) , we obtain

(19).

�

The following Grüss type inequalities can be obtained by using Theorem 3.2

Theorem 3.4. Let n, l ∈ N, n ≥ 4, 0 ≤ l ≤ n− 1 with φ ∈Cn([α,β ]) such that φ (n+1) ≥ 0 on

[α,β ] and let the functions G, Gn and R defined in (3), (6) and (17) respectively. Then the

representation (19) and the remainder Kn(α,β ;φ) satisfies the estimation

(21) |Kn(α,β ;φ)| ≤ ||R′||∞
[

φ (n−1)(β )+φ (n−1)(α)

2
− φ (n−2)(β )−φ (n−2)(α)

β −α

]
.

Proof. Applying Theorem 3.2 for f 7→R and h 7→ φ (n), we get

(22)
∣∣∣∣ 1
β −α

∫
β

α

R(t)φ (n)(t)dt− 1
β −α

∫
β

α

R(t)dt.
1

β −α

∫
β

α

φ
(n)(t)dt

∣∣∣∣
≤ 1

2(β −α)
||R′||∞

∫
β

α

(t−α)(β − t)φ (n+1)(t)dt.

Since

∫
β

α

(t−α)(β − t)φ (n+1)(t)dt =
∫

β

α

[2t− (α +β )]φ (n)(t)dt

= (β −α)
[
φ
(n−1)(β )+φ

(n−1)(α)
]
−2
(
φ
(n−2)(β )−φ

(n−2)(α)
)
.

Therefore, using identity (9) and the inequality (22), we deduce (21).

�
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Now we intend to give the Ostrowski type inequalities related to generalizations of Popovi-

ciu’s inequality.

Theorem 3.5. Suppose all the assumptions of Theorem 2.1 hold. Moreover, assume (p,q) is a

pair of conjugate exponents, that is 1≤ p,q≤ ∞, 1/p+1/q = 1. Let |φ (n)|p : [α,β ]→ R be a

R-integrable function for some n≥ 2. Then, we have

(23) ϒ(x,p;φ(x))−
l

∑
v=0

φ (v+2)(α)

v!

∫
β

α

ϒ(x,p;G(x,s))(s−α)vds

−
n−l−4

∑
w=0

[ w

∑
v=0

(−1)w−v(β −α)w−vφ (l+3+w)(β )

(l +1+ v)!(w− v)!

]∫
β

α

ϒ(x,p;G(x,s))(s−α)l+1+vds

≤ ||φ (n)||p
(∫

β

α

∣∣∣∣∫ β

α

ϒ(x,p;G(x,s))Gn−2(s, t)ds
∣∣∣∣qdt

)1/q

.

The constant on the R.H.S. of (23) is sharp for 1 < p≤ ∞ and the best possible for p = 1.

Proof. Using identity (9) and applying Hölder’s inequality, we obtain∣∣∣∣ϒ(x,p;φ(x))−
l

∑
v=0

φ (v+2)(α)

v!

∫
β

α

ϒ(x,p;G(x,s))(s−α)vds

−
n−l−4

∑
w=0

[ w

∑
v=0

(−1)w−v(β −α)w−vφ (l+3+w)(β )

(l +1+ v)!(w− v)!

]∫
β

α

ϒ(x,p;G(x,s))(s−α)l+1+vds
∣∣∣∣

=

∣∣∣∣∫ β

α

R(t)φ (n)(t)dt
∣∣∣∣≤ ||φ (n)||p

(∫
β

α

∣∣R(t)
∣∣qdt

)1/q

.

For the proof of the sharpness of the constant
(∫

β

α

∣∣R(t)
∣∣qdt

)1/q

, let us define the function φ

for which the equality in (23) is obtained.

For 1 < p≤ ∞ take φ to be such that

φ
(n)(t) = sgnR(t)|R(t)|

1
p−1 .

For p = ∞ take φ (n)(t) = sgnR(t).

For p = 1, we prove that

(24)
∣∣∣∣∫ β

α

R(t)φ (n)(t)dt
∣∣∣∣≤ max

t∈[α,β ]
|R(t)|

(∫
β

α

φ
(n)(t)dt

)
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is the best possible inequality. Suppose that |R(t)| attains its maximum at t0 ∈ [α,β ]. To start

with first we assume that R(t0)> 0. For δ small enough we define φδ (t) by

φδ (t) =


0 , α ≤ t ≤ t0 ,

1
δn!(t− t0)n , to ≤ t ≤ t0 +δ ,

1
n!(t− t0)n−1 , t0 +δ ≤ t ≤ β .

Then for δ small enough∣∣∣∣∫ β

α

R(t)φ (n)(t)dt
∣∣∣∣= ∣∣∣∣∫ t0+δ

t0
R(t)

1
δ

dt
∣∣∣∣= 1

δ

∫ t0+δ

t0
R(t)dt.

Now from inequality (24), we have

1
δ

∫ t0+δ

t0
R(t)dt ≤R(t0)

∫ t0+δ

t0

1
δ

dt =R(t0).

Since

lim
δ→0

1
δ

∫ t0+δ

t0
R(t)dt =R(t0),

the statement follows. The case when R(t0)< 0, we define φδ (t) by

φδ (t) =


1
n!(t− t0−δ )n−1 , α ≤ t ≤ t0 ,

−1
δn!(t− t0−δ )n , to ≤ t ≤ t0 +δ ,

0 , t0 +δ ≤ t ≤ β ,

and rest of the proof is the same as above.

�

4. Mean Value Theorems and n− exponential convexity

We recall some definitions and basic results from [2], [6] and [12] which are required in sequel.

Definition 1. A function φ : I→ R is n-exponentially convex in the Jensen sense on I if

n

∑
i, j=1

ξiξ j φ

(
xi + x j

2

)
≥ 0,

hold for all choices ξ1, . . . ,ξn ∈ R and all choices x1, . . . ,xn ∈ I. A function φ : I → R is

n-exponentially convex if it is n-exponentially convex in the Jensen sense and continuous on I.
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Definition 2. A function φ : I → R is exponentially convex in the Jensen sense on I if it is

n-exponentially convex in the Jensen sense for all n ∈ N.

A function φ : I→R is exponentially convex if it is exponentially convex in the Jensen sense

and continuous.

Proposition 4.1. If φ : I→ R is an n-exponentially convex in the Jensen sense, then the matrix[
φ

(
xi+x j

2

)]m

i, j=1
is a positive semi-definite matrix for all m ∈ N,m≤ n. Particularly,

det
[

φ

(
xi + x j

2

)]m

i, j=1
≥ 0

for all m ∈ N, m = 1,2, ...,n.

Remark 4.2. It is known that φ : I→ R is a log-convex in the Jensen sense if and only if

α
2
φ(x)+2αβφ

(
x+ y

2

)
+β

2
φ(y)≥ 0,

holds for every α,β ∈ R and x,y ∈ I. It follows that a positive function is log-convex in the

Jensen sense if and only if it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

Remark 4.3. By the virtue of Theorem 2.2, we define the positive linear functional with respect

to n-convex function φ as follows

(25) Γ(φ) := ϒ(x,p;φ(x))−
l

∑
v=0

φ (v+2)(α)

v!

∫
β

α

ϒ(x,p;G(x,s))(s−α)vds

−
n−l−4

∑
w=0

[ w

∑
v=0

(−1)w−v(β −α)w−vφ (l+3+w)(β )

(l +1+ v)!(w− v)!

]∫
β

α

ϒ(x,p;G(x,s))(s−α)l+1+vds≥ 0.

Lagrange and Cauchy type mean value theorems related to defined functional is given in the

following theorems.

Theorem 4.4. Let φ : [α,β ]→R be such that φ ∈Cn[α,β ]. If the inequality in (12) holds, then

there exist ξ ∈ [α,β ] such that

(26) Γ(φ) = φ
(n)(ξ )Γ(ϕ),

where ϕ(x) = xn

n! and Γ(·) is defined by (25).
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Proof. Similar to the proof of Theorem 4.1 in [7] (see also [3]). �

Theorem 4.5. Let φ ,ψ : [α,β ]→R be such that φ ,ψ ∈Cn[α,β ]. If the inequality in (12) holds,

then there exist ξ ∈ [α,β ] such that

(27)
Γ(φ)

Γ(ψ)
=

φ (n)(ξ )

ψ(n)(ξ )
,

provided that the denominators are non-zero and Γ(·) is defined by (25).

Proof. Similar to the proof of Corollary 4.2 in [7] (see also [3]). �

Theorem 4.5 enables us to define Cauchy means, because if

ξ =

(
φ (n)

ψ(n)

)−1(
Γ(φ)

Γ(ψ)

)
,

which means that ξ is mean of α , β for given functions φ and ψ .

Next we construct the non trivial examples of n-exponentially and exponentially convex func-

tions from positive linear functional Γ(·). In the sequel I and J are intervals in R.

Theorem 4.6. Let Ω = {φt : t ∈ J}, where J is an interval in R, be a family of functions defined

on an interval I in R such that the function t 7→ [x0, . . . ,xn;φt ] is n−exponentially convex in the

Jensen sense on J for every (n+1) mutually different points x0, . . . ,xn ∈ I. Then for the linear

functional Γ(φt) as defined by (25), the following statements are valid:

(i) The function t→ Γ(φt) is n-exponentially convex in the Jensen sense on J and the matrix

[Γ(φ t j+tl
2
)]mj,l=1 is a positive semi-definite for all m ∈N,m≤ n, t1, .., tm ∈ J. Particularly,

det[Γ(φ t j+tl
2
)]mj,l=1 ≥ 0 for all m ∈ N, m = 1,2, ...,n.

(ii) If the function t→ Γ(φt) is continuous on J, then it is n-exponentially convex on J.

Proof. (i) For ξ j ∈ R and t j ∈ J, j = 1, . . . ,n, we define the function

h(x) =
n

∑
j,l=1

ξ jξlφ t j+tl
2
(x).
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Using the assumption that the function t 7→ [x0, . . . ,xn;φt ] is n-exponentially convex in the

Jensen sense, we have

[x0, . . . ,xn,h] =
n

∑
j,l=1

ξ jξl[x0, . . . ,xn;φ t j+tl
2
]≥ 0,

which in turn implies that h is a n-convex function on J, therefore from Remark 4.3 we have

Γ(h)≥ 0. The linearity of Γ(·) gives

n

∑
j,l=1

ξ jξlΓ(φ t j+tl
2
)≥ 0.

We conclude that the function t 7→ Γ(φt) is n-exponentially convex on J in the Jensen sense.

The remaining part follows from Proposition 4.1.

(ii) If the function t → Γ(φt) is continuous on J, then it is n-exponentially convex on J by

definition. �

The following corollary is an immediate consequence of the above theorem

Corollary 4.7. Let Ω = {φt : t ∈ J}, where J is an interval in R, be a family of functions defined

on an interval I in R, such that the function t 7→ [x0, . . . ,xn;φt ] is exponentially convex in the

Jensen sense on J for every (n+1) mutually different points x0, . . . ,xn ∈ I. Then for the linear

functional Γ(φt) as defined by (25), the following statements hold:

(i) The function t→ Γ(φt) is exponentially convex in the Jensen sense on J and the matrix

[Γ(φ t j+tl
2
)]mj,l=1 is a positive semi-definite for all m ∈N,m≤ n, t1, .., tm ∈ J. Particularly,

det[Γ(φ t j+tl
2
)]mj,l=1 ≥ 0 for all m ∈ N, m = 1,2, ...,n.

(ii) If the function t→ Γ(φt) is continuous on J, then it is exponentially convex on J.

Corollary 4.8. Let Ω = {φt : t ∈ J}, where J is an interval in R, be a family of functions defined

on an interval I in R, such that the function t 7→ [x0, . . . ,xn;φt ] is 2-exponentially convex in the

Jensen sense on J for every (n+ 1) mutually different points x0, . . . ,xn ∈ I. Let Γ(·) be linear

functional defined by (25). Then the following statements hold:

(i) If the function t 7→ Γ(φt) is continuous on J, then it is 2-exponentially convex func-

tion on J. If t 7→ Γ(φt) is additionally strictly positive, then it is also log-convex on J.
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Furthermore, the following inequality holds true:

[Γ(φs)]
t−r ≤ [Γ(φr)]

t−s [Γ(φt)]
s−r ,

for every choice r,s, t ∈ J, such that r < s < t.

(ii) If the function t 7→ Γ(φt) is strictly positive and differentiable on J, then for every

p,q,u,v ∈ J, such that p≤ u and q≤ v, we have

(28) µp,q(Γ,Ω)≤ µu,v(Γ,Ω),

where

(29) µp,q(Γ,Ω) =


(

Γ(φp)
Γ(φq)

) 1
p−q

, p 6= q,

exp
(

d
d p Γ(φp)

Γ(φp)

)
, p = q,

for φp,φq ∈Ω.

Proof. (i) This is an immediate consequence of Theorem 4.6 and Remark 4.2.

(ii) Since p 7→ Γ(φt) is positive and continuous, by (i) we have that t 7→ Γ(φt) is log-convex

on J, that is, the function t 7→ logΓ(φt) is convex on J. Hence we get

(30)
logΓ(φp)− logΓ(φq)

p−q
≤ logΓ(φu)− logΓ(φv)

u− v
,

for p≤ u,q≤ v, p 6= q,u 6= v. So, we conclude that

µp,q(Γ,Ω)≤ µu,v(Γ,Ω).

Cases p = q and u = v follow from (30) as limit cases.

�

5. Applications to Cauchy means

In this section, we present some families of functions which fulfil the conditions of Theorem

4.6, Corollary 4.7 and Corollary 4.8. This enables us to construct a large families of functions

which are exponentially convex. Explicit form of this functions is obtained after we calculate

explicit action of functionals on a given family.
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Example 5.1. Let us consider a family of functions

Ω1 = {φt : R→ R : t ∈ R}

defined by

φt(x) =

 etx

tn , t 6= 0,
xn

n! , t = 0.

Since dnφt
dxn (x) = etx > 0, the function φt is n-convex on R for every t ∈ R and t 7→ dnφt

dxn (x) is

exponentially convex by definition. Using analogous arguing as in the proof of Theorem 4.6 we

also have that t 7→ [x0, . . . ,xn;φt ] is exponentially convex (and so exponentially convex in the

Jensen sense). Now, using Corollary 4.7 we conclude that t 7→ Γ(φt) is exponentially convex

in the Jensen sense. It is easy to verify that this mapping is continuous (although the mapping

t 7→ φt is not continuous for t = 0), so it is exponentially convex. For this family of functions,

µt,q(Γ,Ω1) , from (29), becomes

µt,q(Γ,Ω1) =



(
Γ(φt)
Γ(φq)

) 1
t−q

, t 6= q,

exp
(

Γ(id·φt)
Γ(φt)

− n
t

)
, t = q 6= 0,

exp
(

1
n+1

Γ(id·φ0)
Γ(φ0)

)
, t = q = 0,

where “id” is the identity function. By Corollary 4.8 µt,q(Γ,Ω1) is a monotone function in

parameters t and q.

Since (
dn ft
dxn

dn fq
dxn

) 1
t−q

(logx) = x,

using Theorem 4.5 it follows that:

Mt,q(Γ,Ω1) = log µt,q(Γ,Ω1),

satisfies

α ≤Mt,q(Γ,Ω1)≤ β .

Hence Mt,q(Γ,Ω1) is a monotonic mean.
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Example 5.2. Let us consider a family of functions

Ω2 = {gt : (0,∞)→ R : t ∈ R}

defined by

gt(x) =


xt

t(t−1)···(t−n+1) , t /∈ {0,1, . . . ,n−1},
x j logx

(−1)n−1− j j!(n−1− j)! , t = j ∈ {0,1, . . . ,n−1}.

Since dngt
dxn (x) = xt−n > 0, the function gt is n−convex for x > 0 and t 7→ dngt

dxn (x) is exponen-

tially convex by definition. Arguing as in Example 5.1 we get that the mappings t 7→ Γ(gt) is

exponentially convex. Hence, for this family of functions µp,q(Γ,Ω2) , from (29), are equal to

µt,q(Γ,Ω2) =



(
Γ(gt)
Γ(gq)

) 1
t−q

, t 6= q,

exp
(
(−1)n−1(n−1)!Γ(g0gt)

Γ(gt)
+

n−1
∑

k=0

1
k−t

)
, t = q /∈ {0,1, . . . ,n−1},

exp

(−1)n−1(n−1)!Γ(g0gt)
2Γ(gt)

+
n−1
∑

k=0
k 6=t

1
k−t

 , t = q ∈ {0,1, . . . ,n−1}.

Again, using Theorem 4.5 we conclude that

(31) α ≤
(

Γ(gt)

Γ(gq)

) 1
t−q

≤ β .

Hence µt,q(Γ,Ω2) is a mean and its monotonicity is followed by (28).

Example 5.3. Let

Ω3 = {ζt : (0,∞)→ R : t ∈ (0,∞)}

be a family of functions defined by

ζt(x) =


t−x

(− log t)n , t 6= 1;
xn

(n)! , t = 1.

Since dnζt
dxn (x) = t−x is the Laplace transform of a non-negative function (see [16]) it is exponen-

tially convex. Obviously ζt are n-convex functions for every t > 0.
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For this family of functions, µt,q (Γ,Ω3) , in this case for [α,β ]⊂ R+, from (29) becomes

µt,q (Γ,Ω3) =



(
Γ(ζt)
Γ(ζq)

) 1
t−q

, t 6= q;

exp
(
−Γ(id.ζt)

tΓ(ζt)
− n

t log t

)
, t = q 6= 1;

exp
(
− 1

n+1
Γ(id.ζ1)

Γ(ζ1)

)
, t = q = 1,

where id is the identity function. By Corollary 4.8 µp,q(Γ,Ω3) is a monotone function in pa-

rameters t and q.

Using Theorem 4.5 it follows that

Mt,q (Γ,Ω3) =−L(t,q)logµt,q (Γ,Ω3) ,

satisfy

α ≤Mt,q (Γ,Ω3)≤ β .

This shows that Mt,q (Γ,Ω3) is a mean. Because of the inequality (28), this mean is monotonic.

Furthermore, L(t,q) is logarithmic mean defined by

L(t,q) =


t−q

log t−logq , t 6= q;

t, t = q.

Example 5.4. Let

Ω4 = {γt : (0,∞)→ R : t ∈ (0,∞)}

be a family of functions defined by

γt(x) =
e−x
√

t(
−
√

t
)n .

Since dnγt
dxn (x) = e−x

√
t is the Laplace transform of a non-negative function (see [16]) it is expo-

nentially convex. Obviously γt are n-convex function for every t > 0.

For this family of functions, µt,q (Γ,Ω4), in this case for [α,β ]⊂ R+, from (29) becomes

µt,q (Γ,Ω4) =


(

Γ(γt)
Γ(γq)

) 1
t−q

, t 6= q;

exp
(
− Γ(id.γt)

2
√

tΓ(γt)
− n

2t

)
, t = q;

i = 1,2.
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By Corollary 4.8, it is a monotone function in parameters t and q.

Using Theorem 4.5 it follows that

Mt,q (Γ,Ω4) =−
(√

t +
√

q
)

lnµt,q (Γ,Ω4) ,

satisfy

α ≤Mt,q (Γ,Ω4)≤ β .

This shows that Mt,q (Γ,Ω4) is a mean. Because of the above inequality (28), this mean is

monotonic.
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