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Abstract. In this paper we study define the concept of lacunary double ∆m− statistical convergent

sequences in probabilistic normed space and give some results. The main purpose of this paper is to

generalize the results for double sequences on statistical convergence in probabilistic normed space given

by Esi and Özdemir [4] earlier.
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1. Introduction

A probabilistic normed space (PN space) is a natural generalization of an ordinary

normed linear space. In PN space, the norms of vectors are represented by probability

distribution functions rather than a positive number. Such spaces were first introduced

by Serstnev [6] in 1963. In [13], Alsina et al. gave a new definition of PN-spaces which
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includes Serstnev’s a special case and leads naturally to the identification of the principle

class of PN-spaces, the Menger spaces. This definition becomes the standard one and has

been adopted by many authors (for instance, [12], [7], [8], [9]) who have investigated the

properties of PN spaces. The detailed history and the development of the subject up to

2006 can be found in [21].

On the other hand, statistical convergence was first introduced by Fast [8] as a general-

ization of ordinary convergence for real number sequences. Since then it has been studied

by many authors (for instance, [26], [19], [20], [2]). Statistical convergence has also been

discussed in more general abstract spaces such as the fuzzy number space [15], locally con-

vex spaces [21] and Banach spaces [14]. Karakus [24] introduced and studied statistical

convergence on PN spaces and followed by Karakus and Demirci [25] studied statistical

convergence of double sequences on PN spaces. Recently Esi and Özdemir [4] introduced

generalized ∆m−statistical convergence in probabilistic normed space for single general-

ized difference sequences and Esi [3] has introduced lacunary statistical convergence of

double sequences in probabilistic normed space.

It seems therefore reasonable to think if the concept of statistical convergence can be

extended to probabilistic normed spaces and in that case enquire how the basic properties

are affected. But basic properties do not hold on probabilistic normed spaces. The

problem is that the triangle function in such spaces.

In this paper we extend the concept of lacunary statistical convergence of double gen-

eralized difference sequences to probabilistic normed spaces and observe that some basic

properties are also preserved on probabilistic normed spaces. Since the study of conver-

gence in PN-spaces is fundamental to probabilistic functional analysis, we feel that the

concepts of ∆m−statistical convergence and ∆m−statistical Cauchy for double sequences

in a PN-space would provide a more general framework for the subject.

2. Preliminaries

Now we recall some notations and definitions used in paper.



LACUNARY STATISTICAL CONVERGENCE ... 25

Definition 2.1.([13]) A function f : R → R+
o is called a distribution function if it is

non-decreasing and left continuous with inft∈R f (t) = 0 and supt∈R f (t) = 1. We will

denote the set of all distribution functions by D.

Definition 2.2.([13]) A triangular norm, briefly t-norm, is a binary operation on [0, 1]

which is continuous, commutative, associative, non-decreasing and has 1 as neutral ele-

ment, that is, it is the continuous mapping > : [0, 1] × [0, 1] → [0, 1] such that for all

a, b, c ∈ [0, 1]:

(1) a >1 = a,

(2) a >b = b >a,

(3) c >d ≥ a >b if c ≥ a and d ≥ b,

(4) (a> b) >c = a > (b> c).

Example 2.1. The > operations a >b = max {a+ b− 1, 0} , a >b = a.b and a >b =

min {a, b} on [0, 1] are t-norms.

Definition 2.3.([10, 11]) A triple (X,N,>) is called a probabilistic normed space or

shortly PN-space if X is a real vector space, N is a mapping from X into D (for x ∈ X,

the distribution function N(x) is denoted by Nx and Nx (t) is the value of Nx at t ∈ R)

and > is a t-norm satisfying the following conditions:

(PN-1) Nx (0) = 0,

(PN-2) Nx (t) = 1 for all t > 0 if and only if x = 0,

(PN-3) Nαx (t) = Nx

(
t
|α|

)
for all α ∈ R\ {0},

(PN-4) Nx+y (s+ t) ≥ Nx (s) >Ny (t) for all x, y ∈ X and s, t ∈ R+
o .

Example 2.2. Suppose that (X, ‖.‖) is a normed space µ ∈ D with µ (0) = 0 and µ 6= h,

where

h (t) =

 0 , t ≤ 0

1 , t > 0
.

Define

Nx (t) =

 h (t) , x = 0

µ
(

t
||x||

)
, x 6= 0

,
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where x ∈ X, t ∈ R. Then (X,N,>) is a PN-space. For example if we define the functions

µ and ν on R by

µ (x) =

 0 , x ≤ 0

x
1+x

, x > 0
, ν (x) =

 0 , x ≤ 0

e−
1
x , x > 0

then we obtain the following well-known > norms:

Nx (t) =

 h (t) , x = 0

t
t+‖x‖ , x 6= 0

, Mx (t) =

 h (t) , x = 0

e(−
‖x‖
t ) , x 6= 0

.

We recall the concepts of convergence and Cauchy sequences for single sequences in a

probabilistic normed space.

Definition 2.4.([1]) Let (X,N,>) is a PN-space. Then a sequence x = (xk) is said to

be convergent to l ∈ X with respect to the probabilistic norm N if, for every ε > 0 and

θ ∈ (0, 1) , there exists a positive integer ko such that Nxk−l (ε) > 1− θ whenever k ≥ ko.

It is denoted by N − limx = L or xk
N→ L as k →∞.

Definition 2.5.([1]) Let (X,N,>) is a PN-space. Then a sequence x = (xk) is called

a Cauchy sequence with respect to the probabilistic norm N if, for every ε > 0 and

θ ∈ (0, 1), there exists a positive integer ko such that Nxk−xl (ε) > 1− θ for all k, l ≥ ko.

Definition 2.6.([1]) Let (X,N,>) is a PN-space. Then a sequence x = (xk) is said to

be bounded in X, if there is a r ∈ R such that Nxk (r) > 1 − θ, where θ ∈ (0, 1) . We

denote by lN∞ the space of all bounded sequences in PN space.

The idea of statistical convergence for single sequences was introduced by Fast [18] and

then studied by various authors, e.g., Salat [26], Fridy [19], Connor [20], Esi [2] and many

others and in normed space by Kolk [14]. Recently Karakus [24] and Alotaibi [1] have

studied the concept of statistical convergence in probabilistic normed spaces.

Firstly, we recall some definitions.

In 1900 Pringsheim presented the following definition for the convergence of double

sequences.

Definition 2.7.([5]) A double sequence x = (xk,l) has Pringsheim limit L (denoted by

P − limx = L) provided that given ε > 0 there exists N ∈ N such that |xk,l − L| < ε

whenever k, l > N . We shall describe such an x = (xk,l) more briefly as ”P-convergent”.
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We shall denote the space of all P-convergent sequences by cıı. By a bounded double

sequence we shall mean there exists a positive number K such that |xk,l| < K for all

(k, l) and denote such bounded by ‖x‖(∞,2) = supk,l |xk,l| < ∞. We shall also denote the

set of all bounded double sequences by lıı∞. We also note in contrast to the case for single

sequence, a P-convergent double sequence need not be bounded.

Definition 2.8.([15]) Let K ⊂ N × N be two-dimensional set of positive integers and

let K(n,m) be the numbers of (i, j) in K such that i ≤ n and j ≤ m.Then the two-

dimensional analogue of natural density can be defined as follows:

The lower asymptotic density of a set K ⊂ N× N is defined as

δ2
−

(K) = P − lim
n,m

inf
K (n,m)

nm
.

In this case
(
K(n,m)
nm

)
has a limit in Pringsheim’s sense then we say that K has a double

natural density and is defined as

δ2 (K) = P − lim
n,m

K (n,m)

nm
.

For example, let K = {(i2, j2) : i, j ∈ N}. Then

δ2 (K) = P − lim
n,m

K (n,m)

nm
≤ lim

n,m

√
n
√
m

nm
= 0,

i.e., the set K has double natural density zero, while the set L = {(i, 2j) : i, j ∈ N} has

double natural density 1
2
.

Definition 2.9.([16]) The double sequence θr,s = {(kr, ls)} is called double lacunary

sequence if there exist two increasing of integers such that

ko = 0, hr = kr − kr−1 →∞ as r →∞

and

lo = 0, hs = ls − ls−1 →∞ as s→∞.

Notations: kr,s = krls, hr,s = hrhs and θr,s is determined by

Ir,s = {(k, l) : kr−1 < k ≤ kr and ls−1 < l ≤ ls} ,

qr =
kr
kr−1

, qs =
ls
ls−1

and qr,s = qrqs.
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Definition 2.10. A real double sequence x = (xk,l) is to be ∆m−statistically convergent

to L, provided that for each ε > 0

{(k, l) : k ≤ m and l ≤ n, |∆mxk,l − L| ≥ ε}

has double natural density zero or equivalently

P − lim
m,n

1

mn
|{(k, l) : k ≤ m and l ≤ n, |∆mxk,l − L| ≥ ε}| = 0.

In this case we write S2
∆m − limx = L or xk,l → L (S2

∆m).

Definition 2.11. A real double sequence x = (xk,l) is said to be ∆m−statistically Cauchy

provided that, for every ε > 0 there exist N = N (ε) and M = M (ε) such that for all

k, p ≥ N , l, q ≥M , the set

{(k, l) ∈ Ir,s : |∆mxk,l −∆mxp,q| ≥ ε}

has double natural density zero or equivalently

P − lim
k,l

1

kl
|{(k, l) : k, p ≤ N and l, q ≤M, |∆mxk,l −∆mxp,q| ≥ ε}| = 0.

Definition 2.12. Let θr,s = {(kr, ls)} be a double lacunary sequence, the double number

sequence (xk,l) is Sθ∆m−convergent to L provided that for every ε > 0

δθ∆m ({(k, l) ∈ Ir,s : |∆mxk,l − L| ≥ ε}) = 0

or equivalently

P − lim
r,s

1

hr,s
|{(k, l) ∈ Ir,s : |∆mxk,l − L| ≥ ε}| = 0.

In this case we write Sθ∆m − limx = L or xk,l → L
(
Sθ∆m

)
.

Definition 2.13. Let θr,s = {(kr, ls)} be a double lacunary sequence, the double number

sequence (xk,l) is said to be an Sθ∆m−Cauchy sequence if there exists a double subsequence{
x−
kr,
−
ls

}
of (xk,l) such that

(
−
kr,
−
ls

)
∈ Ir,s for each (r, s) , P − limr,s x−

kr,
−
ls

= L and for

every ε > 0

P − lim
r,s

1

hr,s

∣∣∣∣{(k, l) ∈ Ir,s :

∣∣∣∣∆mxk,l −∆mx−
kr,
−
ls

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0.
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Using the concepts, we extend the double lacunary generalized difference statistical

convergence and Sθ∆m−Cauchy double sequence to the setting of sequences in a PN space

endowed with the strong topology as follows:

Definition 2.14. Let θr,s = {(kr, ls)} be a double lacunary sequence. Then a double

sequence (xk,l) in X is double lacunary ∆m−statistically convergent to θ in X if for every

ε > 0

P − lim
r,s

1

hr,s
|{(k, l) ∈ Ir,s : ∆mxk,l /∈ Λx (ε)}| = 0,

where Λx (ε) =
{

(xk,l) ∈ X : N∆mxk,l−L (ε) > 1− ε
}

is the neighborhood of θ. In this

case we write SθN∆m − limxk,l = θ or xk,l → θ
(
SθN∆m

)
and we will call θ, as the double

lacunary statistically ∆m−limit of the sequence (xk,l). We shall use SθN∆m to denote the

set of all double lacunary ∆m−convergent sequences from X. Of course, there is nothing

about θ as a limit, if one wishes to consider the double lacunary statistically convergent of

the sequence (xk,l) to the vector L, then it suffices to consider the sequence (∆mxk,l − L)

and it is double lacunary statistically ∆m−convergent to θ.

Definition 2.11. Let θr,s = {(kr, ls)} be a double lacunary sequence. Then a double

sequence (xk,l) in X is said to be double lacunary ∆m−statistically Cauchy sequence if

there exists a double subsequence

{
x−
kr,
−
ls

}
of (xk,l) such that

(
−
kr,
−
ls

)
∈ Ir,s for each (r, s),

P − limr,s x−
kr,
−
ls

= x and for every ε > 0

P − lim
r,s

1

hr,s

∣∣∣∣{(k, l) ∈ Ir,s : ∆mxk,l −∆mx−
kr,
−
ls
/∈ Λx (ε)

}∣∣∣∣ = 0.

3. Main results

Now we give the analogues of these definitions with respect to probabilistic norm N .

Definition 3.1. Let (X,N,>) is a PN-space. A double sequence x = (xk,l) is said to be

∆m−convergent to L ∈ X in X with respect to probabilistic norm N , that is, xk,l
∆m

→ L if

for every ε > 0 and ϑ ∈ (0, 1), there is a positive integer ko such that N∆mxk,l−L (ε) > 1−
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ϑ whenever k ≥ ko and l ≥ ko. In this case we write N∆m − limxk,l = L, where

∆mx = (∆mxk,l) =
(
∆m−1xk,l −∆m−1xk,l+1 −∆m−1xk+1,l + ∆m−1xk+1,l+1

)
(
∆1xk,l

)
= (∆xk,l) = (xk,l − xk,l+1 − xk+1,l + xk+1,l+1)

and ∆0x = (xk,l) and also this generalized difference double notion has the following

binomial representation:

∆mxk,l =
m∑
i=0

m∑
j=0

(−1)i+j
(
m

i

)(
m

j

)
xk+i,l+j.

Definition 3.2. Let (X,N,>) is a PN-space. Then a double sequence x = (xk,l) is

lacunary statistically ∆m−convergent to L ∈ X with respect to probabilistic norm N

provided that, for every ε > 0 and ϑ ∈ (0, 1)

δθN∆m

({
(k, l) ∈ Ir,s : N∆mxk,l−L (ε) ≤ 1− ϑ

})
= 0

or equivalently

P − lim
r,s

1

hr,s

∣∣{(k, l) ∈ Ir,s : N∆mxk,l−L (ε) ≤ 1− ϑ
}∣∣ = 0.

In this case we write δθN∆m − limxk,l = L or xk,l → L
(
δθN∆m

)
.

Definition 3.3. Let (X,N,>) is a PN-space. Then a double sequence x = (xk,l) is said

to be double lacunary ∆m−statistically Cauchy with respect to the probabilistic norm N

provided that, for every ε > 0 and ϑ ∈ (0, 1), there exists a double subsequence

{
x−
kr,
−
ls

}
of x = (xk,l) such that

(
−
kr,
−
ls

)
∈ Ir,s for each (r, s), P − limr,s x−

kr,
−
ls

= L and

δθN∆m

({
(k, l) ∈ Ir,s : N∆mxk,l−∆mx−

kr,
−
ls

(ε) ≤ 1− ϑ
})

= 0

or equivalently

P − lim
r,s

1

hr,s

∣∣∣∣{(k, l) ∈ Ir,s : N∆mxk,l−∆mx−
kr,
−
ls

(ε) ≤ 1− ϑ
}∣∣∣∣ = 0.

By using (3.1) and well-known density properties, we easily get the following lemma.

Lemma 3.1. Let (X,N,>) is a PN-space. Then for every ε > 0 and ϑ ∈ (0, 1), the

following statements are equivalent:
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(i) P − limr,s
1
hr,s

∣∣{(k, l) ∈ Ir,s : N∆mxk,l−L (ε) ≤ 1− ϑ
}∣∣ = 0,

(ii) δθN∆m

({
(k, l) ∈ Ir,s : N∆mxk,l−L (ε) ≤ 1− ϑ

})
= 0,

(iii) δθN∆m

({
(k, l) ∈ Ir,s : N∆mxk,l−L (ε) > 1− ϑ

})
= 1,

(iv) P − limr,s
1
hr,s

∣∣{(k, l) ∈ Ir,s : N∆mxk,l−L (ε) > 1− ϑ
}∣∣ = 1.

Proof. The first three parts are equivalent from Definition 2.5. It follows from Definition

2.4 that {
(k, l) ∈ Ir,s : N∆mxk,l−L (ε) ≥ ϑ

}
{

(k, l) ∈ Ir,s : N∆mxk,l−L (ε) ≥ 1 + ϑ
}
∪
{

(k, l) ∈ Ir,s : N∆mxk,l−L (ε) ≥ 1− ϑ
}

.

Also, Definition 2.3 implies that (ii) and (iv) are equivalent.

Theorem 3.2. Let (X,N,>) is a PN-space. If a double sequence x = (xk,l) is ∆m−

statistically convergent with respect to the probabilistic norm N , then SθN∆m − limxk,l is

unique.

Proof. Suppose that the double sequence x = (xk,l) is ∆m−statistically convergent to

two distinct points L1 and L2 (say) with respect to the probabilistic norm N. Let ε > 0

and β > 0. Choose ϑ ∈ (0, 1) such that (1− ϑ) > (1− ϑ) ≥ 1 − β. Then, we define the

following sets:

K1 (ϑ, ε) =
{

(k, l) ∈ Ir,s : N∆mxk,l−L1 (ε) ≤ 1− ϑ
}

and

K2 (ϑ, ε) =
{

(k, l) ∈ Ir,s : N∆mxk,l−L2 (ε) ≤ 1− ϑ
}

.

Then, clearly

P − lim
r,s

|K1 (ϑ, ε) ∩K2 (ϑ, ε)|
hr,s

= 1

so K1 (∆m, γ, ε) ∩ K2 (∆m, γ, ε) is a non-empty set. Since δθN∆m − limxk,l = L1 and

δθN∆m − limxk,l = L2 we have δθN∆m (K1 (ϑ, ε)) = 0 and δθN∆m (K2 (ϑ, ε)) = 0 for all ε > 0,

respectively. Let

K (ϑ, ε) = K1 (ϑ, ε) ∩K2 (ϑ, ε) .
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Then we observe that δθN∆m (K (ϑ, ε)) = 0 which implies δθN∆m (N× N−K (ϑ, ε)) = 1. If

(k, l) ∈ N× N−K (ϑ, ε), then we have

NL1−L2 (ε) ≥ N∆mxk,l−L1

(ε
2

)
>N∆mxk,l−L2

(ε
2

)
> (1− ϑ) > (1− ϑ) ≥ 1− β.

Since β > 0 was arbitrary, we get NL1−L2 (ε) = 1 for all ε > 0, which yields L1 − L2 = 0.

Therefore L1 = L2 and the proof is completed.

Theorem 3.3. Let (X,N,>) is a PN-space. If N∆m − limxk,l = L then δθN∆m − limxk,l

= L.

Proof. Let N∆m − limxk,l = L.Then for every ϑ ∈ (0, 1) and ε > 0, there is a number

ko ∈ N such that N∆m
k,l−L (ε) > 1− ϑ for all k ≥ ko and l ≥ ko. Hence the set

{
(k, l) ∈ N× N : N∆mxk,l−L (ε) ≤ 1− ϑ

}
has at most finitely many terms. Since every finite subset of the natural numbers has

double density zero, we immediately see that

δθN∆m

({
(k, l) ∈ N× N : N∆mxk,l−L (ε) ≤ 1− ϑ

})
= 0,

whence the result.

Theorem 3.4. Let (X,N,>) is a PN-space and x = (xk,l) be a double sequence. Then

δθN∆m − limxk,l = L if and only if there exists a subset

K = {(k, l) : k, l = 1, 2, 3, ...} ⊂ N× N

such that δθN (K) = 1 and N∆m − limk,l→∞
(k,l)∈K

xk,l = L.

Proof. Suppose that δθN∆m − limxk,l = L. Now for any ε > 0 and r ∈ N, let

K (r, ε) =

{
(k, l) ∈ N× N : N∆mxk,l−L (ε) ≤ 1− 1

r

}
,

(3.1)

M (r, ε) =

{
(k, l) ∈ N× N : N∆mxk,l−L (ε) > 1− 1

r

}
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Then δθN∆m {K (r, ε)} = 0 and

(1) M (1, ε) ⊃M (2, ε) ⊃M (3, ε) ⊃ · · · ⊃M (i, ε) ⊃M (i+ 1, ε) ⊃ · · ·

(2) δθN∆m {M (r, ε)} = 1, r = 1, 2, 3, . . . .

Now we have to show that for (k, l) ∈ M (r, ε), x = (xk,l) is N∆m−convergent to L.

Suppose that x = (xk,l) is not N∆m−convergent to L. Therefore there is θ > 0 such that

the set {
(k, l) ∈ N× N : N∆mxk,l−L (ε) ≤ 1− ϑ

}
has infinitely many terms. Let

M (ϑ, ε) =
{

(k, l) ∈ N× N : N∆mxk,l−L (ε) > 1− ϑ
}

, ϑ >
1

r
(r = 1, 2, 3, . . .) .

Then δθN {M (ϑ, ε)} = 0 and by (1), we have M (r, ε) ⊂M (ϑ, ε). Hence δθN {M (r, ε)} = 0

which contradicts (2). Therefore x = (xk,l) is N∆m−convergent to L.

Conversely, suppose that there exists a subset K = {(k, l) : k, l = 1, 2, 3, ...} ⊂ N × N

such that δθN (K) = 1 and N∆m − limk,l→∞
(k,l)∈K

xk,l = L. Then there exists ko ∈ N such that

for every ϑ ∈ (0, 1) and ε > 0

N∆mxk,l−L (ε) > 1− ϑ for all k, l ≥ ko.

Now

M (ϑ, ε) =
{

(k, l) ∈ N× N : N∆mxk,l−L (ε) ≤ 1− ϑ
}

⊂ N× N− {(kko+1, lko+1) , (kko+2, lko+2) , (kko+3, lko+3) , . . .}

Therefore δθN∆m {M (ϑ, ε)} ≤ 1 − 1 = 0. Hence δθN∆m − limxk,l = L. This completes the

proof of the theorem.

Theorem 3.5. Let θr,s = {(kr, ls)} be a double lacunary sequence with lim supr qr <∞

and lim sups qs <∞ then SθN∆m ⊂ S2
∆m .

Proof. Since lim supr qr < ∞ and lim sups qs < ∞ there exists H > 0 such that qr < H

and qs < H for all r and s. Suppose that xk,l → θ (S2
∆m) and

Nr,s = |{(k, l) ∈ Ir,s : ∆mxk,l /∈ Λθ (ε)}|



34 AYHAN ESI1,∗, M. KEMAL OZDEMIR2

By the definition of Sθ∆m − limxk,l = θ, for given ε > 0 there exists ro ∈ N such that

Nr,s

hr,s
< ε for all r and s > ro. Let

M = max {Nr,s : 1 ≤ r ≤ ro and 1 ≤ s ≤ ro} .

Let m and n be such that kr−1 < m ≤ kr and ls−1 < n ≤ ls. Then we can write

1

mn
|{(k, l) : k ≤ m and l ≤ n,∆mxk,l /∈ Λθ (ε)}|

≤ 1

kr−1ls−1

|{k ≤ kr, l ≤ ls : ∆mxk,l /∈ Λθ (ε)}|

=
1

kr−1ls−1

r,s∑
i,j=1,1

Ni,j ≤
Mr2

o

kr−1ls−1

+ εH2

and the result follows immediately.

Theorem 3.6. Let θr,s = {(kr, ls)} be a double lacunary sequence with lim infr qr > 1

and lim infs qs > 1 then S2
∆m ⊂ SθN∆m .

Proof. Suppose that lim infr qr > 1 and lim infs qs > 1 then there exists δ > 0 such

that qr > 1 + δ and qs > 1 + δ. This implies that hr
kr
≥ δ

1+δ
and hs

ls
≥ δ

1+δ
. Since

hr,s = krls − kr−1ls−1, we are granted the following

krls
hr,s
≤ 1 + δ

δ

and
kr−1ls−1

hr,s
≤ 1

δ
.

Let Sθ∆m − limxk,l = θ. We are going to prove S2
∆m − limxk,l = θ. We can write

1

krls
|{(k, l) ∈ Ir,s : k ≤ kr and l ≤ ls,∆

mxk,l /∈ Λθ (ε)}|

≥ 1

krls
|{(k, l) ∈ Ir,s : ∆mxk,l /∈ Λθ (ε)}|

≥
(

δ

1 + δ

)2
1

hr,s
|{(k, l) ∈ Ir,s : xk,l /∈ Λθ (ε)}|

which proves the theorem.

Theorem 3.7. Let θr,s = {(kr, ls)} be a double lacunary sequence, then SθN∆m = S2
∆m if

1 < lim infr qr ≤ lim supr qr <∞ and 1 < lim infs qs ≤ lim sups qs <∞.

Proof. The proof is an immediate consequence of the Theorem 3.5 and Theorem 3.6.
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4. Conclusion

In this paper, we obtained some results on lacunary statistical convergence for double

generalized difference sequences on probabilistic normed spaces. The obtained results

here are more general than the results of Esi [3].
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