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Abstract. The category H of Hausdorff spectra X = {Xs,F,hs′s} is introduced by E.I.Smirnov into the discussion

by means of an appropriate factorization of the category of Hausdorff spectra SpectG over the category G [4]. If

G is a semiabelian complete subcategory of the category T G, then H is a semiabelian category in the sense of

V. P. Palamodov. The direct and inverse spectra of a family of objects are particular cases of Hausdorff spectra –

it suffices to put F= |F|, hs′s = qF ′F in the direct case and F= {|F|}, hs′s : Xs Xs′ (s′→ s), qF ′F = i|F | = i|F| in

the inverse case. In this case for each Hausdorff spectrum X = {Xs,F,hs′s} over G there exists a unique (up to

isomorphism) object of the category G , the H-limit of the Hausdorff spectrum X , which we denote by
←−
lim
−→
F

hs′sXs .

Thus the additive and covariant functor of the H-limit of a Hausdorff spectrum Haus : H → G is defined and we

remark that it is natural in the categorical sense.
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1. Introduction

The study which was carried out in [1], [2] of the derivatives of the projective limit functor acting from

the category of countable inverse spectra with values in the category of locally convex spaces made it

possible to resolve universally homomorphism questions about a given mapping in terms of the exactness

of a certain complex in the abelian category of vector spaces. Later in [3] a broad generalization of the

concepts of direct and inverse spectra of objects of an additive semiabelian category G was introduced:

the concept of a Hausdorff spectrum, analogous to the δ s-operation in descriptive set theory. This idea is

characteristic even for algebraic topology, general algebra, category theory and the theory of generalized

functions. The construction of Hausdorff spectra X = {Xs,F,hs′s} is achieved by successive standard

extension of a small category of indices Ω. The category H of Hausdorff spectra turns out to be additive

and semiabelian under a suitable definition of mapping of spectra. In particular, H contains V. P. Palam-

odov’s category of countable inverse spectra with values in the category T LC of locally convex spaces

[1].

2. Main Results

Let S be the category T LC of locally convex spaces over R or C and let H : |F| →S be a functor of

the Hausdorff spectrum {Xs,F,hs′s}. We will construct an object of the category T LC, which is defined

by means of the Hausdorff spectrum {Xs,F,hs′s}; this object will be unique up to isomorphism in the

category T LC.

Specifically, the spaces Xs (s ∈ |F|) are locally convex and the morphisms hs′s : Xs→ Xs′ are contin-

uous linear operators, therefore each morphism ωFF ′ : F ′→ F (F,F ′ ∈ F) generates a continuous linear

operator qF ′F : ∏F Xs→ ∏F ′ Xs′ , defined by the collection of morphisms (hs′s)F ′F in such a way that if

α = (xs)s∈|F | ∈∏F Xs, then qF ′F(α) = α ′, where α ′ = (hs′sxs)s′∈|F ′| ∈∏F ′ Xs′ .

Theorem 2.1. There exists a unique (up to isomorphism) object of the category TLC as a limit of Haus-

dorff spectrum {Xs,F,hs′s}.

Proof. Let us consider the set Ŝ =
⋃

F ∏F Xs and let us introduce on Ŝ the equivalence relation R in the

following manner. If α = (xs)s∈|F | ∈∏F Xs and α ′ = (xs)s′∈|F ′| ∈∏F ′ Xs′ , where F,F ′ ∈ F, then we will

say that α ∼ α ′(mod R) if there exist F∗ ∈ F and T ∗ ∈ F∗ such that

ωFF∗ : F∗→ F, ωF ′F∗ : F∗→ F ′ and hs∗sxs = hs∗s′xs′ (s∗ ∈ T ∗) .



224 EUGENY IVANOVICH SMIRNOV, SERGEY ALEXANDROVICH TIKHOMIROV

Let us show that R is in fact an equivalence relation: reflexivity and symmetry of the relation R are

obvious; we will establish its transitivity. Suppose that α ∼ α ′(mod R) and α ′ ∼ α ′′(mod R), where

α ′′ = (xs′′)s′′∈|F ′′| ∈∏F ′′ Xs′′ , F ′′ ∈ F and F∗∗ ∈ F, T ∗∗ ∈ F∗∗ are such that

ωF ′F∗∗ : F∗∗→ F ′, ωF ′′F∗∗ : F∗∗→ F ′′ and hs∗∗s′xs′ = hs∗∗s′′xs′′

for s∗∗ ∈ T ∗∗. Because of the admissibilty of the class F there exists F̂ ∈ F such that

ωF∗F̂ : F̂ → F∗, ωF∗∗F̂ : F̂ → F∗∗,

and there also exists T̂ ∈ F̂ such that

T̂ ⊂
(

ω
−1
F∗F̂

T ∗
)
∩
(

ω
−1
F∗∗F̂

T ∗∗
)
.

Let ŝ ∈ T̂ . Then because of the admissibility of the class F for α ∼ α ′(mod R) we obtain

hŝs∗(hs∗sxs) = hŝs∗(hs∗s′xs′) = hŝs′xs′ ,

while for α ′ ∼ α ′′(mod R) we obtain correspondingly

hŝs∗∗(hs∗∗s∗xs∗) = hŝs∗∗(hs∗∗s′1
xs′1

) = hŝs′1
xs′1

.

However, because the class F is directed in the category S ◦, we have hŝs′ ≡ hŝs′1
and, consequently,

xs′ = xs′1
. Thus the following relationship holds for ŝ ∈ T̂ :

hŝsxs = hŝs∗(hs∗sxs) = hŝs∗∗(hs∗∗s′′xs′′) = hŝs′′xs′′ .

The last assertion means that α ∼ α ′′(mod R), which it was required to show.

Now let S = Ŝ/R and let ψ : Ŝ→ S be the canonical mapping. If ξ ,η ∈ S, then we define the sum

ξ +η as the class containing the element

(hs12s1xs1 +hs12s2xs2)s12∈|F12| ∈∏
F12

Xs12 ,

where

ωF1F12 : F12→ F1 , ωF2F12 : F12→ F2 ,

and

qF12F1 = (hs12s1)F12F1 , qF12F2 = (hs12s2)F12F2 ,

α = (xs1)s1∈|F1| ∈ ξ , β = (xs2)s2∈|F2| ∈ η .
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Let us show that the class ξ +η is defined in a unique manner, independent of the choice of represen-

tatives α and β in the respective classes ξ and η . Let α ′ = (xs′1
)s′1∈|F ′1| ∈ ξ and β ′ = (xs′2

)s′2∈|F ′2| ∈ η so

that

(hs′12s′1
xs′1

+hs′12s′2
xs′2

)s′12∈|F ′12| ∈∏
F ′12

Xs′12
,

where

ωF ′1F ′12
: F ′12→ F ′1 , ωF ′2F ′12

: F ′12→ F ′2 .

Since α ∼ α ′(mod R) and β ∼ β ′(mod R), there exist F∗1 ,F
∗

2 ,F
∗ ∈ F such that the following diagrams

are commutative (i = 1,2):

(1) F∗i
ωFiF

∗
i // Fi

F∗

ωF∗i F∗

OO

ωF12F∗
// F12,

ωFiF12

OO

(2) F∗i

ωF ′i F∗i // F ′i

F∗

ωF∗i F∗

OO

ωF ′12F∗
// F ′12.

ωF ′i F ′12

OO

Thus there exist T ∗1 ,T
∗

2 ∈ F∗ such that

hs∗sixsi = hs∗s′ixs′i (s∗ ∈ T ∗i ) for (i = 1,2) .

Then for T ∗ ∈ F∗,T ∗ ⊂ T ∗1 ∩T ∗2 the last relationship is satisfied simultaneously for i = 1,2. Therefore

hs∗s1xs1 +hs∗s2xs2 = hs∗s′1
xs′1

+hs∗s′2
xs′2

for s∗ ∈ T ∗ ,

and, consequently,

α +β ∼ α
′+β

′(mod R) .

Thus the class ξ +η is defined in a unique manner. Correctness of the definition of the class λξ (λ ∈

R or C, ξ ∈ S) can be shown similarly. This means that the set S is a vector space over R or C. We

continue the construction. For each F ∈ F and T ∈ F we define the vector space

V T
F = {α ∈∏

F
Xs : xs = hsŝxŝ, s, ŝ ∈ T}

and we show that ψV T
F = ψV T

F ′ , whenever T ∈ F and T ∈ F ′. In fact, let ξ ∈ ψV T
F and α ∈ V T

F where

α = (xs)s∈|F | ∈ ξ . We choose an element α ′ ∈V T
F ′ such that α ′ = (xs′)s′∈|F ′| and xs′ = xs (s ∈ T, s = s′).
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By property (2) of admissibility of the class F and its directedness in the category S ◦ there exist F∗ ∈ F

and T ∗ ∈ F∗ such that ωF
T T ∗ ≡ ωF ′

T T ∗ , where

T ∗ = ω
−1
FF∗T = ω

−1
F ′F∗T, ωFF∗ : F∗→ F, ωF ′F∗ : F∗→ F ′ .

Thus hs∗sxs = hs∗s′xs′ (s∗ ∈ T ∗) and, consequently, α ∼α ′(mod R). The last assertion means that ψα ′= ξ

and ξ ∈ ψV T
F ′ . The reverse inclusion is shown similarly, therefore

ψV T
F = ψV T

F ′ (T ∈ F, T ∈ F ′) .

Put XT = ψV T
F (F ∈ F). We now show that the set

X =
⋃

F∈F

⋂
T∈F

XT

is a vector space. In fact, we will show that, if ξ ,η ∈ X , then ξ +η ∈ X . Suppose that ξ ∈ XT1 for all

T1 ∈ F1 where F1 ∈ F and η ∈ XT2 for all T2 ∈ F2 where F2 ∈ F ; moreover the class ξ ∈ XT1 and the class

η ∈ XT2 if and only if ξ contains elements

αT1 = (xs1(T1))s1∈|F1| ∈∏
F1

Xs1 (T1 ∈ F1)

such that xŝ1(T1) = ĥŝ1s1xs1(T1) for s1, ŝ1 ∈ T1, and η contains elements

αT2 = (xs2(T2))s2∈|F2| ∈∏
F2

Xs2 (T2 ∈ F2)

such that xŝ2(T2) = ĥŝ2s2xs2(T2) for s2, ŝ2 ∈ T2. Let F12 ∈ F and ωF1F12 : F12→ F1, ωF2F12 : F12→ F2. We

will show that the class ξ +η , which, according to the definition, contains the elements

(hs12s1xs1(T1)+hs12s2xs2(T2))s12∈|F12| (T1 ∈ F1, T2 ∈ F2) ,

satisfies the relationship

ξ +η ∈
⋂

T12∈F12

XT12 .

In fact, suppose that T12 ∈ F12 and T1 ∈ F1, T2 ∈ F2 are such that

ω
−1
F1F12

T1 = ω
−1
F2F12

T2 = T12

and

(hs12s1xs1(T1))s12∈|F12| ∈∏
F12

Xs12 , (hs12s2xs2(T2))s12∈|F12| ∈∏
F12

Xs12 .

Further, let s12, ŝ12 ∈ T12 and ωs12 ŝ12 : ŝ12→ s12 be such that

xs1(T1) ∈ Xs1 , xŝ1(T1) ∈ Xŝ1
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and

hs12s1xs1(T1) ∈ Xs12 , hŝ12 ŝ1xŝ1(T1) ∈ Xŝ12 ,

where s1, ŝ1 ∈ T1. Because the class T1 is directed in the category Ω there exists an element s∗1 ∈ T1 such

that ωs∗1s1 : s1→ s∗1, ωs∗1 ŝ1 : ŝ1→ s∗1, and moreover, by assumption, the relations

xs1(T1) = ĥs1s∗1xs∗1(T1) and xŝ1(T1) = ĥŝ1s∗1xs∗1(T1)

hold. Now it follows from the specification of a Hausdorff spectrum that the following diagram is com-

mutative:

(3) Xs∗1

ĥs1s∗1 //

ĥs1s∗1
  

Xŝ1

hŝ12 ŝ1 // Xŝ12

Xs1

hs12s1 // Xŝ12

ĥŝ12s12

OO

Consequently, the relation

hŝ12 ŝ1xŝ1(T1) = ĥŝ12s12 (hs12s1xs1(T1))

is satisfied for s12, ŝ12 ∈ T12. This shows that (hs12s1xs1(T1))s12∈|F12| ∈ ξ ∈ XT12 . It can be shown similarly

that (hs12s2xs2(T2))s12∈|F12| ∈ η ∈ XT12 , from which it follows that ξ +η ∈ XT12 . But T12 ∈ F12 was chosen

arbitrarily, therefore

ξ +η ∈
⋂

T12∈F12

XT12 ,

which it was required to establish.

It is clear that λξ ∈ X (λ ∈ R or C) and the appropriate axioms are satisfied, so that X is a vector

space. Now we provide X with a locally convex topology τH in the following manner.

Suppose that the locally convex spaces Xs (s ∈ |F|) have locally convex topologies τs and let F1 ∈ F,

F2 ∈ F and T ∈ F1, T ∈ F2 . Then the vector space V T
Fi

(i = 1,2) is provided with the upper bound σT,Fi

of the preimages of the topologies of the spaces Xs (s ∈ T ) under the projections πFi
s : ∏Fi Xs→ Xs (the

weakest locally convex topology on ∏Fi Xs which is continuously embedded in each of the topologies

(πFi
s )−1τs (s ∈ T ) respectively). We will show that the images ψσT,F1 and ψσT,F2 generate one and

the same locally convex topology σT on the vector space XT . In fact, if the Wsi are absolutely convex

neighbourhoods of zero in the spaces Xsi , where si ∈ T , i= 1,2, . . . ,m, then according to the constructions

of equivalence defined above we obtain

ψ

(
m⋂

i=1

(πF1
si
)−1Wsi

)
= ψ

(
m⋂

i=1

(πF2
si
)−1Wsi

)
,
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which by the linearity of the restriction of ψ to V T
Fi
(i = 1,2) implies the identity

ψσT,F1 = ψσT,F2 = σT .

However, F1,F2 ∈ F were chosen arbitrarily for given T , therefore the locally convex topology σT on XT

is defined in a unique manner.

Now let us denote by σ̂T the strongest translation invariant topology on S which induces on XT the

topology σT (T ∈ F). Next we define on the space S for each F ∈ F the topology σ̂(F) which is the upper

bound of the topologies σ̂T (T ∈ F). The space S with the topology σ̂(F) (F ∈ F) will be a topological

vector group [8].

Now for each F ∈ F we denote by X(F) the space X with the topology σ(F) induced by the topology

σ̂(F) . Finally, we provide X with the locally convex topology τH which is the strongest locally con-

vex topology on X for which all the embeddings of the spaces X(F) (F ∈ F) in the space (X ,τH) are

continuous. The theorem is proved.

Definition 2.2. We call the vector space X provided with the topology τH the H-limit of the Hausdorff

spectrum {Xs,F,hs′s} over the category T LC and we write

X =
←−
lim
−→
F

hs′sXs .

If {Xs,F, is′s} is a simple Hausdorff spectrum corresponding to a Suslin limit (Y,τ∗) [10], so that

Y =
⋃

F∈F

⋂
s∈F

Xs ,

then it is not difficult to show that (Y,τ∗) is isomorphic to the H-limit of the simple Hausdorff spectrum

(X ,τH) =
←−
lim
−→
F

is′sXs .

Along with the topology τH we will consider on the space X the locally convex topology τ̂H which is

the strongest locally convex topology on X for which all the embeddings into the space (X , τ̂H) of the

spaces XF =
⋂

T∈F XT (F ∈ F) provided with the projective topology are continuous. We will call the

vector space X provided with the topology τ̂H the strong H-limit of the Hausdorff spectrum {Xs,F,hs′s}

over the category T LC. It is clear that τH ≤ τ̂H . Conditions for the coincidence of the topologies τH and

τ̂H will be established below.

Let X = {Xs,F,hs′s} be a Hausdorff spectrum over the category G .
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Definition 2.3. We will call an object Z of the category G a categorical H-limit of the Hausdorff spectrum

X over G if for any objects A,B ∈ G and mappings of spectra

A a−−−→X
b−−−→ B

there exists a unique sequence in G

A α−−−→ Z
β−−−→ B

such that the diagram

(4) A
a //

α

��

X

b
��

Z
β
// B

is commutative in the category SpectG .

The concepts of projective and inductive limits over the category G are special cases of categorical H-

limits. For example, let X be an inverse spectrum of objects from G . Then (Lim) holds and moreover

any object Xs from X can be taken for B ∈ G with the identity morphism bs : Xs → Xs forming the

mapping of spectra bs : X → Xs (s ∈ |F |). Thus the diagram

(5) A
a //

α

��

X

b
��

Z
β
// X

is commutative, where b = (bs), β = (β s), β s : Z→ Xs (s ∈ |F |) and b is the identity morphism of the

category SpectG . Therefore the diagram

(6) A

a
��

a

  
Z

β
// X

is commutative for any object A ∈ G .

The categorical H-limit of a Hausdorff spectrum (the functor Haus) exists in any semiabelian category

G with direct sums and products (for example, the category of vector spaces L, the category T LG of

topological vector groups, the category T LC of locally convex spaces).

We provide an example where the categorical H-limit is defined in a unique manner (up to categorical

isomorphism).
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Example 2.4. Let A be some s-set contained in a separated topological space T so that

Ã =
⋃

F∈F

⋂
s∈|F |

Rs

and the family {
⋂

s∈|F |Rs}F∈F forms a fundamental system of nonempty compact subsets of Ã and more-

over H(Ã) : |F| → G is a contravariant functor of the simple Hausdorff spectrum and G = Ordβ (T ). If

P ⊂ T we will denote by K (P) the vector space of functions f whose supports are contained in P and

by L the family of vector spaces K (P) (P⊂ T ) which is partially ordered by inclusion; let Z = OrdL.

We put

K (Ã) =
⋃

F∈F

⋂
s∈|F |

K (Rs)

and show that K (Ã) is the categorical H-limit of the Hausdorff spectrum

K = {K (Rs),F, is′s}

over the category Z . Let A,B ∈Z and

A a−−−→K
b−−−→ B .

The morphism A a−−−→ K signifies that there exists F ∈ F such that A as−−−→ K (Rs) (s ∈ |F |), and

moreover as is the identity embedding of A in K (Rs). Therefore A ⊂
⋂

s∈|F |K (Rs) and, consequently,

there exists a unique identity embedding

α : A→K (Ã) .

Similarly, if K
b−−−→ B, then for each F ∈ F there exist morphisms bs∗F : K (Rs∗F )→ B (for individual

s∗F ∈ F and for each F ∈ F), where bs∗F is the identity embedding of K (Rs∗F ) in B. Thus,
⋃

F∈FK (Rs∗F )⊂

B and, consequently, the unique identity embedding

K (Ã) =
⋂
(sF )

⋃
F∈F

K (RsF )
β−−−→ B

exists. Commutativity is obvious.

At the same time, if Z ∈ Z and satisfies (Lim), then A ⊂ Z : in particular, this holds for A =⋂
s∈F K (Rs) and moreover for any F ∈ F, therefore K (Ã) ⊂ Z. Now if we set E =

⋃
F∈FK (RsF )

for some sequence (sF)F (recall that |F| is an at most countable set, therefore among the sF (F ∈ F) the

set of distinct elements is at most countable), then E ⊂K (
⋃

F RsF ). Thus, for B = K (
⋃

F RsF ), choos-

ing any sequence (sF)F, we obtain Z ⊂
⋂

(sF )K (
⋃

F RsF ). However
⋂

(sF )K (
⋃

F RsF ) = K (A), since if
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ϕ ∈K (
⋃

F RsF ) for each (sF)F, then suppϕ ⊂
⋂

(sF )

⋃
F RsF = Ã or ϕ ∈K (Ã). Therefore, Z = K (Ã),

which also implies the uniqueness of the categorical H-limit over Z.

On the other hand, an s-set is itself the unique categorical H-limit

Ã =
⋃

F∈F

⋂
s∈F

Rs

over the category G = Ordβ (T ).

Example 2.5. In the category E ns of sets the H-limit of a Hausdorff spectrum exists and is the unique

(up to categorical isomorphism) categorical H-limit.

Example 2.6. Let η = {xn,F,≤}, N = |F| be a Hausdorff spectrum over the category G = OrdR (R is

the set of real numbers). We put x∗ = sup
F∈F

inf
n∈F

xn and show that x∗ is the categorical H-limit. Let a,b ∈ R

and

a→ η → b ,

where the morphism a→ η means that there exists F∗ ∈ F such that a≤ xn (n∈ F∗), while the morphism

η → b means that for each F ∈ F there exists xnF (for individul nF ∈ F and for each F ∈ F) such that

xnF ≤ b (F ∈ F). Thus, a ≤ inf
n∈F∗

xn and a ≤ x∗ ; at the same time, for F ∈ F we have inf
n∈F

xn ≤ b and,

consequently, x∗ ≤ b – this implies that x∗ is the categorical H-limit of the Hausdorff spectrum η . We

now establish the uniqueness of the categorical H-limit. Let a ≤ z ≤ b (a,b ∈ R). Since we can put

a = inf
F

xn for any F ∈ F, then x∗ ≤ z ; if in addition b = sup
F

xnF for all possible choices of (nF)F , then

z≤ inf
(nF )

sup
F

xnF . However,

sup
F∈F

inf
n∈F

xn = inf
(nF )

sup
F

xnF , (j)

therefore x∗ = z. The identity (j) is established as follows: clearly,

sup
F∈F

inf
n∈F

xn ≤ inf
(nF )

sup
F

xnF ;

let us suppose that equality does not hold, so that for some δ > 0

inf
n∈F

xn < inf
(nF )

sup
F

xnF −δ ∀F ∈ F .

Thus, for each F ∈ F there exists n∗F ∈ F such that

xn∗F < inf
(nF )

sup
F

xnF −δ

or

sup
F

xn∗F ≤ inf
(nF )

sup
F

xnF −δ ;
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the last inequality implies that δ ≤ 0, which is impossible.

Example 2.7. Let L be any complete lattice, Z = OrdL and let ξ = {xα ,F,≤} be a Hausdorff spectrum

over the category Z . The following proposition gives a sufficient condition for the uniqueness of the

categorical H-limit.

Proposition 2.8. Let L be a complete totally distributive lattice and let ξ = {xα ,F,≤} be a Hausdorff

spectrum over the category Z . Then there exists a unique categorical H-limit

x∗ = sup
F∈F

inf
α∈F

xα .

In particular, the categorical H-limit is unique in any complete chain or closed sublattice of a direct

product of complete chains [5].

Definition 2.9. Let X =
←−
lim
−→
F

hs′sXs where {Xs,F,hs′s} is a Hausdorff spectrum. We will say that the

H-limit X is regular if the following conditions are satisfied: for each F ∈ F the space X is closed in

(S, σ̂(F)) and convergence of the net aγ ∈ X (γ ∈ P) in the spaces (S, σ̂T ) (T ∈ F) implies its convergence

in (S, σ̂(F)) .

We also note that the constructions of the H-limit in the category T LC which were introduced above

can be repeated with no substantial changes for the case of a Hausdorff spectrum over some semiabelian

subcategory of the category T G of topological groups.

The projective and inductive limits of separated spaces Xs are special cases of the regular H-limit.

Moreover, if for X each projective topology σ(F) (F ∈ F) is complete, then the H-limit is regular. Some-

times we will speak of a regular Hausdorff spectrum X rather than a regular H-limit.

3. Applications

Let {SU ,ρUV} be a presheaf of abelian groups over a topological space D , Ω a nonempty partially

ordered set and F an admissible class for Ω (we may assume without loss of generality that Ω = |F|). Let

us denote by Ĥ(S ) a covariant functor from OrdΩ to OrdU , where U is a base of open sets in D , and

by Ȟ(S ) a contravariant functor from OrdU to the category of abelian groups so that an abelian group

SU is defined for each U ∈ U and a homomorphism ρUV : SU →SV is defined for each pair U ⊂ V .

Then H = Ȟ(S )◦Ĥ(S ) is a contravariant functor of the Hausdorff spectrum X (S ) = {SUs ,F,ρUs′Us},

which we will call the Hausdorff spectrum associated with the presheaf {SU ,ρUV}. Let X be the H-limit
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of the Hausdorff spectrum X (S ) in the category of abelian groups and let

A =
⋂

F∈F

⋃
s∈|F |

Us .

Proposition 3.1. Let S be the sheaf of germs of holomorphic functions on an open set D ⊂ Cn, asso-

ciated with the presheaf {SU ,ρUV}, and let X (S ) = {SUs ,F,ρUs′Us} be the associated true Hausdorff

spectrum. Then the H-limit of the Hausdorff spectrum X (S ) is isomorphic to the vector space of

sections Γ(A,S ) of the sheaf S over the set A.

Proof. By the conditions relating to {SU ,ρUV}, we may put SU = Γ(U,S ) (U ∈U ). Further, let

X =
←−
lim
−→
F

ρUs′UsΓ(Us,S ) ,

so that

X =
⋃

F∈F

⋂
T∈F

ψ(V T
F ) .

If x ∈ X , there exists F ∈ F such that x ∈ ψ(V T
F ) (T ∈ F), that is to say, there exists a selection

ξ (T ) = ( f T
s )s∈|F |

such that ψ( f T
s ) = x for each T ∈ F . For any U ∈Uz (z ∈D) the homomorphism ρzU : Γ(U,S )→Sz

generates for f ∈ Γ(U,S ) the set of points

ρU( f ) =
⋃
z∈U

ρzU( f )⊂S ,

therefore let us put

ρ
T
x =

⋃
s∈T

ρUs( f T
s ) ;

it is clear that ρT
x generates the section f T on the open set UT =

⋃
s∈T Us, since the correspondence

z ∈UT
f T

7−→ ρ
T
x ∩Sz ⊂S

is single-valued and continuous. Moreover, if ρUV : ρV (g) 7→ ρU( f ), then ρU( f )⊂ ρV (g), so let us put

ρ
ξ
x =

⋃
F∗�F

⋃
s∗∈|F∗|

s∈T

ρUs∗Us(ρUs( f T
s )) ,

where necessarily

ρUs∗Us(ρUs( f T
s )) = ρUs∗Us(ρUs( f T ′

s )) (T,T ′ ∈ F) .
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Let us put

Uρx =
⋂
ξ

U
ρ

ξ
x
, where U

ρ
ξ
x
⊂
⋃

s∈|F |
Us ;

in this connection we have in particular,

ρUs( f T
s )∩ρUs( f T ′

s )⊃ ρUs∗Us(ρUs( f T
s )) .

It is also clear that for each ξ the correspondence

z ∈U
ρ

ξ
x
7→ ρ

ξ
x ∩Sz

is single-valued and continuous. Although, in general, it is not guaranteed that Uρx 6= /0, we will show

nevertheless that Uρx ⊃ A under the conditions of the proposition, specifically because the H-limit of the

Hausdorff spectrum X (S ) is true. Let the selection ξ (T ) = ( f T
s )s∈|F | (T ∈ F) generating the element

x ∈ X be fixed. Then because the Hausdorff spectrum X (S ) is true we may assume that f T1
s = f T2

s

(s ∈ T1∩T2) and, consequently, there exists ξ = ( fs)s∈|F | ∈
⋂

T∈F V T
F such that

x ∈ ψ(( fs)|F |) and fs′ = ρUs′Us( fs) (s,s′ ∈ |F |) .

It is clear that ρ
ξ
x =

⋃
s∈|F |ρUs′Us( fs). Now let z ∈ A. Then z ∈U

ρ
ξ
x

for any ξ (F) (F ∈ F) and, moreover,

ρ
ξ
x (z) = ρ

ξ
x ∩Sz = ρzUs( fs) for z ∈Us (s ∈ |F |) .

Let us show that ρ
ξ
x (z) = ρ

ξ ′
x (z) for any ξ ,ξ ′. In fact, let ξ = ( fs)|F |, ξ ′ = ( f ′s′)|F ′| and x = ψ(ξ ),

x′ = ψ(ξ ′). Since ξ ∼ ξ ′, there exists F∗ ∈ F, where F∗ � F ′ and F∗ � F ′, such that for each T ∗ ∈ F∗

we can find T ∈ F and T ′ ∈ F ′ such that

ωT T ∗ : T ∗→ T , ωT ′T ∗ : T ∗→ T ′ and ρUs∗Us( fs) = ρUs∗Us′ ( f ′s′) ,

where s∗ ∈ T ∗. However, z ∈
⋃

s∗∈|F∗|Us∗ , and so it remains to choose s∗0 ∈ |F∗|, such that

z ∈Us∗0 and ρzUs( fs) = ρzUs′ ( f ′s′) (s∗→ s,s∗→ s′) .

Thus z ∈ Uρx . Furthermore, let us put x(z) = ρ
ξ
x (z)|A, so that x(z) is a section of S on A, x(z) ∈

Γ(A,S ). In this way we have constructed a morphism H : X → Γ(A,S ). Given fA = H (x), fA =

H (y), let us prove that x = y. In fact, at each point z ∈ A there exists an open ball B(z,ε) of the local

homeomorphism π : S →D at the point fA(z). Let us put U =
⋃

z∈A B(z,ε/2) and determine the section

fz ∈ Γ(B(z,ε/2),S ) passing through the point s = fA(z) ∈S such that

fz|A = fA|B(z,ε/2)
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(we note that ε = ε(z)). Let

Bi j = B(zi,εi/2)∩B(z j,ε j/2) , Bi j ∩A 6= /0 , z0 ∈ Bi j ∩A

for some zi,z j ∈ A. Then fzi(z0) = fz j(z0), and, consequently, there is an open ball B0⊂ B(z0,ε0/2) of the

local homeomorphism at the point s0 = fzi(z0) such that B0 ⊂ Bi j and fzi |B0 = fz j |B0 . However, because

of the isomorphism Γ(Bi j,S )→SBi j the holomorphic functions fzi and fz j coincide on the connected

open set Bi j [9, Theorem A6]. The last observation means that fzi |Bi j = fz j |Bi j . Now suppose that

Bi j ∩A = /0 , but B′i j(εi,ε j)∩A 6= /0 , z′ ∈ B′i j ∩A .

Clearly, we will obtain by similar reasoning f ′zi
|B′i j

= f ′z j
|B′i j

. But we have f ′zi
|B(zi,εi/2)= fzi and f ′z j

|B(z j,ε j/2)=

fz j , so that fzi |Bi j = fz j |Bi j (in the case where Bi j 6= /0). Now there remains the third possibility for Bi j 6= /0,

namely when B′i j ∩A = /0. In this case the sections fzi , fz j on Bi j do not necessarily coincide, therefore

let us put M =
⋃

Bi j, where the bar denotes closure in Cn and the union is taken over all Bi j of this third

type. It is clear that M ∩A = /0, since in the contrary case for z∗ ∈ M ∩A there would exist B∗i j of the

third type such that z∗ ∈ B∗i j
′, which is impossible by construction. Let us put U( fA) = U\M, so that

U( fA) ⊃ A and U( fA) is an open subset of Cn. Then there exists f ∈ Γ(U( fA),S ) such that f |A = fA

and, moreover,

f |U( fA)∩B(z,ε/2) = fz|U( fA)∩B(z,ε/2) (z ∈ A) ;

also the section on U( fA) of f with the property f |A = fA is uniquely determined (nevertheless, φA, the

corresponding holomorphic function on A, is extended holomorphically to U( fA) in a manner which, in

general, is not unique).

Now if ψ(ξ ) = x, ψ(η) = y, it follows from the fact that the family of open sets {
⋃

s∈|F |Us}F∈F is

fundamental for A that there exists F∗ ∈ F such that U( fA)⊃
⋃

F∗Us∗ , and moreover by construction

ρ
ξ
x |⋃F∗Us∗ = ρ

η
y |⋃F∗Us∗ .

The last assertion means that ξ ∼ η and, consequently, x = y. Moreover, the fact that {
⋃

F Us}F∈F is

fundamental for A and the constructions carried out above allow us to conclude that H : X → Γ(A,S )

is an isomorphism. The proposition is proved.

4. Conclusions

Numerical spectra are widely used in the solution of the actual problems concerning sheaves, their

variations - vector bundles and the moduli spaces of this objects [7]. On the other hand, in the previous
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section we established connection between Hausdorff spectra and sheaves, which play a key role in

modern algebraic geometry and related areas. Thus, a new activity for development of the theory of

sheaves (vector bundles) on algebraic varieties by means of ideology of the Hausdorff spectra (the spectra

of the non-numerical nature) is of serious interest.
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