Available online at http://scik.org
J. Math. Comput. Sci. 5 (2015), No. 3, 273-279

ISSN: 1927-5307

A NOTE ON WEYL SPECTRA OF UPPER-TRIANGULAR OPERATOR MATRICES

HAIYAN ZHANG

College of Mathematics and Information Science, Shangqiu Normal University, Shangqiu 476000, China
Copyright © 2015 Haiyan Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. Let $M_{C}=\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]$ be a 2×2 upper triangular operator matrix acting on the Hilbert space $\mathscr{H} \oplus \mathscr{K}$. In this paper, for given operators A and B, we give a new characterization of $\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)$, where $\sigma_{w}(A)$ denote the Weyl spectrum of A.

Keywords: Weyl spectrum; Essential spectrum; Upper-triangular operator matrix.
2010 AMS Subject Classification: 47A53, 47A55.

1. Introduction

Throughout this paper, let \mathscr{H} and \mathscr{K} be separable Hilbert spaces, $\mathscr{B}(\mathscr{K}, \mathscr{H})$ denote the set of all bounded linear operators from \mathscr{K} into \mathscr{H} and abbreviate $\mathscr{B}(\mathscr{H}, \mathscr{H})$ to $\mathscr{B}(\mathscr{H})$. If $A \in \mathscr{B}(\mathscr{H})$, write $N(A), R(A), n(A)$ and $d(A)$ for the null space, the range, the nullity and the defect of A, respectively. A is a semi-Fredholm operator if $R(A)$ is closed and $n(A)<\infty$ or $d(A)<\infty$, then define the semi-Fredholm index of A by $\operatorname{ind}(A)=n(A)-d(A)([3])$. Suppose A is a semi-Fredholm operator, A is called an upper semi-Fredholm operator if $d(A)<\infty$ and A is called a lower semi-Fredholm operator if $n(A)<\infty([3])$. Moreover, A is called a Weyl operator
if it is a Fredholm operator and its Fredholm index is zero. If $A \in \mathscr{B}(\mathscr{H})$, denote $\sigma(A), \sigma_{a p}(A)$ and $\sigma_{\delta}(A)$ for the spectrum, the approximation point spectrum and the surjective spectrum of A, respectively. The Weyl spectrum $\sigma_{w}(A)$ and the Browder essential approximation point spectrum $\sigma_{a b}(A)$ of A are defined by $\sigma_{w}(A)=\{\lambda \in \mathbb{C}: A-\lambda I$ is not Weyl $\}$ and $\sigma_{a b}(A)=\{\lambda \in$ $\mathbb{C}: A-\lambda I$ is not an upper semi-Fredholm operator with finite ascent $\}$, respectively Write iso F for the set of all isolated points of $F \subset \mathbb{C}$. We denote by M_{C} an operator acting on $\mathscr{H} \oplus \mathscr{K}$ of the form,

$$
M_{C}=\left[\begin{array}{cc}
A & C \tag{1}\\
0 & B
\end{array}\right]
$$

where $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$. In the sequel, M_{C} has the form as (1).
Definition 1.1. For $T \in \mathscr{B}(\mathscr{H})$, define $\triangle_{k}(T)$ by

$$
\triangle_{k}(T)=\{\lambda \in \sigma(T): \operatorname{ind}(T-\lambda)=k\}
$$

where $k \in \mathbb{Z} \cup\{ \pm \infty\}$. We call $\triangle_{k}(T)$ be the k-th component of $\sigma(T)$.
It is easy to know that $\triangle_{k}(T)$ is an open set for $k \neq 0$, but not necessary connected. For example, let

$$
T=\left[\begin{array}{cc}
V & 0 \\
0 & V+2 I
\end{array}\right]
$$

be an operator on $\mathscr{B}\left(l^{2}(\mathbb{Z}) \oplus l^{2}(\mathbb{Z})\right)$. Where V is unilateral shift operator on $\mathscr{B}\left(l^{2}(\mathbb{Z})\right)$. Then $\triangle_{-1}(V)=\mathbb{D}$ and $\triangle_{-1}(V+2 I)=\mathbb{D}+2$. Thus $\triangle_{-1}(T)=\mathbb{D} \cup(\mathbb{D}+2)$.

Definition 1.2. For $T \in \mathscr{B}(\mathscr{H})$, define $\triangle_{k}^{0}(T)$ by

$$
\triangle_{k}^{0}(T)=\{\lambda \in \sigma(T): \operatorname{ind}(T-\lambda)=k \text { and } n(T-\lambda)=0 \text { or } d(T-\lambda)=0\}
$$

where $k \in \mathbb{Z} \cup\{ \pm \infty\}$. We call $\triangle_{k}^{0}(T)$ be the initial component of $\triangle_{k}(T)$.
Clearly, $\triangle_{0}^{0}(T)=\emptyset$ and $\triangle_{k}^{0}(T) \subset \triangle_{k}(T)$ for each k. For A and B in $\mathscr{B}(\mathscr{H})$, denote

$$
\left\{\begin{aligned}
U_{-\infty} & =\emptyset \\
U_{\infty} & =\triangle_{-\infty}(A) \cap \triangle_{\infty}(B) \\
U_{k} & =\triangle_{-k}(A) \cap \triangle_{k}(B), k \in \mathbb{Z} \backslash\{0\} \\
U_{0} & =\left(\triangle_{0}(A) \cap \triangle_{0}(B)\right) \cup\left(\triangle_{0}(A) \cap \rho(B)\right) \cup\left(\triangle_{0}(B) \cap \rho(A)\right)
\end{aligned}\right.
$$

$$
U_{k}^{0}= \begin{cases}\triangle_{-k}^{0}(A) \cap \triangle_{k}^{0}(B), & k \geq 0 \\ \emptyset, & k<0\end{cases}
$$

and $\nabla_{k}=U_{k} \backslash U_{k}^{0}$ for $k \in \mathbb{Z} \cup\{ \pm \infty\}$. It is easy to know that $U_{k}^{0} \subset U_{k}$ for each k.
Spectra of upper triangular operator matrices have been studied in operator theory for many years and many interesting results have been obtained, see[1-2], [4-11]. In particular, given $A \in \mathscr{B}(\mathscr{H})$ and $B \in \mathscr{B}(\mathscr{K})$, the set $\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{\tau}\left(M_{C}\right)$ were discussed in some works, where $\sigma_{\tau}\left(M_{C}\right)$ can be equal to the spectrum, the Weyl spectrum, the essential spectrum of M_{C}. For example, in [6], H. Du and J. Pan have proved that,

$$
\begin{equation*}
\bigcap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right)=\sigma_{a p}(A) \cup \sigma_{\delta}(B) \cup\{\lambda \in \mathbb{C}: n(B-\lambda) \neq d(A-\lambda)\} \tag{2}
\end{equation*}
$$

D. S. Djordjević [4] has obtained that

$$
\begin{equation*}
\bigcap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)=\sigma_{l e}(A) \cup \sigma_{r e}(B) \cup W(A, B), \tag{3}
\end{equation*}
$$

where $W(A, B)=\left\{\lambda \in \mathrm{C}: \operatorname{dimR}(A-\lambda)^{\perp} \neq \operatorname{dim} N(B-\lambda)\right.$ and one of them is infinite $\}$. Meanwhile, D. S. Djordjević has also obtained that

$$
\begin{equation*}
\bigcap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)=\sigma_{l e}(A) \cup \sigma_{r e}(B) \cup W_{0}(A, B) \tag{4}
\end{equation*}
$$

where $W_{0}(A, B)=\{\lambda \in \mathrm{C}: N(A-\lambda) \oplus N(B-\lambda)$ is not ismorphic to $X / \overline{R(A-\lambda)} \oplus Y / \overline{R(B-\lambda)}\}$.
In the present paper, we investigate the similar questions. Studying in detail the structure of spectra of concerning operators, we give another characterization of $\bigcap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)$. For $A \in \mathscr{B}(\mathscr{H})$ and $B \in \mathscr{B}(\mathscr{K})$,

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)=\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)\right) \cup\left(\cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right)\right) .
$$

Comparing the formula (4), our result is more clear in the structure of the spectrum.

2. Main results

To prove the main results, we begin with some lemmas.

Lemma 2.1. [11] Given $A \in \mathscr{B}(\mathscr{H}), B \in \mathscr{B}(\mathscr{K})$, then each U_{k}^{0} is an open set and

$$
(\sigma(A) \cup \sigma(B)) \backslash \bigcap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right)=\bigcup_{k=0}^{\infty} U_{k}^{0},
$$

where M_{C}, U_{k}^{0} are defined as in Section 1.
Lemma 2.2.([8]) Let $A \in \mathscr{B}(\mathscr{H}), B \in \mathscr{B}(\mathscr{K})$ and $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$. If two of the three operators are Fredholm, then the other is also Fredholm. Moreover, ind $\left(M_{C}\right)=\operatorname{ind}(A)+\operatorname{ind}(B)$.

Lemma 2.3. For $A \in \mathscr{B}(\mathscr{H})$ and $B \in \mathscr{B}(\mathscr{K})$, if $\lambda \in \sigma(A) \cup \sigma(B)$, then there exists a $k \in$ $\mathbb{Z} \cup\{\infty\}$ such that $\lambda \in U_{k}$ if and only if there exists an operator $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$ such that $M_{C}-\lambda$ is a Weyl operator.

Proof. Suppose that there exists a $k \in \mathbb{Z} \cup\{\infty\}$ such that $\lambda \in U_{k}$. If $k \in \mathbb{Z}$, the result is clear. If $k=\infty$, that is to say, $\lambda \in \triangle_{-\infty}(A) \cap \triangle_{\infty}(B)$, then $n(A-\lambda)<\infty, d(B-\lambda)<\infty$ and $d(A-\lambda)=$ $n(B-\lambda)=\infty$. Suppose that $n(A-\lambda)=m_{1}, d(B-\lambda)=m_{2}$. Let $\left\{f_{i}\right\}_{i=1}^{\infty}$ and $\left\{g_{i}\right\}_{i=1}^{\infty}$ be orthonormal basis of $N(B-\lambda)$ and $R(A-\lambda)^{\perp}$, respectively. Define an operator C by

$$
\begin{cases}C f_{m_{1}+j}=g_{m_{2}+j}, & 1 \leq j \leq \infty \\ C f=0, & f \perp \vee\left\{f_{i}\right\}_{i=m_{1}+1}^{\infty}\end{cases}
$$

Thus $n\left(M_{C}-\lambda\right)=d\left(M_{C}-\lambda\right)=m_{1}+m_{2}$. So ind $\left(M_{C}-\lambda\right)=0, M_{C}-\lambda$ is Weyl.
On the contrary, suppose that there exists an operator $C \in B(K, H)$ such that $M_{C}-\lambda$ is a Weyl operator. Thus $A-\lambda$ is lower semi-Fredholm and $B-\lambda$ is upper semi-Fredholm. From Lemma 2.2, if one of $A-\lambda$ and $B-\lambda$ is Fredholm, then there exists a $k \in \mathbb{Z}$ such that $\lambda \in U_{k}$. If ind $(A-\lambda)=-\infty$, then ind $(B-\lambda)=\infty$. Therefore the result holds. The proof is finished.

Theorem 2.4. For given $A \in \mathscr{B}(\mathscr{H}), B \in \mathscr{B}(\mathscr{K})$, then

$$
\begin{aligned}
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right) & =\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right)\right) \backslash\left(\cup_{-k}^{\infty} U_{k}\right) \\
& =\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)\right) \cup\left(\cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right)\right) .
\end{aligned}
$$

Proof. For convenience, we divided the proof into two steps.
Step 1. We prove $\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)=\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) \backslash\left(\cup_{-k}^{\infty} U_{k}\right)$. From Lemma 1, it is sufficient to prove that $\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)=\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) \backslash\left(\cup_{-k}^{\infty}\left(U_{k} \backslash U_{k}^{0}\right)\right)$.

Since for any $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$, we have $\sigma_{w}\left(M_{C}\right) \subset \sigma\left(M_{C}\right)$, thus

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right) \subset \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) .
$$

For any $\lambda \in \cup_{-k}^{\infty}\left(U_{k} \backslash U_{k}^{0}\right)$, then there exists a $k \in \mathbb{Z} \cup\{\infty\} \backslash\{0\}$ such that $\lambda \in U_{k} \backslash U_{k}^{0}$. If $k<\infty$, then $M_{C}-\lambda$ is Weyl for any $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$. If $k=\infty$, from Lemma 2.3, there exists an operator $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$ such that $M_{C}-\lambda$ is Weyl. So $\lambda \notin \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)$. Thus

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right) \subset \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) \backslash\left(\cup_{-k}^{\infty}\left(U_{k} \backslash U_{k}^{0}\right)\right) .
$$

On the other hand, if $\lambda \in \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right)$ and $\lambda \notin \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)$, then $M_{C}-\lambda$ is weyl and not invertible. Then $\operatorname{ind}\left(M_{C}-\lambda\right)=0, A-\lambda$ is left semi-Freholm operator and $B-\lambda$ is right semi-Freholm operator. Thus there exist $k_{1}, k_{2} \in \mathbb{Z} \cup\{\infty\}$ such that $\lambda \in \triangle_{-k_{1}}(A)$ and $\lambda \in \triangle_{k_{2}}(B)$. From Lemma 2.3, $k_{1}=k_{2}$. Let $k=k_{1}=k_{2}$. So $\lambda \in U_{k} \backslash U_{k}^{0}$ by Lemma 2.1. Hence $\lambda \notin \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) \backslash\left(\cup_{-k}^{\infty}\left(U_{k} \backslash U_{k}^{0}\right)\right)$. Therefore

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) \backslash\left(\cup_{-k}^{\infty}\left(U_{k} \backslash U_{k}^{0}\right)\right) \subset \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right) .
$$

So

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)=\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) \backslash\left(\cup_{-k}^{\infty}\left(U_{k} \backslash U_{k}^{0}\right)\right) .
$$

Step 2. We prove

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)=\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)\right) \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right) .
$$

Since for any $C \in \mathscr{B}(\mathscr{K}, \mathscr{H})$, we have $\sigma_{e}\left(M_{C}\right) \subset \sigma_{w}\left(M_{C}\right) \subset \sigma\left(M_{C}\right)$, thus

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right) \subset \cap_{C \in \mathscr{B}(K, H)} \sigma_{w}\left(M_{C}\right) \subset \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right) .
$$

Moreover, $\cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right) \subset \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)$, thus

$$
\begin{equation*}
\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)\right) \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right) \subset \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right) \tag{5}
\end{equation*}
$$

If $\lambda \notin\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)\right) \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right)$, then

$$
\lambda \notin \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right) \text { and } \lambda \notin \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right) .
$$

If $\lambda \notin \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)$ and $\lambda \in \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma\left(M_{C}\right)$, then there exists an operator $C \in$ $\mathscr{B}(\mathscr{K}, \mathscr{H})$ such that $M_{C}-\lambda$ is a Fredhlom operator, so $\lambda \in \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right)\right.$. And
also $\lambda \notin \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right)$, thus there exists an integer k such that $\lambda \in U_{k}$. So there exists an operator C_{0} such that $M_{C_{0}}-\lambda$ is Weyl. Therefore $\lambda \notin \cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)$. Hence

$$
\begin{equation*}
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right) \subset\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)\right) \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right) . \tag{6}
\end{equation*}
$$

Combining the formula (5) with the formula (6), then

$$
\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{w}\left(M_{C}\right)=\left(\cap_{C \in \mathscr{B}(\mathscr{K}, \mathscr{H})} \sigma_{e}\left(M_{C}\right)\right) \cup_{-k}^{\infty}\left(\left(\triangle_{-k}(A) \cup \triangle_{k}(B)\right) \backslash U_{k}\right) .
$$

The proof is completed.

Conflict of Interests

The author declares that there is no conflict of interests.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.11326105) and the Natural Science Basic Research Plan of Henan Province (No.14B110010 and No. 142300410189).

REFERENCES

[1] X. Cao, Weyl type theorem and hypercyclic operators, J. Math. Anal. Appl. 323 (2006), 267-274.
[2] X. Cao, M. Guo, B. Meng, Weyl's theorem for upper triangular operator matrices, Linear Algebra Appl. 402 (2005), 61-73.
[3] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1990.
[4] D. S. Djordjević, Perturbations spectra of operator matrices, J. Operator Theroy 48 (2002), 467-486.
[5] S. V.Djordjević and Y. M. Han, Anote on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc. 131 (2002), 2543-2547.
[6] H. K. Du and J. Pan, Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc. 121 (1994), 761-776.
[7] B. P. Duggal, S. V. Djordjevević, Carlos Kubrusly, Kato type operators and Weyl's theorem, J. Math. Anal. Appl. 309 (2005), 433C441.
[8] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2×2 operator matrices, Proc. Amer. Math. Soc. 128 (1999), 119-123.
[9] W. Y. Lee, Weyl's theorem for operator matrices, Integr. Equ. Oper. Theory 32 (1998), 319-331.
[10] W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2000), 131-138.
[11] H. Y. Zhang, H. K. Du, Browder spectra of upper-triangular operator matrices, J. Math. Anal. Appl. 323 (2006), 700-707.
[12] S. F. Zhang, H. J. Zhong, A note Browder spectra of upper-triangular operator matrices, J. Math. Anal. Appl. 344 (2008), 927-931.

