

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 4, 898-906

ISSN: 1927-5307

ON THE SPHERICAL CURVES AND BERTRAND CURVES IN MINKOWSKI-3 SPACE

GÜL GÜNER ${ }^{1, *}$ AND NEJAT EKMEKCI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Karadeniz Technical University, Trabzon 61080, Turkey
${ }^{2}$ Department of Mathematics, Ankara University, Ankara 06100, Turkey

Abstract

Bertrand curves corresponding to the spherical curves in E^{3} are given in [1]. In this paper, we apply the method of constructing Bertrand curves from the spherical curves to the curves in 3 dimensional Minkowski space. We also investigate the Bertrand curves corresponding to the spherical indicatrices of spacelike and timelike curves.

Keywords: Spherical Curves, Bertrand Curves, Spherical Indicatrices, Minkowski Space
2000 AMS Subject Classification: 53A35; 53B30

1. Introduction

In [9] and [4], the authors have characterized the spherical spacelike and timelike curves. In this work, firstly we give the Theorem about generating the Bertrand curves from the spherical curves in the three dimensional Minkowski spacetime. This is a generalization of the work of Izumiya and Takeuchi [1]. We come up with the idea of considering the Sabban frame upon the casual characters of a curve's position vectors. In the next section, we define the spherical indicatrices and their types upon the casual character of the space

[^0]curve. Finally, we calculate the Bertrand curves corresponding to the indicatrices by using the theorem given in previous section.

2. Preliminaries

Let E^{3} be 3 dimensional Euclidean space, then the pseudo scalar product or Lorentzian inner product is defined by $\langle a, b\rangle_{L}=a_{1} b_{1}+a_{2} b_{2}-a_{3} b_{3}$ where $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=$ $\left(b_{1}, b_{2}, b_{3}\right)$ are two vectors in $E^{3} .\left(E^{3},\langle,\rangle_{L}\right)$ is called a 3 dimensional pseudo Euclidean space or Minkowski 3 space. An arbitrary vector $a=\left(a_{1}, a_{2}, a_{3}\right)$ in L^{3} can have one of three Lorentzian causal characters; it is spacelike if $\langle a, a\rangle_{L}>0$ or $a=0$, timelike if $\langle a, a\rangle_{L}<0$ and null(lightlike) if $\langle a, a\rangle_{L}=0$ and $a \neq 0$. Similarly, an arbitrary curve $\alpha=\alpha(s)$ in L^{3} is locally spacelike, timelike or null(lightlike), if all of its velocity vectors $\alpha^{\prime}(s)$ are respectively spacelike, timelike or null, for each $s \in I \subset \mathbb{R}$. Recall that the pseudo-norm of an arbitrary vector $a \in L^{3}$ is given by $|a|=\sqrt{\left|\langle a, a\rangle_{L}\right|}$ and the velocity v of the curve is given by $v=\left\|\alpha^{\prime}(s)\right\|$. Therefore, α is a unit speed curve if and only if $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle_{L}= \pm 1$. For any $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right) \in L^{3}$, the pseudo-vector product of a and b is defined as follows

$$
a \times b=\left|\begin{array}{ccc}
i & j & -k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Denote by $\{t(\sigma), n(\sigma), b(\sigma)\}$ the moving Frenet frame along the nonlightlike curve α parameterized by a pseudo-arclength parameter σ. Let $t(\sigma)=\alpha^{\prime}(\sigma), n(\sigma)=\frac{\alpha^{\prime}(\sigma)}{\left|\alpha^{\prime}(\sigma)\right|}$ and $b(\sigma)=t(\sigma) \times n(\sigma)$ be the tangent, the principal normal and the binormal vector of the curve α respectively. When α is a timelike curve, i.e. when t is a timelike vector, the Frenet formulae read;

$$
t^{\prime}=\kappa n, n^{\prime}=\kappa t+\tau b, b^{\prime}=-\tau n
$$

When α is a spacelike curve, there are three possibilities depending on the causal character of t^{\prime}. If t^{\prime} is spacelike, then the Frenet formulae read;

$$
t^{\prime}=\kappa n, n^{\prime}=-\kappa t+\tau b, b^{\prime}=\tau n
$$

If t^{\prime} is timelike, then the Frenet formulae read;

$$
t^{\prime}=\kappa n, n^{\prime}=\kappa t+\tau b, b^{\prime}=\tau n
$$

If t^{\prime} is lightlike, then the Frenet formulae read;

$$
t^{\prime}=n, n^{\prime}=\tau n, b^{\prime}=-t-\tau b
$$

The functions κ and τ are called the curvature and the torsion of α respectively [7]. When the curve α is not parametrized by the arc-length, the corresponding formulae of the curvature and the torsion are;

$$
\begin{aligned}
\kappa^{2}(t) & =\delta \frac{\left|\alpha^{\prime}(t)\right|^{2}\left|\alpha^{\prime}(t)\right|^{2}-\left\langle\alpha^{\prime}(t), \alpha^{\prime}(t)\right\rangle^{2}}{\left|\alpha^{\prime}(t)\right|^{6}} \\
\tau(t) & =-\delta \frac{\operatorname{det}\left(\alpha^{\prime}(t), \alpha^{\prime}(t), \alpha^{\prime}(t)\right)}{\kappa^{2}(t)\left|\alpha^{\prime}(t)\right|^{6}}
\end{aligned}
$$

where δ is 1 or -1 depending on $\alpha^{\prime}(t)$ is a spacelike or timelike vector, respectively [6]. For the timelike curves see [7].

A hyperbola and a pseudo sphere are defined by respectively;

$$
\begin{aligned}
H_{1}^{2}(r)_{m} & =\left\{a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3} \mid\langle a-m, a-m\rangle_{L}=-r^{2}\right\} \\
S_{1}^{2}(r)_{m} & =\left\{a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3} \mid\langle a-m, a-m\rangle_{L}=r^{2}\right\}
\end{aligned}
$$

where $m=\left(m_{1}, m_{2}, m_{3}\right)$ and $r \in \mathbb{R}^{+} . H_{1}^{2}(r):=H_{1}^{2}(r)_{m}-\{m\}, S_{1}^{2}(r):=S_{1}^{2}(r)_{m}-\{m\}$ are respectively a hyperbola and a pseudo sphere with radius r at the center m. Denote that $S_{0}^{2}=S_{1}^{2}(1)_{0}$ and $H_{0}^{2}=H_{1}^{2}(1)_{0}[3]$.

3. Spherical Curves and Bertrand Curves in E_{1}^{3}

In [9] and [4], the autors have characterized the spherical spacelike and timelike curves. In this section, we give the Theorem about generating the Bertrand curves from the spherical curves in E_{1}^{3}.
Theorem 3.1. There are no null curves lying on the Lorentzian sphere in E_{1}^{3} [4].
Let γ be a unit speed nonlightlike curve. If σ is the arc lenght parameter of γ, then the unit tangent vector of γ is $t(\sigma)=\dot{\gamma}(\sigma)$ where $\dot{\gamma}=\frac{d \gamma}{d \sigma}$. We define a vector $s(\sigma)=$ $\gamma(\sigma) \times t(\sigma)$, then we have a pseudo-orthonormal frame $\{\gamma(\sigma), t(\sigma), s(\sigma)\}$ along γ. If γ is a spacelike curve, then the vector s is timelike where γ is in S_{1}^{2} and the vector s is spacelike where γ is in H_{1}^{2}. Similarly, if the curve γ is timelike, then the vector s is spacelike.
Theorem 3.2. Let γ be a unit speed spherical curve in E_{1}^{3}, then the spherical Frenet formulas of γ are
i. If γ is a spacelike curve in H_{1}^{2}

$$
\begin{aligned}
\dot{\gamma}(\sigma) & =t(\sigma) \\
\dot{t}(\sigma) & =\gamma(\sigma)+\kappa_{g}(\sigma) s(\sigma) \\
\dot{s}(\sigma) & =-\kappa_{g}(\sigma) t(\sigma)
\end{aligned}
$$

ii. If γ is a spacelike curve in S_{1}^{2}

$$
\begin{aligned}
& \dot{\gamma}(\sigma)=t(\sigma) \\
& \dot{t}(\sigma)=-\gamma(\sigma)-\kappa_{g}(\sigma) s(\sigma) \\
& \dot{s}(\sigma)=-\kappa_{g}(\sigma) t(\sigma)
\end{aligned}
$$

iii. If γ is a timelike curve

$$
\begin{aligned}
\dot{\gamma}(\sigma) & =t(\sigma) \\
\dot{t}(\sigma) & =\gamma(\sigma)+\kappa_{g}(\sigma) s(\sigma) \\
\dot{s}(\sigma) & =-\kappa_{g}(\sigma) t(\sigma)
\end{aligned}
$$

where κ_{g} is the geodesic curvature of γ.

Theorem 3.3. Let γ be a unit speed spherical curve in E_{1}^{3}, then

$$
\begin{equation*}
\widetilde{\gamma}(\sigma)=a\left[\int_{\sigma_{0}}^{\sigma} \gamma(v) d v+\varepsilon \operatorname{coth} \theta \int_{\sigma_{0}}^{\sigma} s(v) d v\right]+c \tag{1}
\end{equation*}
$$

is a Bertrand curve where a and θ are constant numbers, c is constant vector and $\varepsilon= \pm 1$. We take $\varepsilon=1$ when the curve γ is spacelike and $\varepsilon=-1$ when the curve γ is timelike. Moreover, all the Bertrand curves with nonlightlike pirincipal normal can be constructed by this method.

Proof. If γ is a spacelike curve in H_{1}^{2}, then we have

$$
\begin{aligned}
& \dot{\tilde{\gamma}}(\sigma)=a(\gamma(\sigma)+\operatorname{coth} \theta s(\sigma)) \\
& \ddot{\tilde{\gamma}}(\sigma)=a\left(1-\operatorname{coth} \theta \kappa_{g}(\sigma)\right) t(\sigma) \\
& \dot{\widetilde{\gamma}}(\sigma)=-a \operatorname{coth} \theta \dot{\kappa}_{g}(\sigma) t(\sigma)+a\left(1-\operatorname{coth} \theta \kappa_{g}(\sigma)\right)\left(\gamma(\sigma)+\kappa_{g}(\sigma) s(\sigma)\right)
\end{aligned}
$$

$\widetilde{\gamma}$ is a spacelike curve, hence the curvature and torsion of $\tilde{\gamma}$ are

$$
\begin{aligned}
\kappa(\sigma) & =\varepsilon \frac{\sinh ^{2} \theta\left(1-\operatorname{coth} \theta \kappa_{g}(\sigma)\right)}{a} \\
\tau(\sigma) & =-\frac{\sinh ^{2} \theta\left(\kappa_{g}(\sigma)-\operatorname{coth} \theta\right)}{a}
\end{aligned}
$$

where $\varepsilon= \pm 1$. Since

$$
\begin{equation*}
-a(\varepsilon \kappa(\sigma)-\operatorname{coth} \theta \tau(\sigma))=1 \tag{2}
\end{equation*}
$$

$\widetilde{\gamma}$ is a Bertrand curve. If γ is a spacelike curve in S_{1}^{2} or a timelike one, then the proof is similar to the mentioned above.

For the converse, let $\widetilde{\gamma}$ be a Bertrand curve with nonlightlike principal normal and $\{T, N, B\}$ be its Frenet frame. If $\widetilde{\gamma}$ is a spacelike curve, we have two cases upon the character of T^{\prime} :

If T^{\prime} is a spacelike vector, we define a curve

$$
\gamma(\sigma)=\varepsilon(\sinh \theta T(\sigma)+\cosh \theta B(\sigma))
$$

In this case, γ is a spacelike curve. Using the equation (2), we calculate $\gamma^{\prime}(\sigma)=\frac{\varepsilon \sinh \theta N(\sigma)}{a}$. When σ_{1} is the arc lenght parameter of γ, we have $\frac{d \sigma_{1}}{d \sigma}=\frac{\varepsilon \sinh \theta}{a}$.

$$
\begin{align*}
a \gamma(\sigma) \frac{d \sigma_{1}}{d \sigma} & =\sinh \theta(\sinh \theta T(\sigma)+\cosh \theta B(\sigma)) \tag{3}\\
a \operatorname{coth} \theta s(\sigma) \frac{d \sigma_{1}}{d \sigma} & =a \operatorname{coth} \theta \gamma(\sigma) \times \frac{d \gamma}{d \sigma_{1}} \frac{d \sigma_{1}}{d \sigma} \\
& =-\cosh \theta(\cosh \theta T(\sigma)+\sinh \theta B(\sigma)) \tag{4}
\end{align*}
$$

If we substitute the equations (3) and (4) in (1), we have

$$
a \int_{0}^{\sigma_{1}} \gamma(v) d v+a \operatorname{coth} \theta \int_{0}^{\sigma_{1}} s(v) d v=-\int_{\sigma_{0}}^{\sigma} T(v) d v=-\widetilde{\gamma}(\sigma)+c
$$

Here we note that the curve $\tilde{\gamma}$ is negatively oriented. If T^{\prime} is a timelike vector or $\tilde{\gamma}$ is a timelike curve, then the proof is similar to the mentioned above.

4. Bertrand Curves Corresponding to The Spherical Indicatrices in E_{1}^{3}

We define the spherical indicatrices of spacelike and timelike curves and then we investigate the Bertrand curves corresponding to them.

Definition 4.1. Let $\gamma: I \longrightarrow E_{1}^{3}$ be a unit speed curve, σ be its arc lenght parameter and $\kappa(\sigma) \neq 0$. The curve γ_{t} given by $\gamma_{t}(s)=t(s)$ is called the tangent indicatrix of γ. If the curve γ is timelike or spacelike, then γ_{t} is on the sphere H_{1}^{2} or S_{1}^{2} respectively.

Theorem 4.1. The Bertrand curve corresponding to the tangent indicatrix of a curve in E_{1}^{3} is

$$
\tilde{\gamma}\left(\sigma_{t}\right)=a\left[\gamma\left(\sigma_{t}\right)+\varepsilon \operatorname{coth} \theta \int_{\sigma_{t_{0}}}^{\sigma_{t}} b(v) d v\right]+c
$$

where σ_{t} is the arc lenght parameter of γ_{t}. If γ_{t} is a spacelike or timelike curve, then we take $\varepsilon=1$ or $\varepsilon=-1$ respectively.

Proof. The tangent vector of γ_{t} is $t_{t}=\frac{d t}{d \sigma_{t}}$. If the curve γ is timelike, γ_{t} is a spacelike curve and if the curve γ is spacelike, γ_{t} can be a spacelike or timelike curve. Wheter the
curve γ is spacelike or timelike, we have $\frac{d \sigma_{t}}{d \sigma}=\kappa(\sigma)$. Now we define $s_{t}=t \times t_{t}$, then the Bertrand curve corresponding to γ_{t} is

$$
\begin{aligned}
\tilde{\gamma}\left(\sigma_{t}\right) & =a \int_{\sigma_{t_{0}}}^{\sigma_{t}} t(v) d v+a \varepsilon \operatorname{coth} \theta \int_{\sigma_{t_{0}}}^{\sigma_{t}} s_{t}(v) d v+c \\
& =a \gamma\left(\sigma_{t}\right)+a \varepsilon \operatorname{coth} \theta \int_{\sigma_{t_{0}}}^{\sigma_{t}} b(v) d v+c
\end{aligned}
$$

Definition 4.2.Let $\gamma: I \longrightarrow E_{1}^{3}$ be a unit speed curve, σ be its arc lenght parameter and $\kappa(\sigma) \neq 0$. The curve γ_{n} given by $\gamma_{n}(s)=n(s)$ is called the principal normal indicatrix of γ. If the vector n is spacelike or timelike, then γ_{t} is on the sphere S_{1}^{2} or H_{1}^{2} respectively. Theorem 4.2. The Bertrand curve corresponding to the principal normal indicatrix of a curve in E_{1}^{3} is

$$
\tilde{\gamma}\left(\sigma_{n}\right)=a\left[\int_{\sigma_{n_{0}}}^{\sigma_{n}} n(v) d v+\varepsilon \operatorname{coth} \theta \int_{\sigma_{n_{0}}}^{\sigma_{n}} d(v) d v\right]+c
$$

where σ_{n} is the arc lenght parameter of γ_{n}. If γ_{n} is a spacelike or timelike curve, then we take $\varepsilon=1$ or $\varepsilon=-1$ respectively.
Proof.The tangent vector of γ_{n} is $t_{n}=\frac{d n}{d \sigma_{n}}$. Wheter the curve γ is timelike or spacelike, the curve γ_{n} can be spacelike or timelike. In both cases, we have $\frac{d \sigma_{n}}{d \sigma}=\|w(\sigma)\|$ where w is the darboux vector of γ. Now we define $s_{n}=n \times t_{n}$, then the Bertrand curve corresponding to γ_{n} is

$$
\begin{aligned}
\tilde{\gamma}\left(\sigma_{n}\right) & =a \int_{\sigma_{n_{0}}}^{\sigma_{n}} n(v) d v+a \varepsilon \operatorname{coth} \theta \int_{\sigma_{n_{0}}}^{\sigma_{n}} s_{n}(v) d v+c \\
& =a \int_{\sigma_{n_{0}}}^{\sigma_{n}} n(v) d v+a \varepsilon \operatorname{coth} \theta \int_{\sigma_{n_{0}}}^{\sigma_{n}} d(v) d v+c
\end{aligned}
$$

Definition 4.3.Let $\gamma: I \longrightarrow E_{1}^{3}$ be a unit speed curve, σ be its arc lenght parameter and $\kappa(\sigma) \neq 0$. The curve γ_{b} given by $\gamma_{b}(s)=b(s)$ is called the binormal indicatrix of γ. If the curve γ is timelike or spacelike, in both cases, the curve γ_{b} is on the sphere S_{1}^{2}.

Theorem 4.3. The Bertrand curve corresponding to the binormal indicatrix of a curve in E_{1}^{3} is

$$
\tilde{\gamma}\left(\sigma_{b}\right)=a\left[\int_{\sigma_{b_{0}}}^{\sigma_{b}} b(v) d v+\varepsilon \operatorname{coth} \theta \int_{\sigma_{b_{0}}}^{\sigma_{b}} t(v) d v\right]+c
$$

where σ_{b} is the arc lenght parameter of γ_{b}. If the curve γ is timelike, then we take $\varepsilon=1$ where γ_{b} is spacelike and $\varepsilon=-1$ where γ_{b} is timelike. If the curve γ is spacelike, then the sign of ε reverses.
Proof.The tangent vector of γ_{b} is $t_{b}=\frac{d b}{d \sigma_{b}}$. Wheter the curve γ is timelike or spacelike, γ_{b} can be a spacelike or timelike curve and we have $\frac{d \sigma_{b}}{d \sigma}=\tau(\sigma)$. Now we define $s_{b}=b \times t_{b}$, then the Bertrand curve corresponding to γ_{b} is

$$
\begin{aligned}
\tilde{\gamma}\left(\sigma_{b}\right) & =a \int_{\sigma_{b_{0}}}^{\sigma_{b}} b(v) d v+a \varepsilon \operatorname{coth} \theta \int_{\sigma_{b_{0}}}^{\sigma_{b}} s_{b}(v) d v+c \\
& =a \int_{\sigma_{b_{0}}}^{\sigma_{b}} b(v) d v+a \varepsilon \operatorname{coth} \theta \int_{\sigma_{b_{0}}}^{\sigma_{b}} t(v) d v+c
\end{aligned}
$$

References

[1] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J.geom., (2002), 97-109.
[2] M. Bektaş, M. Ergüt, D. Soylu, The Characterization of the Spherical Timelike Curves in 3Dimensional Lorentzian Space, Bull of the Malaysian Math. Soc. 21, (1998), 117-125.
[3] D. Pei, T. Sano, The Focal Developable and The Binormal Indicatrix of a Nonlightlike curve in Minkowski 3-Space, (English summary) Tokyo J. Math. 23, no.1, (2000), 211-225.
[4] M. Petrovic-Torgasev, E. Sucurovic, Some characterizations of the Lorentzian spherical timelike and null curves, Matematicki Vesnik, Vol. 53, No. 1-2, (2001), pp. 21-27.
[5] N. Ekmekci, K. Ilarslan, On Bertrand curves and their characterizations, Geometry Balkan Press, Vol.3, No.2, (2001), pp. 17-24.
[6] A. T. Ali, R. Lopez, Slant Helices in Minkowski Space E ${ }_{1}^{3}$, J. Korean Math. Soc., No. 1, (2011), pp. 159-167.
[7] R. Lopez, Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, arXiv:0810.3351v1 [math.DG], (2008).
[8] S. Izumiya, D. H. Pei, T. Sano, E. Torii, Evolutes of Hyperbolic Plane Curves, Acta Mathematica Sinica, English Series, Vol.20, No.3, (2004), pp. 543-550.
[9] U. Pekmen, S. Pasali, Some characterizations of Lorentzian spherical space-like curves, Mathematica Moravica 3, (1999), 33-37.
[10] S. Yilmaz, Spherical Indicators of Curves and Characterizations of Some Special Curves in four dimensional Lorentzian Space L ${ }^{4}$, Dissertation, Dokuz Eylül University, (2001).
[11] A. T. Ali, New special curves and their spherical indicatrices, arXiv:0909.2390v1 [math.DG], (2009).
[12] K. Ilarslan, C. Camcı, H. Kocayiğit, H. H. Hacısalihoğlu, On the explicit characterization of spherical curves in 3 dimensional Lorentzian space, J. Inv. III-Posed Problems, Vol.11, (2003), No.4,pp. 389397.
[13] B. Bükücü, M.K. Karacan, On the Involute and Evolute curves of the Spacelike Curve with a Spacelike Binormal in Minkowski-3 Space, Int. J. Contemp. Math. Sciences, (2007), Vol. 2, No. 5, 221-232.
[14] S. Izumiya, D. H. Pei, M. Takahashi, Curves and Surfaces in Hyperbolic Space , Banach center Publicaations, 65, (2004), pp. 511-530.
[15] A. Yücesan, A.C. Çöken, N. Ayyıldız, On the Darboux rotation axis of Lorentz space curve, Applied Mathematics and Computation, 155, (2004), 345-351.
[16] H. H. Hacısalihoğlu,. Diferensiyel Geometri, Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü, (2000).
[17] D. J. Struik, Lectures on Classical Differential Geometry, Dover Publications, second edition, (1961).

[^0]: *Corresponding author
 E-mail addresses: gguner@ktu.edu.tr (G. Güner), Nejat.Ekmekci@science.ankara.edu.tr (N. Ekmekci)
 Received February 27, 2012

