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Abstract. This article is concerned with  q  exponential type-II distribution. Recurrence relations for single and 

product moments of generalized order statistics have been derived from q  exponential type-II distribution. Single 

and product moments of ordinary order statistics and upper  k  records cases have been discussed as a special case 

from generalized order statistics. 
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1. INTRODUCTION 

      The concept of generalized order statistics ( gos ) was introduced by Kamps (1995). Some types 

of ordered random variables such as: ordinary order statistics, upper k-records (upper record 

values when k = 1), sequential order statistics, ordering via truncated distributions, and censoring 

schemes can be discussed as special cases of the ( gos ). 

Kamps introduced the model of generalized order statistics ( gos ) as follows: 
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Let nXXX ,,, 21   be a sequence of independent and identically distributed ( iid ) random 
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on the cone )1()0( 1
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The joint density of the first r - gos  is given by 
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on the cone )1()0( 1

21

1   FxxxF n . 

Then it is called generalized order statistics of a sample from distribution with )(xFdf .  

The pdf  of 
thr  gosm   is given by [Kamps, 1995]: 
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and the joint pdf  of ),,,( kmnrX and ),,,( kmnsX , the thr  and ths  gosm  , ,1 nsr   is 
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and 
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Choosing the parameters appropriately [Cramer, 2002], we get: 

 

Table 1.1: Variants of the generalized order statistics 

  kn   r  rm  

i) Sequential order 

statistics 

n  rrn )1(   )1( 1  rr   

ii) Ordinary order 

statistics 

1 1 rn  0  

iii) Record statistics 1 1 1  

iv) Progressively type 

II censored order 

statistics 
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v) Pfeifer’s record 

statistics 

n  r  )1( 1  rr   

 

The q  exponential distribution is a generalization of the exponential distribution. The main 

reason for introducing q  exponential model is the switching property of the exponential form 

to corresponding binomial expansion. We refer the reader to Seetha and Thomas (2012) for a 

comprehensive study on the properties of q  exponential distribution 

                  21,])1(1[lim 1

1
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The main properties of the  q  exponential distribution as follows, 

(1) Exponential distribution is a special case. 

(2) It has equi- dispersed data via shape parameter. 

(3)  It allows for non- constant hazard rates. 

A random variable  X  is said to have   q  exponential type-II distribution )21(  q  if its 

pdf  is given by 
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and the corresponding df  is 
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Kamps (1998) investigated the importance of recurrence relations of order statistics in 

characterization. Recurrence relations for moments of order statistics and upper k-records were 

investigated, among others, by Joshi and Balakrishnan (1982), Khan .alet  (1983a, 1983b), 

Grudzien and Szynal (1997), Pawlas and Szynal (1998, 1999) and Khan .alet  (2015). 

In this paper, we are concerned with generalized order statistics from q  exponential type-II 

distribution. Sections 2 and 3, presented the recurrence relations for single and product moments 

of generalized order statistics. Section 4, discussed the characterization result. Section 5, contains 

the numerical computations. Section 6, has the conclusion part. 

 

2.  RECURRENCE RELATIONS FOR SINGLE MOMENTS 

Theorem 2.1: For the  q  exponential type-II distribution given (1.5) and 
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Proof: From (1.3), we have 
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Integrating by parts taking  )()]([
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The constant of integration vanishes since the integral considered in (2.2) is a definite integral, 

on using (1.7), we obtain 
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 and hence the Theorem 

Remark 2.1: Setting  1,0  km  in the Theorem 2.1, we obtain the recurrence relations for the 

single moments of order statistics of the  q  exponential type-II distribution in the form 
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Remark 2.2: Setting  1,1  km  in the Theorem 2.1, we get the recurrence relations for the 

single moments of upper  k   record of the  q  exponential type-II distribution in the form 
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3.  RECURRENCE RELATIONS FOR PRODUCT MOMENTS 

Theorem 3.1:  For the q  exponential type-II distribution given (1.5) and RmNn  ,  , 
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Solving the integral in  )(xI  by parts and substituting the resulting expression in (3.2), we get 
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The constant of integration vanishes since the integral in  )(xI  is definite integral. On using 

relation (1.7), we obtain 
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and hence the Theorem 

Remark 3.1: Setting  1,0  km  in the Theorem 3.1, we obtain the recurrence relations for the 

product moments of order statistics of the  q  exponential type-II distribution in the form 
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Remark 3.2: Setting  1,1  km  in the Theorem 3.1, we get the recurrence relations for the 

product moments of upper  k   record of the  q  exponential type-II distribution   in the form    

 k
sU

j
rU

ik
sU

j
rU

ik
sU

j
rU

ik
sU

j
rU

i XXEqXXE
kq

j
XXEXXE ][)1(][

)2(
][][ )()()(

1
)()1()()()( 


 

 


 

4. CHARACTERIZATION 

Theorem 4.1:  Let X  be a non-negative random variable having absolutely continuous 

distribution  )(xF  with     0)0( F  and 1)(0  xF , for all 0x  
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Integrating the first integral on the right hand side of equation (4.2), by parts, we get 
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Now applying a generalization of the Muntz- Szasaz Theorem (Hawang and Lin, 1984) to 

equation (4.3), we get   
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5. NUMERICAL COMPUTATIONS  

Table1: Four moments of order statistics from the q  exponential type-II distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  r  1,5.0  j  1,5.1  j  

2.1q  3.1q  2.1q  3.1q  

1 1 3.333333 5.00000 1.111111 1.666667 

2 1 1.428571 1.818182 0.4761905 0.606060 

 2 5.238095 8.181818 1.746032 2.727273 

3 1 0.9090909 1.111111 0.3030303 0.370370 

 2 2.467532 3.232323 0.8225108 1.077441 

 3 6.623377 10.65657 2.207792 3.552189 

4 1 0.6666667 0.80000 0.2222222 0.266666 

 2 1.636364 2.044444 0.5454545 0.681481 

 3 3.298701 4.420202 1.099567 1.473401 

 4 7.731602 12.73535 2.577201 4.245118 

5 1 0.5263158 0.625 0.1754386 0.208333 

 2 1.22807 1.5000 0.4093567 0.50000 

 3 2.248804 2.861111 0.7496013 0.953703 

 4 3.998633 5.459596 1.332878 1.819865 

 5 8.664844 14.55429 2.888281 4.851431 

n  r  2,5.0  j  2,5.1  j  

2.1q  3.1q  2.1q  3.1q  

1 1 33.33333 200 1.111111 22.22222 

2 1 4.761905 9.090909 0.4761905 1.010101 

 2 61.90476 390.9091 1.746032 43.43434 

3 1 1.818182 2.962963 0.3030303 0.3292181 

 2 10.64935 21.3468 0.8225108 2.371867 

 3 87.53247 575.6902 2.207792 63.96558 

4 1 0.952381 1.454545 0.2222222 0.1616162 

 2 4.415584 7.488215 0.5454545 0.8320239 

 3 16.88312 35.20539 1.099567 3.91171 

 4 111.0823 755.8518 2.577201 83.98354 

5 1 0.5847953 0.862069 0.1754386 0.0957854 

 2 2.422723 3.824451 0.4093567 0.424939 

 3 7.404876 12.98386 0.7496013 1.442651 

 4 23.20194 50.01974 1.332878 5.557749 

 5 133.0523 932.3099 2.888281 103.59 
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6. CONCLUSION 

This paper deals with the generalized order statistics from the q  exponential type-II 

distribution. Recurrence relations between the single and product moments are derived. 

Characterizations of the q  exponential type-II distribution based on the recurrence relations 

are discussed. Special cases are also deduced. 
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