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Abstract. In this paper, we consider a class of H(., .)-cocoercive operator, which generalizes many existing mono-

tone operators. Further, we introduce a concept of graph convergence concerned with the H(., .)-cocoercive op-

erator in q-uniformly smooth Banach spaces and given an equivalence theorem between graph-convergence and

resolvent operator convergence for the H(., .)-cocoercive operator. As an application, a perturbed algorithm for

solving a class of variational inclusion involving H(., .)-cocoercive operator is constructed. Furthermore, under

some suitable conditions, the existence of the solution for the variational inclusion and the convergence of iterative

sequence generated by perturbed algorithm are given.
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1. Introduction

Variational inclusions, as the generalization of variational inequalities, have been widely s-

tudied in recent years, see for example [1,2,4,5-12,14,15,19,23,25]. Various iterative schemes

have been proposed for solving variational inequalities, but the convergence proof required the
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underlying mapping to be strongly monotone over a feasible set. Cocoercivity is a weaker con-

cept than strong monotonicity. A strongly monotone and Lipschitz continuous mapping must

be cocoercive but conversely, a cocoercive mapping is monotone but not necessarily strongly

monotone or even strictly monotone. Tseng [20] and Marcotte and Wu [18] studied the con-

vergence of iterative processes when the underlying mapping is affine and cocoercive. Zhu

and Marcotte [24] investigated iterative schemes for solving non-linear variational inequalities

under the cocoercivity assumptions.

Recently, many authors have studied the perturbed algorithms for solving variational in-

equalities involving maximal monotone mapping in Hilbert space. Using the concept of graph-

convergence for maximal monotone mappings and the equivalence between graph-convergence

and resolvent operator convergence considered by Attouch [3], they constructed some perturbed

algorithms for variational inequality and proved the convergence of sequences generated by per-

turbed algorithms under some suitable conditions, see for example [1,5,7,10,11,14,16].

On the other hand, in 2001, Huang and Fang [13] were the first to introduce the general-

ized m-accretive mapping and given the definition of the resolvent operator for the generalized

m-accretive mapping in Banach spaces. They also showed some properties of the resolvent

operator for the generalized m-accretive mappings in Banach spaces. Recently, many authors

have studied and investigated several generalized operators such as H-monotone, H-accretive,

(H,η)-monotone, (H,η)-accretive, H(·, ·)-accretive and H(·, ·)-cocoercive operators in Hilbert

and Banach spaces, see for example [2,5-9,12-14,23-25]. They studied some properties of these

operators and defined resolvent operators associated with these operators. They also studied

the existence of solutions for some classes of variational inclusions using the resolvent opera-

tor technique. The resolvent operator technique is used to established an equivalence between

variational inequalities (inclusions) and resolvent operator equations for finding powerful and

implementable numerical techniques for solving various variational inequalities (inclusions).

For details, see [1,2,4,5-12,14,15,19,23,25].

Recently, Zou and Huang [25], Fang and Huang [9], Xu and Wang [23] and Ahmad et

al. [2] introduced and studied the concept of H(·, ·)-accretive, H(·, ·)-η-accretive and H(·, ·)-

cocoercive operators in Banach spaces. Very, recently Li and Huang [22] studied the concept of
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graph-convergence for the H(·, ·)-accretive operator in Banach spaces and given an application

for solving a class of variational inclusions.

Inspired by the work above, in this paper, we introduce a concept of graph convergence for the

H(., .)-cocoercive operator in q-uniifromly smooth Banach spaces and given an equivalence the-

orem between graph-convergence and resolvent operator convergence for the H(., .)-cocoercive

operator. As an application, a perturbed algorithm for solving a class of variational inclusion

involving H(., .)-cocoercive operator is constructed. Furthermore, under some suitable condi-

tions, the existence of the solution for the variational inclusion and the convergence of iterative

sequence generated by perturbed algorithm are given. The theorems presented in this paper

generalize, improve and unify the results given in [1,5,7,10,11,14,16].

2. Preliminaries

Let E be a real Banach space equipped with norm || · || and E∗ be the topological dual space

of E. Let 〈., .〉 be the dual pair between E and E? and 2E be the family of all the nonempty

subsets of E.

Definition 2.1 [21]. For q> 1, a mapping Jq : E→ 2E∗ is said to be generalized duality mapping

defined by

Jq(x) = { f ∗ ∈ E∗ : 〈x, f ∗〉= ||x||q, ||x||q−1 = || f ∗||}, ∀x ∈ E. (2.1)

In particular, J2 is the usual normalized duality mapping on E. It is well known (see e.g.,

[21]) that Jq(x) = ||x||q−2J2(x), ∀ x(6= 0) ∈ E and Jq is single-valued if E∗ is strictly convex.

In the sequel, we always assume that E is a real Banach space such that Jq is single-valued. If

E ≡ H, a real Hilbert space, then J2 becomes the identity mapping on H.

Definition 2.2 [6]. A Banach space E is called smooth if, for every x ∈ E with ||x|| = 1, there

exists a unique f ∈ E∗ such that || f || = f (x) = 1. The modulus of smoothness of E is the

function ρE : [0,∞)→ [0,∞), defined by

ρE(τ) = sup
{(||x+ y||+ ||x− y||)

2
−1 : ||x||= 1, ||y||= τ, ∀x,y ∈ E

}
.

Definition 2.3 [22]. The Banach space E is said to be
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(i) uniformly smooth, if

lim
τ→0

ρE(τ)

τ
= 0;

(ii) q-uniformly smooth, for q > 1, if there exists a constant c > 0 such that

ρE(τ)≤ cτ
q, τ ∈ [0,∞). (2.2)

It is well known (see, e.g., [21]) that

Lq (or lq) is


q−uniformly smooth, if 1 < q≤ 2

2−uniformly smooth, if q≥ 2.

Note that, if E is uniformly smooth, Jq becomes single-valued. In the study of characteristic

inequalities in q-uniformly smooth Banach spaces, Xu [21] established the following lemma.

Lemma 2.1. Let q > 1 be a real number and let E be a smooth Banach space. Then E is

q-uniformly smooth if and only if there exists a constant cq > 0 such that for every x,y ∈ E,

||x+ y||q ≤ ||x||q +q〈y,Jq(x)〉+ cq||y||q. (2.3)

From Lemma 2 of Liu [17], it is easy to have the following lemma.

Lemma 2.2. Let {an} and {bn} be two real sequences of nonnegative real numbers satisfying

an+1 ≤ kan +bn

with 0 < k < 1 and bn→ 0. Then limn→∞ an = 0.

3. H(., .)-cocoercive operator

Throughout the rest of the paper unless otherwise stated, we assume that E is q-uniformly

smooth Banach space. In this section, we give some properties of H(., .)-cocoercive operator.

Definition 3.1. Let M : E→ E be a single-valued mappings. Then:

(i) M is accretive, if

〈Mx−My,Jq(x− y)〉 ≥ 0, ∀x,y ∈ E;
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(ii) M is strictly accretive, if

〈Mx−My,Jq(x− y)〉> 0, ∀x,y ∈ E,

and equality holds if and only if x = y;

(iii) M is r-strongly accretive, if there exists a constant r > 0, such that

〈Mx−My,Jq(x− y)〉 ≥ r||x− y||q, ∀x,y ∈ E;

(iv) M is s-relaxed accretive, if there exists a constant s > 0, such that

〈Mx−My,Jq(x− y)〉 ≥ −s||x− y||q, ∀x,y ∈ E;

(v) M is µ-strongly cocoercive if there exists a constant µ > 0, such that

〈Mx−My,Jq(x− y)〉 ≥ µ||Mx−My||q, ∀x,y ∈ E;

(vi) M is γ-relaxed cocoercive, if there exists a constant γ > 0, such that

〈Mx−My,Jq(x− y)〉 ≥ −γ||Mx−My||q, ∀x,y ∈ E.

Definition 3.2. Let A,B : E→ E, H : E×E→ E be three single-valued mappings.

(i) H(A, ·) is said to be cocoercive with respect to A, if there exists a constant µ > 0 such

that

〈H(Ax,u)−H(Ay,u), Jq(x− y)〉 ≥ µ‖Ax−Ay‖q, ∀ x,y,u ∈ E;

(ii) H(·,B) is said to be relaxed cocoercive with respect to B, if there exists a constant γ > 0

such that

〈H(u,Bx)−H(u,By), Jq(x− y)〉 ≥ (−γ)‖Bx−By‖q, ∀ x,y,u ∈ E;

(iii) H(A, ·) is said to be r1-Lipschitz continuous with respect to A, if there exists a constant

r1 > 0 such that

‖H(Ax,u)−H(Ay,u)‖ ≤ r1‖x− y‖, ∀ x,y,u ∈ E;
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(iv) H(·,B) is said to be r2-Lipschitz continuous with respect to B, if there exists a constant

r2 > 0 such that

‖H(u,Bx)−H(u,By)‖ ≤ r2‖x− y‖, ∀ x,y,u ∈ E;

(v) B is Lipschitz continuous, if there exists a constant β > 0 such that

‖B(x)−B(y)‖ ≤ β‖x− y‖, ∀ x,y ∈ E;

(vi) A is α-expansive, if there exists a constant α > 0 such that

‖A(x)−A(y)‖ ≥ α‖x− y‖, ∀ x,y ∈ E.

If α = 1, then it is expansive.

Definition 3.3. A set-valued mapping M : E → 2E is said to be cocoercive, if there exists a

constant µ > 0 such that

〈u− v, Jq(x− y)〉 ≥ µ‖u− v‖2, ∀ x,y ∈ X ,u ∈M(x),v ∈M(y).

Definition 3.4. Let A,B : E→ E, H : E×E→ E be three single-valued mappings. Let M : E→

2E be a set-valued mapping. M is said to be H(·, ·)-cocoercive with respect to A and B if M is

cocoercive and (H(A,B)+λM)(E) = E, for every λ > 0.

Example 3.1. Let E = R be a real Banach space and let A,B : E → E such that A(x) = x
2 and

B(x) =−x. Suppose that H(A,B) : E×E→ E is defined by

H(A,B)(x) = H(Ax,Bx) = Ax+Bx.

Then H(A,B) is 2-cocoercive with respect to A and 1-relaxed cocoercive with respect to B. Let

M : E→ E be such that Mx = 2x. Then M is 1
2 -cocoercive and

(H(A,B)+λM)(E) = E, for λ > 0,

which means that M is H(·, ·)-cocoercive with respect to A and B.

Theorem 3.1 [2]. Let H(A,B) be µ-cocoercive with respect to A and γ-relaxed cocoercive

with respect to B, A is α-expansive and B is β -Lipschitz continuous, µ > γ and α > β . Let
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M : E → 2E be an H(·, ·)-cocoercive operator with respect to A and B. Then the operator

(H(A,B)+λM)−1 is single-valued.

Definition 3.5 [2]. Let H(A,B) be µ-cocoercive with respect to A and γ-relaxed cocoercive with

respect to B, A is α-expansive and B is β -Lipschitz continuous, and µ > γ , α > β . Let M be an

H(·, ·)-cocoercive operator with respect to A and B. Then the resolvent operator RH(·,·)
λ ,M : E→ E

is defined by

RH(·,·)
λ ,M (x) = (H(A,B)+λM)−1(x), ∀ x ∈ E. (3.1)

Theorem 3.2 [2]. Let H(A,B) be µ-cocoercive with respect to A, γ-relaxed cocoercive with

respect to B, A is α-expansive and B is β -Lipschitz continuous, µ > γ and α > β . Let M be

H(·, ·)-cocoercive operator with respect to A and B. Then the resolvent operator RH(·,·)
λ ,M : E →

E is
1

µαq− γβ q -Lipschitz continuous, that is

‖RH(·,·)
λ ,M (x)−RH(·,·)

λ ,M (y)‖ ≤ 1
µαq− γβ q‖x− y‖, ∀ x,y ∈ E. (3.2)

4. Graph convergence for H(·, ·)-cocoercive operator

In this section, we introduce the graph convergence for the H(·, ·)-cocoercive operator. Since

H(·, ·)-cocoercive operators are more general than maximal monotone operators, we give the

following characterization of H(·, ·)-cocoercive operators.

Proposition 4.1 [2]. Let H(A,B) is µ-cocoercive with respect to A, γ-relaxed cocoercive with

respect to B, A is α-expansive, B is β -Lipschitz continuous and µ > γ , α > β . Let M : E→ 2E

be H(·, ·)-cocoercive operator. If the following inequality

〈u− v,x− y〉 ≥ 0 (4.1)

holds for all (y,v) ∈ graph(M), then u ∈M(x), where

Graph(M) = {(x,u) ∈ E×E : u ∈M(x)}. (4.2)
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Definition 4.1 [16]. Let A,B : E→ E and H : E×E→ E be three single-valued mappings. Let

Mn,M : E→ 2E be H(·, ·)-cocoercive operators for n = 0,1,2, .... The sequence {Mn} is said to

be graph-convergence to M, denoted by Mn→GM, if for every (x,y) ∈ graph(M) there exists a

sequence (xn,yn) ∈ graph(Mn) such that

xn→ x, yn→ y as n→ ∞.

Theorem 4.1. Let A,B : E → E be single-valued mappings and let Mn,M : E → 2E be H(·, ·)-

cocoercive operators for n = 0,1,2, .... Assume that H : E×E→ E is a single-valued mapping

such that

(i) H(A,B) is µ-cocoercive with respect to A and γ-relaxed cocoercive with respect to B

and µ > γ;

(ii) H(A,B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous with

respect to B;

(iii) A is α-expansive and B is β -Lipschitz continuous.

Then Mn→GM if and only if RH(·,·)
Mn,λ

(x)−→RH(·,·)
M,λ (x), ∀x∈E, λ > 0, where RH(·,·)

Mn,λ
=(H(A,B)+

λMn)
−1, RH(·,·)

M,λ = (H(A,B)+λM)−1.

Proof. It follows from Theorem 3.2 that RH(·,·)
Mn,λ

and RH(·,·)
M,λ are both 1

µαq−γβ q -Lipschitz continu-

ous.

Necessity: Suppose that Mn→GM. For any x ∈ E, let zn = RH(·,·)
Mn,λ

(x), z = RH(·,·)
M,λ (x). Then

1
λ
[x−H(Az,Bz)] ∈ M(z) and therefore

(
z, 1

λ
[x−H(Az,Bz)]

)
∈ graph(M). By Definition 4.1,

we know there exists a sequence (z′n,y
′
n) ∈ graph(Mn) such that

z′n→ z, y′n −→
1
λ
[x−H(Az,Bz)] as n→ ∞. (4.3)
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Since y′n ∈ Mn(z′n), we have H(Az′n,Bz′n) + λy′n ∈ [H(A,B) + λMn](z′n). It follows that z′n =

RH(·,·)
Mn,λ

[H(Az′n,Bz′n)+λy′n]. By the Lipschitz continuity of Mn, we have

‖zn− z‖ ≤ ‖zn− z′n‖+‖z′n− z‖

= ‖RH(·,·)
Mn,λ

(x)−RH(·,·)
Mn,λ

[H(Az′n,Bz′n)+λy′n]‖+‖z′n− z‖

≤ 1
µαq− γβ q‖x−H(Az′n,Bz′n)−λy′n‖+‖z′n− z‖

≤ 1
µαq− γβ q

(
‖x−H(Az,Bz)−λy′n‖+‖H(Az,Bz)−H(Az′n,Bz′n)‖

)
+‖z′n− z‖.

(4.4)

By (ii) of Theorem 4.1, we have

‖H(Az,Bz)−H(Az′n,Bz′n)‖ ≤ ‖H(Az,Bz)−H(Az,Bz′n)‖+‖H(Az,Bz′n)−H(Az′n,Bz′n)‖

≤ (r1 + r2)‖z′n− z‖. (4.5)

It follows from (4.4) and (4.5) that

‖zn− z‖ ≤ 1
µαq− γβ q‖x−H(Az,Bz)−λy′n‖+

(
1+

1
µαq− γβ q (r1 + r2)

)
‖z′n− z‖.

By (4.3), we have

‖z′n− z‖→ 0,
∥∥∥ 1

λ
[x−H(Az,Bz)]− y′n

∥∥∥→ 0, and so ‖zn− z‖→ 0, as n→ ∞.

Sufficiency: Suppose that RH(·,·)
Mn,λ

(x) −→ RH(·,·)
M,λ (x), ∀x ∈ E, λ > 0. For any given (x,y) ∈

graph(M), we have

H(Ax,Bx)+λy ∈ [H(A,B)+λM](x), and so x = RH(·,·)
M,λ [H(Ax,Bx)+λy].

Let xn = RH(·,·)
Mn,λ

[H(Ax,Bx)+λy]. Then 1
λ
[H(Ax,Bx)−H(Axn,Bxn)+λy] ∈Mn(xn). Let

yn =
1
λ
[H(Ax,Bx)−H(Axn,Bxn)+λy] ∈Mn(xn).

It follows from (4.5) that

‖yn− y‖=
∥∥∥ 1

λ
[H(Ax,Bx)−H(Axn,Bxn)+λy]− y

∥∥∥= 1
λ
‖H(Ax,Bx)−H(Axn,Bxn)‖

≤ 1
λ
(r1 + r2)‖xn− x‖. (4.6)
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Since RH(·,·)
Mn,λ

(x) −→ RH(·,·)
M,λ (x) for any x in E, we know that ‖xn− x‖ → 0. Now (4.6) implies

that yn→ y as n→ ∞ and so Mn→GM. This completes the proof.

5. Applications

In this section, by using the concept of graph convergence of H(·, ·)-ccoocercive operator, we

apply H(·, ·)-cococercive operator for solving the variational inclusion in q-uniformly smooth

Banach spaces.

We consider the perturbed algorithm for solving the following variational inclusion problem

of finding x ∈ E such that

0 ∈ T (x)+M(x), (5.1)

where T : E → E is a single-valued mapping and M : E → 2E is a H(·, ·)-cocoercive operator.

The problem (5.1) is called a variational inclusion (in short, VI) which includes many variational

inequalities (inclusions) as special cases, see for example [1,2,4,5-12,14,15,19,23,25]. From the

definition of resolvent operator RH(·,·)
M,λ , we have an equivalence bteween resolvent equation and

solution of VI (5.1).

Lemma 5.1. x ∈ E is a solution of VI (5.1) if and only if x satisfies

x = RH(·,·)
λ ,M [H(A(x),B(x))−λT (x)], (5.2)

where λ > 0 is a constant.

Proof. By using the definition of resolvent operator RH(·,·)
λ ,M , the conclusion follows directly.

Let Mn : E → 2E be H(·, ·)-cocoercive operators for n = 0,1,2, ... Based on (5.2), we can

construct the following perturbed algorithm.

Algorithm 5.1. For any given x0 ∈ E, compute {xn} ⊂ E as follows:

xn+1 = RH(·,·)
Mn,λ

[
H(Axn,Bxn)−λT (xn)

]
, (5.3)

where λ > 0 is a constant and n = 0,1,2, ....

Now, we prove the existence of solutions of VI (5.1) and analyze the convergence of iterative

sequence generated by Algorithm 5.1.
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Theorem 5.1. Let T,A,B : E → E be three single-valued mappings. Let H : E ×E → E be

a single-valued mapping and Mn,M : E → 2E be H(·, ·)-cocoercive set-valued operators such

that Mn→GM. Assume that

(i) T is τ-Lipschitz continuous and δ -strongly accretive;

(ii) H(A,B) is µ-cocoercive with respect to A and γ-relaxed cocoercive with respect to B

and µ > γ;

(iii) H(A,B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous with

respect to B;

(iv) A is α-expansive and B is β -Lipschitz continuous.

Suppose that there exists a constant λ > 0 such that the following condition is satisfied.

1
µαq− γβ q

[
q
√

1+(r1 + r2)qcq−q(µαq− γβ q)+ q
√

1+ cqλ qτq−qλδ

]
< 1. (5.4)

Then VI (5.1) has a unique solution x ∈ E and the iterative sequence {xn} generated by Algo-

rithm 5.1 converges strongly to x.

Proof. Let F : E→ E be defined as follows:

F(x) = RH(·,·)
M,λ [H(Ax,Bx)−λT (x)], ∀x ∈ E. (5.5)

For any x,y ∈ E, it follows from (5.2) and Theorem 3.2 that

‖F(x)−F(y)‖= ‖RH(·,·)
M,λ [H(Ax,Bx)−λT (x)]−RH(·,·)

M,λ [H(Ay,By)−λT (y)]‖

≤ 1
µαq− γβ q‖H(Ax,Bx)−H(Ay,By)−λ (T (x)−T (y))‖

≤ 1
µαq− γβ q

(
‖H(Ax,Bx)−H(Ay,By)− (x− y)‖+‖x− y−λ (T (x)−T (y))‖

)
.

(5.6)

By assumptions and Lemma 2.1, we have

‖H(Ax,Bx)−H(Ay,By)− (x− y)‖q ≤ ‖x− y‖q−q〈H(Ax,Bx)−H(Ay,By),Jq(x− y)〉

+cq‖H(Ax,Bx)−H(Ay,By)‖q. (5.7)



H(·, ·)-COCOERCIVE OPERATORS 1021

Since H(A,B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous

with respect to B, we have

‖H(Ax,Bx)−H(Ay,By)‖ ≤ ‖H(Ax,Bx)−H(Ay,Bx)‖+‖H(Ay,Bx)−H(Ay,By)‖

≤ (r1 + r2)‖x− y‖.
(5.8)

Also H(A,B) is µ-cocoercive with respect to A and γ-relaxed cocoercive with respect to B; A is

α-expansive; B is β -Lipschitz continuous, we can obtain

〈H(Ax,Bx)−H(Ay,By),Jq(x− y)〉

= 〈H(Ax,Bx)−H(Ay,Bx),Jq(x− y)〉+ 〈H(Ay,Bx)−H(Ay,By),Jq(x− y)〉

≥ µ‖Ax−Ay‖q− γ‖Bx−By‖q

≥ (µα
q− γβ

q)‖x− y‖q.

(5.9)

Now, from (5.7)-(5.9), we have

‖H(Ax,Bx)−H(Ay,By)− (x− y)‖q ≤
(

1+(r1 + r2)
qcq−q(µα

q− γβ
q)
)
‖x− y‖q. (5.10)

From τ-Lipschitz continuity and accretivity of T , we have

‖x− y−λ (T (x)−T (y))‖q ≤ ‖x− y‖q−qλ 〈T (x)−T (y),Jq(x− y)〉+ cqλ
q‖T (x)−T (y)‖q

≤ (1+ cqλ
q
τ

q−qλδ )‖x− y‖q. (5.11)

From (5.6),(5.10) and (5.11), we have

‖F(x)−F(y)‖ ≤ k‖x− y‖, (5.12)

where

k :=
1

µαq− γβ q

[
q
√

1+(r1 + r2)qcq−q(µαq− γβ q)+ q
√

1+ cqλ qτq−qλδ

]
. (5.13)

By assumption we know that 0 < k < 1 and so (5.12) implies that F = RH(·,·)
M,λ [H(A,B)+λT ]

has a unique fixed point x ∈ E. Thus, x is a unique solution of VI (5.1).
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Now we prove that {xn} converges strongly to x. In fact, it follows from (5.2) and (5.3)

that

‖xn+1− xn‖= ‖RH(·,·)
Mn,λ

[H(Axn,Bxn)−λT (xn)]−RH(·,·)
M,λ [H(Ax,Bx)−λT (x)]‖

≤ ‖RH(·,·)
Mn,λ

[H(Axn,Bxn)−λT (xn)]−‖RH(·,·)
Mn,λ

[H(Ax,Bx)−λT (x)]‖

+‖RH(·,·)
Mn,λ

[H(Ax,Bx)−λT (x)]−RH(·,·)
M,λ [H(Ax,Bx)−λT (x)]‖.

(5.14)

Similarly from (5.6)-(5.12), we can obtain

‖RH(·,·)
Mn,λ

[H(Axn,Bxn)−λT (xn)]−RH(·,·)
M,λ [H(Ax,Bx)−λT (x)]‖ ≤ k‖xn− x‖. (5.15)

By Theorem 4.1, we have

RH(·,·)
Mn,λ

[H(Ax,Bx)−λT (x)]−→ RH(·,·)
M,λ [H(Ax,Bx)−λT (x)].

Let bn = ‖RH(·,·)
Mn,λ

[H(Ax,Bx)−λT (x)]−RH(·,·)
M,λ [H(Ax,Bx)−λT (x)]‖.

Then bn→ 0 as n→ ∞. It follows that

‖xn+1− xn‖ ≤ k‖xn− x‖+bn.

Now, Lemma 2.2 implies that ‖xn+1− xn‖→ 0. This completes the proof.
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