
Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 4, 1073-1077

ISSN: 1927-5307

MINIMIZING A FUNCTION USING POSYNOMIAL
APPROXIMATION

GEETANJALI PANDA∗

Department of Mathematics, Indian Institute of Technology, Kharagpur, India

Abstract. This paper discusses the use of Bernstein polynomial approximation to minimize a function of

single variable on an interval. Bernstein operator is used to prove that a single dimensional minimization

problem is equivalent to a Posynomial Programming problem. Original problem is solved using the dual

of this approximate problem.
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1. Introduction

There are several reasons for discussing one dimensional optimization, since some of the theoretical and

numerical aspects of unconstrained optimization in Rn can be conveniently illustrated in one dimension

and some of the iterative methods for n−dimensional problems include steps in which extreme points are

sought along certain directions in Rn, and these steps are equivalent to one dimensional optimization.

Most of the existing search methods in the literature of numerical optimization to find the solution of

an unconstrained optimization problem are mostly divided in two categories; gradient based methods

and gradient free methods. But in practical situations many optimization problems exist, which are

not differentiable. So gradient based search methods fail to solve these type problems. The important
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references for single dimensional gradient free search methods include Golden Section method due to

Wilde[7], Fibonacci search method due to Kiefer [5], Newton’s method, Steepest Descent method etc. The

third category is direct method, which approximates the function whose minimum is sought by quadratic

or cubic degree polynomials. In this paper we develop a solution method for minx∈[a,b] f(x), f ∈ C[a, b],

which belongs to third category. We convert the original problem to an approximate problem using a

linear transformation known as Bernstein operator. Our approximating polynomial is not necessarily of

second or third degree. Rather, we get more approximating solution in case degree of the polynomial

is large. In addition to this, we will solve the dual of the approximate problem in stead of solving the

approximate problem directly as in direct method. The Bernstein operator Bn is a linear operator from

C[0, 1] to the subspace Pn of polynomials of degree n, and it is defined for all positive integral values of

n. The Bernstein polynomial approximation of degree n for f ∈ C[0, 1], which is named after its creator,

S.N.Bernstein [2] in 1912, is specified by the expression

(Bnf)(x) =

n∑
k=0

n!

k!(n− k)!
xk(1− x)n−kf(k/n), 0 ≤ x ≤ 1.

The sequence of Bernstein polynomials has following important properties. (For detail discussions one

may refer[6]).

Property 1.1 Given a function f ∈ C[a, b] and any ε > 0, there exists an integer N such that | f(x) −

(Bnf)(x) |< ε, 0 ≤ x ≤ 1, for all n ≥ N and ‖ f − Bnf ‖max≤ 3
2ω( 1√

n
), where ω(δ) = sup|x1−x2|≤δ |

f(x1)− f(x2) |, δ > 0, x1, x2 ∈ [a, b].

Property 1.2 Bernstein polynomial of single variable has shape preserving property. For example, the

Bernstein polynomial of a convex function in R is itself convex.

Property 1.3 If f is convex on [0, 1], then (Bnf)(x) ≥ f(x) for all n ≥ 1.

Property 1.4 Each term of the Bernstein polynomial is positive if f is a positive function, which is not

true for Lagrange polynomial, Legendre polynomial etc.

Property 1.5 Bernstein polynomial just depends upon value of f at n + 1 discrete points, does not

use differentiability assumption like Taylor polynomial which is useful only for infinitely differentiable

function.

These interesting behavior of Bernstein operator motivated us to develop a new method to solve a

minimization problem of a function of single variable. First, using Bernstein Polynomial approximation,

we transform the original minimization problem to an approximating problem, which may be treated as a

Posynomial Programming problem in R2 over a line segment and prove that solution of the transformed

problem and the original problem are approximately same. Dual of the approximate problem has linear
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constraints. Solution of this system of linear equations becomes the approximating solution of the original

problem. In fact there exist several type of approximating polynomials for a continuous function. But

Bernstein polynomial has shape preserving property, which other polynomials do not have. This is the

most important factor to prove that solution of the original problem and the approximating problem are

lying in a neighborhood.

2. Methodology

Theorem 2.1 Let x̂ be a local optimal solution of the optimization problem min f(x), where f ∈ C[0, 1] and

(Bnf)(x) be the nth degree Bernstein polynomial approximation of f . Then there exists ˆ̂x in the closure of

neighborhood of x̂ such that for ε > 0 there exists a large number N satisfying (Bnf)(ˆ̂x)−f(x̂) < ε ∀n ≥ N

and ˆ̂x is a local minimum solution of min(Bnf)(x). Moreover if f is a convex function then x̂ and ˆ̂x are

global minimum solutions.

Proof. Since x̂ is the local minimum point of f(x), so f is convex in a neighborhood N(x̂). By Property

1.2, Bnf is also convex in this neighborhood. Hence Bnf attains its minimum at some point say ˆ̂x in the

closure of this neighborhood.

Since f is continuous in [0, 1], for ε1 > 0, there exists δ > 0 such that | f(ˆ̂x) − f(x̂) |< ε1, whenever

‖ ˆ̂x− x̂ ‖< δ.

From Property 1.1, for ε2 > 0, there exists an integer N such that | f(ˆ̂x)− (Bnf)(ˆ̂x) |< ε2, for all n ≥ N .

Hence

| (Bnf)(ˆ̂x)− f(x̂) |≤| (Bnf)(ˆ̂x)− f(ˆ̂x) | + | f(ˆ̂x)− f(x̂) |< ε1 + ε2 = ε (say),

for all n ≥ N , whenever ‖ ˆ̂x− x̂ ‖< δ.

From Property 1.3, (Bnf)(ˆ̂x) ≥ f(ˆ̂x) for all n ≥ 1. Also f(ˆ̂x) ≥ f(x̂) since x̂ is the local minimum of f .

Hence (Bnf)(ˆ̂x)− f(x̂) ≥ 0. Proof of the theorem follows for N(x̂) = (x̂− δ′, x̂+ δ′), δ′ < δ.

Consider the optimization problem,

(P :) min
x∈[a,b]

f(x), f : [a, b]→ (0, ∞) is continuous.

Take x−a
b−a = t. Then minx∈[a,b] f(x) = mint∈[0,1] g(t), where g(t) = f(a + t(b − a)). By Theorem 2.1,

mint∈[0,1] g(t) ≈ mint∈[0,1](Bng)(t) for large n, where Bng is the nth degree Bernstein approximating

polynomial of g. So the optimization problem (P ) is equivalent to approximating optimization problem

(BP ),

(BP ) : min
u+v=1

g(u) =

n∑
k=0

Cku
kvn−kg(k/n), where Ck =

n!

k!(n− k)!
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In (BP ), 0 < u, v < 1 should be considered since g is a strictly positive function. Here u = t and v = 1−t.

By Property 1.4, coefficients in the objective function of (BP ) are greater than zero. Hence (BP ) can

be treated as a Posynomial Programming problem ([3],[4]), which can be solved by converting to its dual

(DBP ), as given below.

(DBP ) : G(α) = max

n∏
k=0

(
Ckg(k/n)

∑n
k=0 α0k

α0k
)α0kα−α11

11 α−α12
12 αα21

21 αα22
22

subject to

n∑
k=0

α0k = 1,

n∑
k=0

kα0k + α11 − α21 = 0,

n∑
k=0

(n− k)α0k + α12 − α22 = 0,

α = (α0k, α11α12, α21α22) > 0.

If (DBP ) has zero degree of difficulty, then the constraints of (DBP ), which is a system of linear

equations, will yield an unique solution α̂ = (α̂0k, α̂11α̂12, α̂21, α̂22) from which the original objective

function can be found as

ĝ = g(û) = G(α̂) =

n∏
k=0

(
Ckg(k/n)

∑n
k=0 α̂0k

α̂0k
)α̂0k α̂−α̂11

11 α̂−α̂12
12 α̂α̂21

21 α̂α̂22
22

Since g(t) > 0, so ĝ > 0. Once ĝ is known, solution of (BP ) û and v̂ may be determined from the primal

dual relation between (BP ) and (BDP ). But degree of difficulty of (DBP ) may not be always zero since

the approximation is more accurate for large n. In case of positive degree of difficulty, we may follow the

algorithm given by Alejandre, Allueva and Gonzalez[1].

3. Conclusion

We may observe that Theorem 2.1 holds for any approximating polynomial of f ∈ C[a, b], which has

shape preserving property. But in that case, the approximate problem may not be expressed in terms of

a posynomial. Since Bernstein Polynomial has binomial terms, so the approximate problem is a standard

Posynomial Programming problem. Our result is true for the strictly positive functions.
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