Available online at http://scik.org
J. Math. Comput. Sci. 5 (2015), No. 1, 91-98

ISSN: 1927-5307

ISOMETRIES OF P-NUCLEAR TYPE OPERATORS

R. KHALIL*, I. ADARAWI
Department of Mathematics, the University of Jordan, Amman, Jordan

Copyright © 2015 Khalil and Adarawi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let X be a Banach space X and let $C_{p}\left(\ell^{p^{*}}, X\right)=\left\{T: \ell^{p^{*}} \rightarrow X:\|T\|_{C(p)}=\sup \left(\sum_{n=1}^{\infty}\left\|T \theta_{n}\right\|^{p}\right)^{\frac{1}{p}}<\infty\right\}$, where the supremum is taken over all p^{*}-orthonormal sequences in $\ell^{p^{*}}$. The object of this paper is to study the isometries of $C_{p}\left(\ell^{p^{*}}, X\right)$. We give full characterization of certain classes of onto isometries of $C_{p}\left(\ell^{p^{*}}, X\right)$ for some Banach spaces X.

Keywords: Banach space; Isometries; P-nuclear operators.
2010 AMS Subject Classification: 46B04, 46B20.

1. Introduction

Let X be a Banach space and T be a bounded linear operator on $X . T$ is called an isometry if $\|T x\|=\|x\|$ for all $x \in X$. The characterization of onto isometries on X has been an important topic in analysis. Isometries is a main tool to study the Geometry of Banach spaces like extreme points, smooth points and exposed points of the unit ball a Banach space. In [1], Kadison characterized the isometries of $L(H)$, the space of bounded linear operators on a Hilbert space H. The isomerties $C(I, X)$ were characterized by Lau [2]. The isometries of φ-nuclear operators on general Banach spaces were characterized by Khalil and Salih [3]. Isometries

[^0]Received September 19, 2014
of $L\left(\ell^{p}\right) 1 \leq p \neq 2<\infty$, was an open problem since 1951. Khalil and Saleh [4] gave a full characterization of such isometries. The isometries of the $p-$ nuclear operators $N_{p}\left(\ell^{p}, X\right)$ were characterized by Yousef and Khalil [5].

In this paper we study the onto isometries of p-nuclear type operators, to be denoted by $C_{p}\left(\ell^{p^{*}}, X\right)$. These are Schatten type classes. We give full characterization of some classes of onto isometries of $C_{p}\left(\ell^{p^{*}}, X\right)$. We refer to [2], [3], [6] and [7] for the basic facts on tensor product of Banach spaces and functional analysis.

2. The Space $C_{p}\left(\ell^{p^{*}}, X\right)$

In this section, we introduce our space of p-nuclear type operators.
Definition 2.1. Let X be a Banach space, and $\left(x_{n}\right)$ be a sequence in X. The sequence $\left(x_{n}\right)$ is called p-orthogonal if $\left\|\sum \lambda_{n} x_{n}\right\|=\left(\sum\left|\lambda_{n}\right|^{p}\left\|x_{n}\right\|^{p}\right)^{\frac{1}{p}}$. It is called p-orthonormal if $\left\|x_{n}\right\|=1$.

One can easily show that in ℓ^{p}-spaces, $\left(x_{n}\right)$ is p-orthogonal if and only if the x_{n}^{s} have disjiont support.

Now, we introduce our space.
Definition 2.2. For a Banach space X, we set

$$
C_{p}\left(\ell^{p^{*}}, X\right)=\left\{T: \ell^{p^{*}} \rightarrow X:\|T\|_{C(p)}=\sup \left(\sum_{n=1}^{\infty}\left\|T \theta_{n}\right\|^{p}\right)^{\frac{1}{p}}<\infty\right\}
$$

where the supremum is taken over all p^{*}-orthonormal sequences in $\ell^{p^{*}}$. One can easily see that $\left(C_{p}\left(\ell^{p^{*}}, X\right),\|\cdot\|_{C(p)}\right)$ is a normed space.

Further, we have
Theorem 2.3. If X is Banach space, then $\left(C_{p}\left(\ell^{p^{*}}, X\right),\|\cdot\|_{C(p)}\right)$ is a Banach space.
Proof. We claim that every absolutely convergent series is convergent. So let $T_{n} \in C_{p}\left(\ell^{p^{*}}, X\right)$ be a sequence such that $\sum_{n=1}^{\infty}\left\|T_{n}\right\|_{C(p)}<\infty$. We claim $\sum_{n=1}^{\infty} T_{n} \in C_{p}\left(\ell^{p^{*}}, X\right)$. Define $T: \ell{ }^{p^{*}} \rightarrow X$ as
$T(x)=\sum_{n=1}^{\infty} T_{n}(x)$. Clearly, T is bounded and $\|T\| \leq\|T\|_{C(p)}$. Further, we have

$$
\begin{aligned}
\|T\|_{C(p)} & =\sup \left(\sum_{k=1}^{\infty}\left\|T\left(\theta_{k}\right)\right\|^{p}\right)^{\frac{1}{p}} \\
& =\sup \left(\sum_{k=1}^{\infty}\left\|\sum_{n=1}^{\infty} T_{n}\left(\theta_{k}\right)\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq \sup \left(\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty}\left\|T_{n}\left(\theta_{k}\right)\right\|\right)^{p}\right)^{\frac{1}{p}} \\
& \leq \sup \sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\left\|T_{n}\left(\theta_{k}\right)\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq \sum_{n=1}^{\infty}\left\|T_{n}\right\|_{C(p)}<\infty
\end{aligned}
$$

Hence, we have $T \in C_{p}\left(\ell^{p^{*}}, X\right)$. Remains to prove that $\sum_{n=1}^{\infty} T_{n}$ converge to T. So we claim $\left\|T-S_{n}\right\|_{C(p)} \rightarrow 0$.

$$
\begin{aligned}
\left\|T-S_{n}\right\|_{C(p)} & =\sup \left(\sum_{k=1}^{\infty}\left\|T \theta_{k}-S_{n} \theta_{k}\right\|^{p}\right)^{\frac{1}{p}} \\
& =\sup \left(\sum_{k=1}^{\infty}\left\|\sum_{n+1}^{\infty} T_{n} \theta_{k}\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq \sup \sum_{n+1}^{\infty}\left(\sum_{k=1}^{\infty}\left\|T_{n} \theta_{k}\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq \sum_{n+1}^{\infty}\left\|T_{n}\right\|_{C(p)}
\end{aligned}
$$

But this goes to zero since it is the tail of a convergent series. Hence, $\left(C_{p}\left(\ell^{p^{*}}, X\right),\|\cdot\|_{C(p)}\right)$ is a Banach space.

Theorem 2.4. Let X be a Banach space. Then the followings are equivalent:
(i) $T \in C_{p}\left(\ell^{p^{*}}, X\right)$
(ii) There exist $\left(\lambda_{n}\right) \in \ell^{p}$, and $g_{n} \in X$, such that $\left\|g_{n}\right\|=1$, and $T=\sum_{n=1}^{\infty} \lambda_{n} \delta_{n} \otimes g_{n}$.

Further, $\|T\|_{c(p)}=\left\|\left(\lambda_{n}\right)\right\|_{p}$.
Proof. First, we show $i \Rightarrow i i)$. Let $T \in C_{p}\left(\ell^{p^{*}}, X\right)$ and $\left(\delta_{n}\right)$ be the natural basis in $\ell^{p^{*}}$. Then

$$
\begin{aligned}
T x & =T\left(\sum_{n=1}^{\infty} a_{n} \delta_{n}\right),\left(\text { where } x=\left(a_{1}, a_{2}, \ldots \ldots . .\right)\right) \\
& =\sum_{n=1}^{\infty} a_{n} T \delta_{n}(\text { since } T \text { is bounded linear operator }) \\
& =\sum_{n=1}^{\infty} \lambda_{n} a_{n} g_{n},\left(\text { where } g_{n}=\frac{T \delta_{n}}{\left\|T \delta_{n}\right\|} \text { and } \lambda_{n}=\left\|T \delta_{n}\right\|\right) \\
& =\sum_{n=1}^{\infty} \lambda_{n}\left\langle\delta_{n}, x\right\rangle g_{n} . \\
\left(a_{n}\right. & \left.=\left\langle\delta_{n}, x\right\rangle, \text { and }\left(\lambda_{n}\right) \in \ell^{p} \text { since } T \in C_{p}\left(\ell \ell^{*}, X\right)\right) . \text { Consequently, } T=\sum_{n=1}^{\infty} \lambda_{n} \delta_{n} \otimes g_{n} . \text { Remains }
\end{aligned}
$$ to prove that $\|T\|_{c(p)}=\left\|\left(\lambda_{n}\right)\right\|_{p}$. Let $T \in C_{p}\left(\ell^{p^{*}}, X\right), 1<p<\infty$, and $T=\sum_{n=1}^{\infty} \lambda_{n} \delta_{n} \otimes g_{n}$. Further, let $\left(\theta_{k}\right)$ be any p^{*} - orthonormal sequence in $\ell p^{p^{*}}$. Then $T \theta_{k}=\sum_{n=1}^{\infty} \lambda_{n}\left\langle\delta_{n}, \theta_{k}\right\rangle g_{n}$ and

$$
\begin{aligned}
\left(\sum_{k=1}^{\infty}\left\|T \theta_{k}\right\|^{p}\right)^{\frac{1}{p}} & =\left(\sum_{k=1}^{\infty}\left\|\sum_{n=1}^{\infty} \lambda_{n}\left\langle\delta_{n}, \theta_{k}\right\rangle g_{n}\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} \lambda_{n}\langle | \delta_{n}\left|,\left|\theta_{k}\right|\right\rangle\right)^{p}\right)^{\frac{1}{p}} \\
& =\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} \eta_{k} \lambda_{n}\langle | \delta_{n}\left|,\left|\theta_{k}\right|\right\rangle\right)
\end{aligned}
$$

where $\left\|\left(\eta_{k}\right)\right\|_{p^{*}}=1$ (By Hahn Banach Theorem and the fact that $\left(\ell^{p}\right)^{*}=\ell^{p^{*}}$). Now, if $\left(e_{n}\right)$ is p - orthonormal in ℓ^{p}, then $\left(\left|e_{n}\right|\right)$ is p - orthonormal. Hence, $x=\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left|\delta_{n}\right| \in \ell^{p},\|x\|_{p}=\left\|\left(\lambda_{n}\right)\right\|_{p}$, and $y=\sum_{k=1}^{\infty}\left|\eta_{k}\right|\left|\theta_{k}\right| \in \ell^{p^{*}},\|y\|_{p^{*}}=1$. Now,

$$
\begin{aligned}
\left(\sum_{k=1}^{\infty}\left\|T \theta_{k}\right\|^{p}\right)^{\frac{1}{p}} & \left.=\left|\sum_{n, k=1}^{\infty}\right| \lambda_{n}| | \eta_{k}\left|\langle | \delta_{n}\right|,\left|\theta_{k}\right|\right\rangle\left|=\left|\left\langle\sum_{n=1}^{\infty}\right| \lambda_{n}\right|\right| \delta_{n}\left|, \sum_{k=1}^{\infty}\right| \eta_{k}| | \theta_{k}| \rangle \mid \\
& =|\langle x, y\rangle| \leq\|x\|_{p}\|y\|_{p^{*}} \leq\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}\right)^{\frac{1}{p}},\left(\|y\|_{p^{*}}=1\right) .
\end{aligned}
$$

Hence, for any p - orthonormal sequence $\left(\theta_{k}\right)$, we have

$$
\left(\sum_{k=1}^{\infty}\left\|T \theta_{k}\right\|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{n=1}^{\infty}\left\|T \delta_{n}\right\|^{p}\right)^{\frac{1}{p}}=\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

So, $\sup \left(\sum_{k=1}^{\infty}\left\|T \theta_{k}\right\|^{p}\right)^{\frac{1}{p}}=\left\|\left(\lambda_{n}\right)\right\|_{p}$.

Next, we show $(i i) \Rightarrow(i)$. Let $T=\sum_{n=1}^{\infty} \lambda_{n} \delta_{n} \otimes g_{n}$, where $\left(\lambda_{n}\right) \in \ell^{p}$ and $\left\|g_{n}\right\|=1$. Then as in case $(i \Rightarrow i i)$ we get

$$
\|T\|_{C(p)}=\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}\right)^{\frac{1}{p}}<\infty, \text { and } T \in C_{p}\left(\ell^{p^{*}}, X\right)
$$

This ends the proof of the Theorem.
Theorem 2.5. Every operator $T \in C_{p}\left(\ell^{p^{*}}, X\right)$ has a representation for which the supremum is attained.

Proof. From Theorem 2.4, we find the desired conclusion immediately.

3. The isometries

In this section, we study the isometric onto operators of $C_{p}\left(\ell^{p^{*}}, X\right)$.
Theorem 3.1. Let A be an isometric onto operator of $\ell^{p^{*}}$, and B be an isometric onto operator on X. Then the map defined by $F: C_{p}\left(\ell^{p^{*}}, X\right) \rightarrow C_{p}\left(\ell^{p^{*}}, X\right), F(T)=B T A$ is an isometric onto operator of $C_{p}\left(\ell^{p^{*}}, X\right)$.
Proof. Let $x \in \ell^{p^{*}}$ and let $T=\sum_{n=1}^{\infty} \lambda_{n} \delta_{n} \otimes g_{n}$ be an element in $C_{p}\left(\ell^{p^{*}}, X\right)$. Since B is an isometry, we have

$$
\begin{aligned}
F(T) x & =B T A x=\sum_{n=1}^{\infty} \lambda_{n}\left\langle\delta_{n}, A x\right\rangle B g_{n} \\
& =\sum_{n=1}^{\infty} \lambda_{n}\left\langle A^{*} \delta_{n}, x\right\rangle B g_{n}=\sum_{n=1}^{\infty} \lambda_{n}\left\langle A^{*} \delta_{n}, x\right\rangle \hat{g}_{n}
\end{aligned}
$$

where $\left\|\hat{g_{n}}\right\|=1$. Further, Since A^{*} is an isometric onto operator on ℓ^{p}, then $A^{*} \delta_{n}=\delta_{\varphi(n)}$, where $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ is $(1-1)$ and onto map on the set of natural numbers. Thus $F(T)=\sum_{n=1}^{\infty} \lambda_{n} \delta_{\varphi(n)} \otimes \hat{g_{n}}$ $=\stackrel{\wedge}{T}$, say. Now, $\|\hat{T}\|=\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}\right)^{\frac{1}{p}}$, and F is an isometry by Theorem 3.3.4.

To show that F is onto, let $S=\sum_{n=1}^{\infty} a_{n} \delta_{n} \otimes g_{n} \in C_{p}\left(\ell \ell^{p^{*}}, X\right)$, and $\hat{S}=\sum_{n=1}^{\infty} a_{n} \delta_{\varphi^{-1}(n)} \otimes B^{-1} g_{n}$. Clearly $F(\hat{S})=\sum_{n=1}^{\infty} a_{n} \delta_{n} \otimes g_{n}=S$. Then F is onto.This completes the proof.

Definition 3.2. A basic atom in $C_{p}\left(\ell^{p^{*}}, X\right)$ is an operator of the form $\delta_{k} \otimes h$ for some $k \in N$ and $h \in X$.

Theorem 3.3. Let $F: C_{p}\left(\ell^{p^{*}}, X\right) \rightarrow C_{p}\left(\ell^{p^{*}}, X\right)$. If F preserves basic atoms and if F preserves rank, then the following are equivalent:
(i) F is an isometric onto operator.
(ii) There exist two isometric onto operators: $A: \ell^{p} \rightarrow \ell^{p}$ and $B: X \rightarrow X$, and a sequence $\left(a_{n}\right),\left|a_{n}\right|=1$ for all n with $F\left(\sum \delta_{n} \otimes x_{n}\right)=\sum A\left(\delta_{n}\right) \otimes a_{n} B x_{n}$.

Proof. First, we show $(i) \Rightarrow(i i)$. Let F be an isometric onto operator. We divide the proof into steps:
$\underline{\text { Step (i). Let } X_{1}=\delta_{1} \otimes X=\left\{\delta_{1} \otimes x: x \in X\right\} . ~ . ~ . ~}$
Then $F\left(X_{1}\right)=\left\{\delta_{k} \otimes y: y \in X\right.$, for fixed $\left.k, \forall y \in X\right\}$.
Claim. Let $x_{1}, x_{2} \in X$. If possible assume $F\left(\delta_{1} \otimes x_{1}\right)=\delta_{k_{1}} \otimes \hat{x_{1}}$ and $F\left(\delta_{1} \otimes x_{2}\right)=\delta_{k_{2}} \otimes \hat{x_{2}}$, and $\delta_{k_{1}} \neq \delta_{k_{2}}$. Then, $\delta_{1} \otimes x_{1}+\delta_{1} \otimes x_{2}=\delta_{1} \otimes\left(x_{1}+x_{2}\right)$ is a basic atom. Since F preserves basic atoms then $F\left(\delta_{1} \otimes x_{1}+\delta_{1} \otimes x_{2}\right)=\delta_{j} \otimes y$ for some $y \in X$ and $j \in N$. Hence, $\delta_{j} \otimes y=$ $\delta_{k_{1}} \otimes \hat{x}_{1}+\delta_{k_{2}} \otimes \hat{x_{2}}$, which is a contradiction since $\delta_{k_{1}} \neq \delta_{k_{2}}$. So $\delta_{k_{1}} \otimes \hat{x}_{1}+\delta_{k_{2}} \otimes \hat{x_{2}}$ is not a basic atom. So $F\left(\delta_{1} \otimes x\right)=\delta_{k} \otimes y$, for fixed $k \in N$. Similarly for $\delta_{2}, \delta_{3}, \ldots$.
$\underline{\text { Step (ii) }}$. Define $A: \ell^{p} \rightarrow \ell^{p}, A \delta_{1}=\delta_{k}$, where $F\left(\delta_{1} \otimes X\right)=\delta_{k} \otimes X$. Similarly for $\delta_{2}, \delta_{3}, \ldots$ Then A is an isometric onto operator since it permutes the basis $\left(\delta_{k}\right)$ and F is onto. So A can be recognized as: $A \delta_{n}=\delta_{\varphi(n)}$, where φ is a permutation on the set of natural numbers, N.
$\underline{\text { Step (iii) }} \cdot F\left(\delta_{1} \otimes x\right)=\delta_{\varphi(1)} \otimes x_{1}$, and $F\left(\delta_{2} \otimes x\right)=\delta_{\varphi(2)} \otimes x_{1}$.
Claim. If possible assume $F\left(\delta_{1} \otimes x\right)=\delta_{\varphi(1)} \otimes y$ and $F\left(\delta_{2} \otimes x\right)=\delta_{\varphi(2)} \otimes z, y \neq z$. Now, $\delta_{1} \otimes x+\delta_{2} \otimes x=\left(\delta_{1}+\delta_{2}\right) \otimes x$, which is a 1 -rank operator. But $F\left(\left(\delta_{1}+\delta_{2}\right) \otimes x\right)=\delta_{\varphi(1)} \otimes y+$ $\delta_{\varphi(2)} \otimes z$. Now, since $\|y\|=\|z\|=\|x\|$, (since F is an isometry) then either y, z are independent or $y= \pm z$. If y, z are independent, then $F\left(\left(\delta_{1}+\delta_{2}\right) \otimes x\right)=\delta_{\varphi(1)} \otimes y+\delta_{\varphi(2)} \otimes z$ is a two rank operator which is a contradiction, since F preserves rank. Hence, $F\left(\delta_{1} \otimes x\right)=\delta_{\varphi(1)} \otimes a_{1} y$, and $F\left(\delta_{2} \otimes x\right)=\delta_{\varphi(2)} \otimes a_{2} y$, with $\left|a_{i}\right|=1$.

In a similar way one can prove $\left\{F\left(\delta_{k} \otimes x\right): k \in N\right\}=\left\{\delta_{\varphi(k)} \otimes a_{k} y:\left|a_{k}\right|=1, k \in N\right\}$.
$\underline{\text { Step (iv) }}$. Define $B: X \rightarrow X, B(x)=y$, where $F\left(\delta_{k} \otimes x\right)=a_{k} \delta_{\varphi(k)} \otimes y$, and $\left|a_{k}\right|=1$. Then B is well-defined linear maps.To prove the linearity of B, let $x_{1}, x_{2} \in X$, and $\beta \in \mathbb{R}$. Then, $F\left(\delta_{k} \otimes\left(\beta x_{1}+x_{2}\right)\right)=F\left(\beta \delta_{k} \otimes x_{1}+\delta_{k} \otimes x_{2}\right)=\beta F\left(\delta_{k} \otimes x_{1}\right)+F\left(\delta_{k} \otimes x_{2}\right)=\beta a_{k} \delta_{\varphi(k)} \otimes \hat{x_{1}}+$ $a_{k} \delta_{\varphi(k)} \otimes \hat{x_{2}}=a_{k} \delta_{\varphi(k)} \otimes\left(\beta \hat{x_{1}}+\hat{x_{2}}\right)=a_{k} \delta_{\varphi(k)} \otimes\left(\beta B\left(x_{1}\right)+B\left(x_{2}\right)\right)$, where $\left|a_{k}\right|=1$. That is
$B\left(\beta x_{1}+x_{2}\right)=\beta B\left(x_{1}\right)+B\left(x_{2}\right)$. Since F is an isometric operator, we have $\|x\|=\left\|\delta_{k} \otimes x\right\|=$ $\left\|F\left(\delta_{k} \otimes x\right)\right\|=\left\|a_{k} \delta_{\varphi(k)} \otimes y\right\|=\|y\|=\|B(x)\|$. Hence B is an isometry. Finally, let $y \in X$. Then $\delta_{k} \otimes y=F\left(\delta_{\varphi^{-1}(k)} \otimes x\right)$, since F is onto. Therefore, $y=B(x)$ for some $x \in X$. Thus B is an isometric onto operator.

Now, we want to show that $F(T)=\sum_{n=1}^{\infty} A\left(\delta_{n}\right) \otimes a_{n} B x_{n}$. Indeed, we have $F\left(\sum_{n=1}^{\infty} \delta_{n} \otimes x_{n}\right)=$ $\sum_{n=1}^{\infty} F\left(\delta_{n} \otimes x_{n}\right)=\sum_{n=1}^{\infty} \delta_{\varphi(n)} \otimes a_{n} y_{n}=\sum_{n=1}^{\infty} A\left(\delta_{n}\right) \otimes a_{n} B x_{n}$.

Now, we are in a position to show $(i i) \Rightarrow(i)$. Let $T=\sum_{n=1}^{\infty} \delta_{n} \otimes x_{n}$ be an element in $C_{p}\left(\ell^{p^{*}}, X\right)$. Since B is an isometry, we have $F(T)=\sum_{n=1}^{\infty}\left(A\left(\delta_{n}\right) \otimes a_{n} B\left(x_{n}\right)\right)=\sum_{n=1}^{\infty}\left(\delta_{\varphi(n)} \otimes a_{n} y_{n}\right)=\stackrel{\wedge}{T}$, where $\left\|y_{n}\right\|=\left\|x_{n}\right\|$.

Now,

$$
\|F(T)\|=\|\hat{T}\|=\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}\right)^{\frac{1}{p}}=\|T\|
$$

Hence F is an isometry by Theorem 3.1. To show that F is onto, let $S=\sum_{n=1}^{\infty} \delta_{n} \otimes y_{n} \in$ $C_{p}\left(\ell^{p^{*}}, X\right)$, where $y_{n}=a_{n} x_{n}$ such that $\left|a_{n}\right|=1$. Let $\hat{S}=\sum_{n=1}^{\infty} \delta_{\varphi^{-1}(n)} \otimes B^{-1} x_{n}$. Clearly $F(\hat{S})=$ $\sum_{n=1}^{\infty} \delta_{n} \otimes a_{n} x_{n}=\sum_{n=1}^{\infty} \delta_{n} \otimes y_{n}=S$. Then F is onto. This ends the proof.
Theorem 3.4. Let $T=\delta_{k} \otimes x \in C_{1}\left(\ell^{\infty}, X\right)$ with $\|T\|=1$.Then T is an extreme points of $C_{1}\left(\ell^{\infty}, X\right)$ if and only if x is extreme in $B[X]$.

Proof. Let $x \in \operatorname{ext}\left(B_{1}[X]\right)$. We claim that $T=\delta_{k} \otimes x$ is an extreme points of $C_{1}\left(\ell^{\infty}, X\right)$. Without loss of generality, assume $T=\delta_{1} \otimes x$ and assume that T is not an extreme point. Hence, there exist $T_{1}=\sum_{n=1}^{\infty} \delta_{n} \otimes x_{n}$ and $T_{2}=\sum_{n=1}^{\infty} \delta_{n} \otimes y_{n} \in C_{1}\left(\ell^{\infty}, X\right)$ such that $\delta_{1} \otimes x=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{1}\right\|=\left\|T_{2}\right\|=1$. Thus $\delta_{1} \otimes x=\frac{1}{2}\left(T_{1}+T_{2}\right)$. So, $(x, 0,0,0, \ldots)=\frac{1}{2} \sum_{n=1}^{\infty} \delta_{n} \otimes\left(x_{n}+y_{n}\right)=$ $\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}, \ldots\right)$.Then $x=\frac{x_{1}+y_{1}}{2}$ which is a contradiction, since $x \in \operatorname{ext}\left(B_{1}[X]\right)$. Hence, $\delta_{k} \otimes x$ is an extreme points of $C_{1}\left(\ell^{\infty}, X\right)$.

The Converse is clear. This ends the proof.
For $X=\ell^{p}, 1 \leq p<\infty$, we have the following.

Theorem 3.5. Let F : $C_{1}\left(\ell^{\infty}, \ell^{p}\right) \rightarrow C_{1}\left(\ell^{\infty}, \ell^{p}\right)$ be an isometric onto operator. Then F preserves basic atoms.

Proof. Let F be an isometric onto operator of $C_{1}\left(\ell^{\infty}, \ell^{p}\right)$. Then as is known, F preserves the extreme points of the unit ball of $C_{1}\left(\ell^{\infty}, \ell^{p}\right)$. Now, let $\delta_{k} \otimes h \in C_{1}\left(\ell^{\infty}, \ell^{p}\right)$ be basic atom. Then by Theorem 3.3.8 $\delta_{k} \otimes \frac{h}{\|h\|} \in \operatorname{ext} B_{1}\left(C_{1}\left(\ell^{\infty}, \ell^{p}\right)\right)$. Hence $F\left(\delta_{k} \otimes \frac{h}{\|h\|}\right)=\delta_{j} \otimes g$ for some $g \in$ ext $B_{1}\left(\ell^{p}\right)$. Since $\|h\| \delta_{k} \otimes \frac{h}{\|h\|}=\delta_{k} \otimes h$, then $F\left(\delta_{k} \otimes h\right)=\|h\| \delta_{j} \otimes g=\delta_{j} \otimes \hat{g}$, where $\|\hat{g}\|=\|h\|$.

Theorem 3.6. Let $F: C_{1}\left(\ell^{\infty}, \ell^{p}\right) \rightarrow C_{1}\left(\ell^{\infty}, \ell^{p}\right)$ be a linear operator that preserves rank. Then F is an isometric onto operator, if and only if $F\left(\sum_{n=1}^{\infty} \delta_{n} \otimes x_{n}\right)=\sum_{n=1}^{\infty} A\left(\delta_{n}\right) \otimes a_{n} B\left(x_{n}\right)$, where $A: \ell^{1} \rightarrow \ell^{1}$ is an isometric onto operator, and $B: \ell^{p} \rightarrow \ell^{p}$ is an isometric onto operator, and $\left(a_{n}\right)$ is a sequence of reals such that $\left|a_{n}\right|=1$.

Proof. By using Theorem 3.5, We see that F preserves basic atoms, and by using Theorem 3.3 m we can obtain the result immediately.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] R. Kadison, Isometries of operator algebras, Ann. Math. 54 (1951), 325-338.
[2] W.A. Light, E.W. Cheney, Approximation Theory in Tensor Product Spaces, LectureNotes in Mathematics, Springer-Verlag, (1985).
[3] E. Kreyszing, Introductory Functional analysis with applications, John Wiley and Sons, (1978).
[4] R. Khalil, A. Saleh, Isometries of certain operator spaces, Proc. Amer. Math. Soc. 132 (2003), 1473-1481.
[5] A. Yousef, R. Khalil, Isometries of P-nuclear operator spaces, J. Comput. Anal. Appl. 16 (2014).
[6] H.L. Royden, Real Analysis, 3rd ED., Prentice Hall, (1988).
[7] W. Ruess, C. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535-546.

[^0]: *Corresponding author

