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Abstract. Hybridization of genetic algorithms increases the search capabilities by means of convergence rate and

speed. In this paper, we suggest to use Hooke-Jeeves algorithm as a genetic operator which performs a local

search using the best chromosome in a generation as the base point. As Hooke-Jeeves algorithm searches a sub-

space in all directions of parameters for a given starting point, it can be considered as an intelligent mutation

operator, whereas, the classical mutation operator is totally blind. The operator is applied within a predefined

probability. Simulation studies performed on optimizing some well-known set of test functions show that using

such an intelligent mutation operator has significant effects even for small number of iterations.
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1. Introduction

Genetic algorithms (GAs) are parallel search and optimization methods which mimic the

principles of natural selection and genetic processes [1, 2]. GAs do not require the goal function

to be neither differentiable nor continuous over the search space. It is shown that the GAs

outperform classical optimization methods depending on the correct selection of some genetic

operators and parameters including population size, type of selection, type of crossing-over,
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probabilities of crossing-over and mutation among others [3, 4]. Since GAs have great success

on finding the global optimum, this process heavily depends on the diversity of population, that

is, initially randomized population may not include the enough information to reach the global

optimum by applying well-known genetic operators such as selection, crossing-over, mutation

and elitism.

As a result of genetic search the algorithm may

• find the global optimum

• converge by finding a good solution near the global optimum

• get stuck on a local optimum.

In the first case of situations above, the algorithm is said to be success. In the second case,

the solution is no more improved by genetic operators. Hybrid Genetic Algorithms (HGAs)

are another members of GAs which are based on applying a local search algorithm after a

genetic search and/or optimizing the parameters of optimizer and then applying a genetic search.

Since there are many ways of hybridizing GAs, the main idea underlying the hybridization is

to combine an external optimizer with GAs to improve the performance of algorithm in terms

of reaching the global optimum or speed. HGAs are also used for the problem given in the last

situation to improve search capabilities [5].

In this paper, we suggest using a new operator for floating-point GAs. The operator is ap-

plied within a pre-defined probability on the best solution in a generation. This operator is

basically based on modifying the best solution using a local-search algorithm and transferring

the generated offspring into the next generation with its parent to maintain genetic diversity

and/or fine-tuning. It is shown that the devised operator is an intelligent mutation operator and

mutating all parameters in right directions is better than the usual mutating operators which are

applied using a given probability.

In Section 2, we refer floating-point GAs and the operators used in the proposed operator. In

Section 3, we present the new operator and its extensions. In Section 4, we perform a simulation

study using a well-known set of test functions with several numbers of independent variables.

Finally we conclude in Section 5.
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2. Floating-point genetic algorithms

Classical GAs perform a genetic search using a population of binary-coded candidate solu-

tions to optimize a goal function over a search space. After applying genetic operators such as

selection, crossing-over, mutation, elitism, etc., the members of newly generated populations

are expected to have better quality on optimizing the goal function over iterations.

Floating-point GAs (FPGAs) form an other type of GAs in which the parameters are directly

coded in machine floating-point numbers and they have their special types of crossing-over

and mutation operators. Since the phenotype-genotype distinction is not necessary in most of

FPGAs, MCGAs (Machine Coded Genetic Algorithms) use the byte representation of numbers

as genotype and apply genetic operators in a way similar to classical GAs [6]. [7] stated that

chromosomes coded in lower cardinality alphabets enclose much information about the search

space, on the contrary, FPGAs are also success in many problems despite they have higher-

order alphabet and they successfully hill-climb on the search space. Since [8] showed that

Holland’s Schema theorem holds for some sort of crossing-over operators, FPGAs can still be

considered as genetic algorithms although they have phenotype operators. A well-described

research history on floating-point evolutionary algorithms is given in [7].

Since FPGAs are directly performed on the phenotype, the bitwise crossing-over and mu-

tation operators are not applicable. As a result of this, many classes of these operators are

developed. Flat Crossover and Simple Crossover mimic the k-point crossing-over operator in

GAs by combining parameters corresponding to the same locations of parents [9, 10]. [11] in-

troduced the Simulated Binary Crossover (SBX) which has a search power similar to one-point

crossover of binary GAs. [12] devised the Blend Crossover (BLX-α) which is based on linear

combinations of parents and product of their differences and a constant α . They have reported

that the special case of α = 0.5 outperforms all other scenarios that are performed with different

values of α . [13] suggested BLX-α to apply randomly selected genes with a given probability

rather than the whole chromosome and they stated that the generated offspring will still hold

the range constraints unless α > 1. They also suggested in their book to select the α randomly
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within the range [0,1]. In our simulations, we follow the instructions given in [13] for crossing-

over operator. A comparative description of some other crossing-over operators can be found

in [14].

In GAs, the mutation operator simply flips a randomly selected bit of a chromosome, howev-

er, this definition of perturbation does not easily take a place in FPGAs. Several mutation op-

erators are developed. [10] introduced the random mutation operator which randomly changes

a parameter in the given range. The non-random mutation operator modifies a parameter using

a function of current number of generation and maximum number of generations [10]. In gen-

eral, these operators change some parameters randomly, as a function of generations or both.

Random mutation can be applied by changing a parameter’s value using a random variable that

follows a Uniform(a,b) distribution as well as a Normal(µ , σ2) distribution. While the param-

eters a and b of Uniform distribution are naturally defined by parameter bounds, it is easy to

control. However, selecting the right σ2 may require a second stage optimization of FPGA

parameters [13]. A comparative description of some other mutation operators can be found in

[14]. In our simulation, as the mutation operator, we simply select a random number from a

Uniform distribution with parameters of corresponding bounds.

3. Proposed operators

[8] stated that the mutation operator in FPGAs alters parameters individually and changing a

parameter’s value may increase the fitness, whereas, changing an other one may create an oppo-

site effect. As a solution, they suggest changing all of the parameters included in a chromosome

by mutation, however, it would not be compatible with Schemata theorem.

Suppose that a floating-point chromosome C contains m parameters and takes values c1,c2, ...,cm.

The optimum and unknown solution vector S has values s1,s2, ...,sm. Now we define a direction

vector D which contains +1s, −1s and 0s as its elements at position di. If di is +1, a positive

mutation change is required to achieve si, whereas, if di is −1, ci should be mutated in opposite

direction. Similarly, if di is 0, ci should not be changed. Assuming that si and s j are independent

for all i and j except i 6= j, the probability of performing mutation operator on all parameters

in right directions is Pbest =
(m

m

)
(1

3)
m(1− 1

3)
m−m

= (1
3)

m
. On the contrary, after performing a
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mutation with a predefined probability Pmutation, probability of having at least one parameter

changed in right direction (or not being changed) is Pa = 1−
(m

0

)
(1

3)
0
(1− 1

3)
m−0

= 1− (2
3)

m

which almost always implies that Pbest < Pa for m > 1. As a result of this, a mutation operator

that is capable to modify all parameters in right directions should improve the performance and

convergency.

Hooke-Jeeves (HJ) algorithm [15, 16] is a local search algorithm which can be applied in

optimization problems that may have a non-differentiable goal function. Suppose that the goal

function under consideration is min/max f (x) where x is an m dimensional parameter vector.

The algorithm starts with an initial base point xi. The base point is then moved in all m di-

mensions and successful moves are combined for later moves. If the new base point is better

than the old one, initial base point is set to new one. Algorithm adjusts the step length at each

iteration. If the step length gets smaller than the minimum step length, algorithm stops.

The study reported in [17] combines evolution strategies (ES) as a first stage global optimiza-

tion and HJ as a second stage local optimization. In this study, ES is performed to find good

solutions near the global optimum and HJ is applied for local fine-tuning.

Hybridization a global search algorithm with a local search algorithm as an intelligent mu-

tation is not new [18]. [19] combined evolutionary algorithms for travelling salesman problem

to improve the candidate solutions in the population. [20] suggested to combine GA with Sim-

ulated Annealing (SA) in a way that SA based operators may replace or co-operate with the

standard GA operators.

Now suppose HJOP is a genetic operator defined as

(1) HJOP(xi, f n,xmin,xmax),

where xi is base point for HJ algorithm, f n is the evolution function, xmin is an m-vector of lower

bounds of parameters, xmax is an m-vector of upper bounds of parameters, m is the chromosome

length or number of parameters. The operator performs a local search and generates a better

solution with a predefined probability PHJOP. In our simulations, only the best solution of the

current population is selected as base point and both the parent and the generated offspring are

hold in the next generation. A pseudo-code for FPGA with HJOP is defined in Table 1.
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pop <- generateInitialPopulation()

temporary.pop <- generateEmptyPopulation()

while(currentIteration < maxNumberOfIterations){

calculateFitness()

applyElitism()

if(probability(HJOP) < random) {

applyHJOP()

copyOffSpringTo(temporary.pop)

}

foreach (chromosomes in pop){

selectParents()

if(probability(crossover) < random) applyCrossOver()

if(probability(mutation) < random) applyMutation()

copyOffSpringTo(temporary.pop)

}

swap(pop, temporary.pop)

}

TABLE 1. FPGA with HJOP

4. Simulations

We perform a simulation study to measure and test the effects of proposed operator. A set

of test functions used in simulations with several dimensions p = 5,25,50 and p = 100. This

set of functions includes Ackley, Bohachevsky, Griewank, Rastrigin, Scaled Rastrigin and Skew

Rastrigin which are previously used in comparison of several optimization methods [21, 22, 6].

Simulations are performed in R software [23]. Each single function in the test set is used as

cost function to minimize for several number of parameters. Simulations are run for the constant

population size (50), crossover probability (0.80) and mutation probability (0.05). In each single

generation, the best solution is directly copied to next one. Standard FPGA and FPGA with
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HJOP have been initiated using same randomized populations. Simulations are performed 100

times for each configuration. HJOP is applied with the probability of PHJOP = 0.10, so the

expected number of runs is 5 for the selected population size. Maximum number of generations

is set to 100 as the stopping criterion. Table 2-3 summarize the results.

In Table 2-3 minimum, median, maximum and mad (median absolute deviations) of final

values of cost functions are reported for all functions and cases. The column #success shows

the number of cases in which the final cost value is smaller than ε = 1/100000. The column

p−value represents the P-values calculated after performing Mann-Whitney test of equality of

location parameters. The null-hypothesis of this test is H0 : µ1 = µ2, where µ1 and µ2 are the

location parameters of final cost values resulted from FPGA runs with and without the HJOP,

respectively. The tests are performed with the alternative hypothesis Ha : µ1 6= µ2. First row

of Table 1 represents the results of Ackley function with 5 parameters resulted by standard

FPGA, whereas, the following line holds the statistics of results obtained by FPGA with HJOP.

It can be easily seen that HJOP significantly increase the performance when the cost function is

Ackley with parameters 5,25,50 and 100. As it can be seen in Table 2, the difference between

the global minimum and the final result obtained by FPGA with HJOP is smaller than ε in all

iterations when the cost function is Ackley. In Table 3, it is shown that the results are similar

for functions Bohachevsky, Rastrigin and Skew Rastrigin. Number of finding success solutions

decreases for functions Griewank, Rastrigin and Scaled Rastrigin. However, min, median and

max statistics are drastically reduced by using HJOP. P-values are considerable 0 and the null

hypothesis can be rejected for all cases.

Addition to simulations, we perform the classical FPGA and FPGA with HJOP for all func-

tions with 25 parameters and the effect of the operator is shown in Figure 1. The search history

of FPGA runs is shown by solid lines1, whereas, dashed lines shows the search history of FPGA

with HJOP by iterations. It is shown that applying the operator in a single generation directly

jumps the best chromosome onto the global optimum for Ackley. While Bohachevsky, Rastri-

gin and Skew Rastrigin need the operator applied for two times to be minimized, the operator

1Logarithm of cost values by iterations
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is applied many times for functions Griewank and Scaled Rastrigin for reaching the global op-

timum after many steps. The graphics in Figure 1 also show the effects of hybridization as an

intelligent mutation operator applied using a predefined probability.

5. Conclusion

Hybridization of GAs is handled in many ways in GA literature. The most common hy-

bridization technique is the two stage optimization in which the second stage is consist on per-

forming a local search algorithm after a genetic search. GAs are successful global optimization

techniques if the initial population is well-randomized over the search space. Addition to this,

the global optimum may not be reached using the standard genetic operators and a fine-tuning

operation may be needed to mutate best solution. If the diversity of population is not provided

and/or the genetic operators do not modify the parameters in the correct directions, the algorith-

m is said to be got stuck on local optimum and/or reached a solution which is not optimum, that

is, performing a local-search algorithm may not help to find the global optimum by searching

wrong subspaces.

In this paper, it is shown that applying a local optimizer that performs a search in all dimen-

sions as a genetic operator is better than the standard mutation operator. We suggest to apply

Hooke-Jeeves algorithm on the best candidate solution as the base point with a given proba-

bility. This use of algorithm can be considered as a genetic operator in FPGAs. We perform

a simulation study on some well-known test functions to measure the effect of proposed algo-

rithm. Simulation results show that the proposed operator has a significant effect on reaching

global optimum even a limited configuration of FPGA.
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p min median max mad #success p− value

Ackley 5 0.001 0.217 2.877 0.281 0

0.000 0.000 0.000 0.000 100 0.000

25 6.633 9.092 11.832 1.408 0

0.000 0.000 0.000 0.000 100 0.000

50 10.471 14.577 17.467 1.867 0

0.000 0.000 0.000 0.000 100 0.000

100 14.677 18.346 19.629 0.821 0

0.000 0.000 0.000 0.000 100 0.000

Bohachevsky 5 0.000 0.056 4.851 0.081 2

0.000 0.000 0.000 0.000 100 0.000

25 143.646 342.090 863.798 104.074 0

0.000 0.000 237.851 0.000 98 0.000

50 1380.729 3480.890 9140.196 1344.657 0

0.000 0.000 0.000 0.000 100 0.000

100 6193.256 21980.925 64276.650 6556.754 0

0.000 0.000 0.000 0.000 100 0.000

Griewank 5 0.000 0.042 0.928 0.061 1

0.000 0.010 0.713 0.015 41 0.000

25 0.974 1.036 1.092 0.014 0

0.000 0.000 1.139 0.000 62 0.000

50 1.107 1.290 1.600 0.105 0

0.000 0.000 1.694 0.000 70 0.000

100 1.620 2.806 5.837 0.584 0

0.000 0.000 1.712 0.000 72 0.000

TABLE 2. Simulation results for test functions
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p min median max mad #success p− value

Rastrigin 5 0.001 14.666 50.936 12.232 0

0.000 0.000 0.000 0.000 100 0.000

25 3747.692 11387.300 30024.090 4886.346 0

0.000 0.000 0.000 0.000 100 0.000

50 51863.640 122888.750 243857.800 42201.053 0

0.000 0.000 0.000 0.000 100 0.000

100 232337.600 689377.300 1397417.000 246576.024 0

0.000 0.000 0.000 0.000 100 0.000

Scaled 5 5.586 33.750 151.054 21.784 0

Rastrigin 0.000 15.504 60.273 11.257 2 0.000

25 23206.830 77407.860 341140.500 42706.723 0

8.165 158.434 492.363 74.097 0 0.000

50 204635.600 610189.150 2385967.000 275840.250 0

15.715 288.188 548.349 155.560 0 0.000

100 1031361.000 2585665.000 5162986.000 884797.889 0

42.300 557.990 1234.115 272.498 0 0.000

Skew 5 345.347 1687.564 6429.002 990.974 0

Rastrigin 0.000 0.000 0.000 0.000 100 0.000

25 249186.000 567986.300 932628.200 108116.826 0

0.000 0.000 0.000 0.000 100 0.000

50 774956.400 1431846.000 2390903.000 282037.963 0

0.000 0.000 0.000 0.000 100 0.000

100 1580999.000 4031329.000 10747192.000 1317314.563 0

0.000 0.000 0.000 0.000 100 0.000

TABLE 3. Simulation results for test functions
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(A) Ackley (B) Bohachevsky

(C) Griewank (D) Rastrigin

(E) Scaled Rastrigin (F) Skew Rastrigin

FIGURE 1. Effect of local search operator
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