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Abstract. Let M(1,1) be the group of all transformations of the 2-dimensional Minkowski spacetime M generated

by all pseudo-orthogonal transformations and parallel translations of M. Let SM(1,1) is the proper subgroup of

M(1,1) and SL(1,1) is the ortochoronous proper subgroup of M(1,1). In this paper, conditions for the equivalence

of two systems of vectors {x1,x2, . . .xm} and {y1,y2, . . .ym} are obtained for groups G=M(1,1),SM(1,1),SL(1,1).

Finally, we present a necessary and sufficient conditions for judging whether Bézier curves in M of degree m are

G-equivalent.
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1. Introduction

One of important problems in theory of invariants is finding necessary and sufficient con-

ditions equivalence of systems of vectors {x1,x2, . . .xm} and {y1,y2, . . .ym} under the action of

pseudo-orthogonal group(general Lorentz group) O(1,1) , special pseudo-orthogonal group(proper

Lorentz group) SO(1,1) and ortochoronous special pseudo-orthogonal group (Lorentz group)

L(1,1).
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Recently, all m-points invariants for different geometries is determined by a characterization

of orbits of m-tuples of vectors in paper [21]. All scalar concomitants of vectors and all bis-

calars of a system of s≤ n linearly independent contravariant vectors in n-dimensional Lorentz

space is determined in papers [1, 5]. A solution of the problem of equivalence of a system of

linearly independent vectors for pseudo-orthogonal group O(n,1) in terms of Gram matrices of

vectors x1,x2, . . .xm in the n- dimensional pseudo-Euclidean space of index 1 is given in [5]. But

for a system of linearly dependent vectors for groups G = O(1,1),SO(1,1),L(1,1), therefore

mentioned papers do not contain a solution. For example, consider the following two systems:

Vx = {x1 = (1,1),x2 = (2,2)}, Vy = {y1 = (1,1),y2 = (3,3)}. Clearly, vectors in Vx,Vy are lin-

early dependent and mentioned invariants are equal. But the systems are not O(1,1)-equivalent.

The paper presents a solution of the problem of G-equivalence of a system of vectors for

groups G = O(1,1),SO(1,1),L(1,1) in terms of invariants of vectors x1,x2, . . .xm in the two

dimensional Minkowski spacetime geometry. Applications of the invariant theory and invariants

in computer vision and pattern recognition are discussed in [3, 6, 14, 15, 16]. Transformations

and invariants of curves, surfaces and graphical objects appear in computer aided geometric

design and graphical applications in [7, 17]. The invariance of curves and surfaces relative

to the Euclidean group, the affine group and other groups is investigated in [4, 12, 13, 14,

18]. Conditions for the coincidence of two Bézier curves of degree 3 and 4 in the Euclidean

geometry are discussed in papers [11, 22, 23]. Differential invariants(the curvature, the torsion)

of spacelike Bézier curves in the three dimensional Minkowski spacetime is given in paper

[8]. In [19], the conditions of the global G- equivalence of curves are given in terms of the

pseudo-Euclidean type and the system of polynomial differential G- invariant functions. In

[20], the conditions of the global G- equivalence of null curves are given in terms of the pseudo-

Euclidean type and the system of polynomial differential G- invariant functions. The solution of

the equivalence problem, without using the methods in the aforementioned articles, is devoted

to an application of control invariants of Bézier curves in M of degree m.
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The paper is organized as follows. In Section 2, the definition of the system Vx type and the

ratios of linearly dependence of vectors x1,x2 is given. The type and the ratios are O(1,1)-

invariant(M(1,1)-invariant, respectively). The conditions of G = O(1,1),SO(1,1),L(1,1)- e-

quivalence of vectors are given in terms of the type and polynomial invariants of vectors x1,x2,

. . . xm functions. In Section 3, the definitions of a G-equivalence of Bézier curves, a control

G-invariant of a Bézier curve are introduced. The conditions of G=M(1,1),SM(1,1),SL(1,1)-

equivalence of Bézier curves in M of degree m is given.

2. The conditions of G-equivalence of vectors

Let R be the field of real numbers. The 2-dimensional pseudo-Euclidean space of index 1

will be denoted by M. M is 2-dimensional the Minkowski spacetime. < u,v > is a referred to as

a Lorentz inner product on M such that there exists an orthonormal basis {e1,e2} for M with the

property that if u = u1e1+u2e2 and v = v1e1+v2e2, then < u,v >= u1v1−u2v2 for all u,v ∈M

and denoted by < u,v >.

We define the matrix A =
(
ai j
)

i, j=1,2 associated with the pseudo-orthogonal transformations

and the pseudo-orthogonal basis {ei} by A =

 a11 a12

a21 a22

 for all ai j ∈ R. That is,

O(1,1) =

A ∈ G(2,ℜ) : AT ηA = η ,η =

 1 0

0 −1

.

Then the group M(1,1) of all pseudo-Euclidean motions of an 2-dimensional pseudo-Euclidean

space has the form

M(1,1) = {F : M→M : Fx = gx+b,g ∈ O(1,1),b ∈M}, where gx is the multiplication of a

matrix g and a column vector x ∈M.

The following proposition is known in [18].

Proposition 2.1. Let O(1,1) be the pseudo-orthogonal group of index 1. Then, all elements of

O(1,1) as follows:

A =

 a b

b a

 or B =

 1 0

0 −1

 a b

b a

 for all a,b ∈ R
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The group of all proper pseudo-orthogonal transformations of M is denoted by SO(1,1). It is

a subgroup of O(1,1).

That is, SO(1,1) =

A =

 a b

b a

 ∈ O(1,1) : detA = 1

.

Put SM(1,1) = {F ∈M(1,1) : Fx = gx+b,g ∈ SO(1,1),b ∈M}.

SM(1,1) is a subgroup of M(1,1).

The group of all ortochoronous proper pseudo-orthogonal transformations of M is denoted

by L(1,1).

We shall refer to L(1,1) simply as the Lorentz group(see [9, p. 15-16]). That is, we denote

L(1,1) =

A =

 a b

b a

 ∈ O(1,1) : detA = 1,a≥ 1

.

Put SL(1,1) = {F ∈ SM(1,1) : Fx = gx+b,g ∈ L(1,1),b ∈M}.

SL(1,1) is a subgroup of M(1,1).

In [9, p.14-16], the groups O(1,1) ,SO(1,1) and L(1,1) are named general Lorentz group,

proper Lorentz group and orthocronous proper Lorentz group, respectively.

The following definition is known (see [9, p.10,12]).

Definition 2.1.

(i) A vector x in M will be called timelike vector if 〈x,x〉< 0.

(ii) A vector x in M will be called spacelike vector if 〈x,x〉> 0.

(iii) A non-zero vector x in M will be called null (or lightlike) vector if 〈x,x〉= 0.

Let Vx = {x1,x2, . . .xm} and Vy = {y1,y2, . . .ym} be two systems of vectors in M. Let G be a

subgroup of M(1,1).

Definition 2.2. Vx and Vy are called G-equivalent if there exists F ∈ G such that yi = Fxi,

1≤ i≤ m. This being the case, we write xi
G∼ yi. (shortly,Vx

G∼Vy).

Definition 2.3. A function f (x0,x1, . . . ,xm) of vectors x0,x1, . . . ,xm in M will be called G-

invariant if f (Fx0,Fx1, . . . ,Fxm) = f (x0,x1, . . . ,xm) for all F ∈ G.
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Example 2.1. Since < g(u),g(v) >=< u,v > for all g ∈ O(1,1), we obtain that the scalar

product < u,v > of vectors u,v ∈M is O(1,1)-invariant. Similarly, the function f (u,v,w) =<

u−w,v−w > is M(1,1)-invariant.

Example 2.2. Let u1,u2 be vectors in M. Denote by [u1u2] determinant of the matrix ‖u1u2‖ of

column-vectors u1,u2. Then [u1u2] is SO(1,1)-invariant. In fact, [gu1gu2] = detg[u1u2] = [u1u2]

for all g ∈ SO(1,1).

Proposition 2.2. Let Vx
O(1,1)∼ Vy. Then rank (Vx) = rank (Vy).

Proof. It is obvious from Definition 2.2.

Corollary 2.1. According to O(1,1)− equivalence, rank (Vx) is an invariant.

Example 2.3. The rank of a system Vx is O(1,1)-invariant, but it is not M(1,1)-invariant.

The number T (Vx) will be called the type of the system Vx such that the type is determined

the rank of the system Vx and the type of linearly independent vector(s) in Vx from Definition

2.2.

Definition 2.3.

(i) The system Vx will be called first type if rank(Vx) = 2 and the linearly independent

vectors in Vx are spacelike, timelike or null. This being case, denoted by T (Vx) = 1.

(ii) The system Vx will be called second type if rank(Vx) = 1 and all vectors in Vx are time-

like. This being case, denoted by T (Vx) = 2.

(iii) The system Vx will be called third type if rank(Vx)= 1 and all vectors in Vx are spacelike.

This being case, denoted by T (Vx) = 3.

(iv) The system Vx will be called fourth type if rank(Vx) = 1 and all vectors in Vx are null.

This being case, denoted by T (Vx) = 4.

Proposition 2.3. Let Vx
O(1,1)∼ Vy. Then T (Vx) = T (Vy).

Proof. It is obvious from Definition 2.2.

Corollary 2.2. According to O(1,1)− equivalence, the type is an invariant.

Let Vx be a system of vectors in M. We consider the case T (Vx) = 1. Since T (Vx) = 1, for

simplicity, we assume that there exist two linearly independent vectors x1,x2 in Vx such that
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xi = λi1x1 +λi2x2 for all i ≥ 3 and λi1,λi2 ∈ R. Here, the ordered pair (λi1,λi2) will be called

the ratios of linearly dependence of vectors xi,2 < i ≤ m and denoted by L1
x . Similarly, we

consider the case T (Vx) = r for all r = 2,3,4. Since T (Vx) = r for all r = 2,3,4, for simplicity,

we assume that there exists linearly independent vector x1 in Vx such that xi = λi1x1 for all i≥ 2

and λi1 ∈ R. Here, the number λi1 will be called the ratio of linearly dependence of xi,1 < i≤m

and denoted by L2
x .

Proposition 2.4. Let Vx and Vy be two systems of vectors in M and Vx
O(1,1)∼ Vy. Then Lk

x = Lk
y

for k = 1,2.

Proof. The proof follows easy from Definition 2.2 and Proposition 2.3.

Corollary 2.3. According to O(1,1)− equivalence, Lk
x is an invariant.

Let x1,x2, . . .xm ∈M. Denote the matrix
∥∥< xi,x j >

∥∥
i, j=1,2,...,m by

Gr (x1,x2, . . .xm) and its determinant by detGr (x1,x2, . . .xm).

Proposition 2.5. Vectors x1,x2, . . .xm ∈M are linearly depended if and only if detGr (x1,x2, . . .xm)=

0.

Proof. A proof is given [10, p.75].

Proposition 2.6. Let Vx be a system of vectors in M and T (Vx) = 1. Then element (λi1,λi2) of

L1
x as follows:

λi1 =

 < x1,xi > < x1,x2 >

< x2,xi > < x2,x2 >


detGr(x1,x2)

,λi2 =

 < x1,x1 > < x1,xi >

< x2,x1 > < x2,xi >


detGr(x1,x2)

for all 3≤ i≤ m.

Proof. Since T (Vx) = 1, we have rank (Vx) = 2. Then there exist linearly independent vectors

x1,x2 in Vx such that xi = λi1x1 +λi2x2 for all 3≤ i≤ m and λi1,λi2 ∈ R.

Hence, we have
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< xi,x1 >= λi1 < x1,x1 >+λi2 < x2,x1 >(1)

< xi,x2 >= λi1 < x1,x2 >+λi2 < x2,x2 >(2)

for all 3≤ i≤ m.

For linearly independent vectors x1,x2 in Vx, we have

detGr (x1,x2) 6= 0. Then there exists an unique solution of equalities (1) and (2). This solution

is given in proposition.

Proposition 2.7. Let Vx be a system of vectors in M and T (Vx) = r for all r = 2,3. Then element

λi1 of L1
x as follows:

λi1 =
<x1,xi>
<x1,x1>

for all 2≤ i≤ m.

Proof. It follows from Proposition 2.6.

Corollary 2.4. Let Vx be a system of vectors in M and T (Vx) = r for all r = 1,2,3. According

to Propositions 2.6. and 2.7., components of elements of L1
x ,L

2
x are given in terms of scalar

products of vectors x1,x2, . . .xm.

Let xi = (xi1,xi2) ∈M for all 1≤ i≤ m.

Proposition 2.8. Let Vx be a system of vectors in M and T (Vx) = 4. Then element λi1 of L2
x as

follows: λi1 =
xi2
x12

for 2≤ i≤ m.

Proof. It follows from Propositions 2.6. and 2.7.

Corollary 2.5. Let Vx be a system of vectors in M and T (Vx) = 4. According to Proposition 2.8.,

components of elements of L2
x are not given in terms of scalar products of vectors x1,x2, . . . ,xm.

Theorem 2.1.labelthe2.2 Let Vx and Vy be two system of vectors in M. Assume that T (Vx) =

T (Vy) = 1. Then following two conditions are equivalent:

(i)

Vx
O(1,1)∼ Vy
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(ii)

< xi,x j >=< yi,y j >

for all i = 1,2; j = 1,2, . . . ,m and i≤ j

Proof.

(i)→ (ii): Let Vx be a system of vectors in M and T (Vx) = 1. Since the function f (x j,xk) =<

x j,xk > is O(1,1)-invariant, condition (i) implies (ii).

(ii)→ (i): Assume that condition (ii) is valid.

We have the case T (Vx) = T (Vy) = 1. Then there exist vectors x1,x2 ∈Vx which are linearly

independent. We prove that vectors y1,y2 ∈Vy are linearly independent. Let X = ‖x1x2‖ and Y =

‖y1y2‖ be two matrix of column-vectors x1,x2 and y1,y2, respectively. Linearly independence

of x1,x2 implies detX 6= 0. Let X> be the transpose matrix of X and Gr(x1,x2) is the Gram

matrix of vectors x1,x2. Then it is easy to see that

(3) X>ηX = Gr(x1,x2).

Since < xi,x j >=< yi,y j > for all i = 1,2; j = 1,2 and i≤ j, we have

(4) Gr(x1,x2) = Gr(y1,y2).

Equalities (3) and (4) imply

(5) X>ηX = Y>ηY,

whence

(6) (detX)2 = (detY )2 .

Since detX 6= 0, equality (6) implies detY 6= 0. That is, vectors y1,y2 are linearly independent.

Then there exists the 2×2-matrix g such that detg 6= 0 and

(7) Y = gX .

Equalities (4) and (7) imply

(8) X>ηX = Y>g>ηgY.
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Since detX 6= 0, equality (8) implies g>ηg = η . This means that g∈O(1,1). Equalities (7) and

(8) imply y j = gx j for all j = 1,2.

Let j > 2. Condition (ii) of our theorem and equalities

X>ηx j =

 < x1,x j >

< x2,x j >

 ,Y>ηy j =

 < y1,y j >

< y2,y j >


imply

(9) X>ηx j = Y>ηy j

Using equalities (7) and (9), we obtain

(10) X>ηx j = X>g>ηy j

Since g ∈ O(1,1), we have gηg> = η . Hence equality (10) implies y j = gx j for all j > 2.

Our theorem is proved in the case T (Vx) = 1.

Theorem 2.2. Let Vx and Vy be two system of vectors in M. Assume that T (Vx) = T (Vy) = r for

all r = 2,3. Then following two conditions are equivalent:

(i)

Vx
O(1,1)∼ Vy

(ii)

< x1,x j >=< y1,y j >

for all j = 1,2, . . . ,m.

Proof.

(i)→ (ii): Let Vx be a system of vectors in M and T (Vx) = r for all r = 2,3. Since the

function f (x j,xk) =< x j,xk > is O(1,1)-invariant, condition (i) implies (ii).

(ii)→ (i): Assume that condition (ii) is valid.
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(a) We consider the case T (Vx) = T (Vy) = 2. Since T (Vx) = T (Vy) = 2, we have rank (Vx) =

rank (Vy) = 1. Then there exists vector x1 ∈ Vx which is x1 6= 0 and < x1,x1 >6= 0. Since

< x1,x1 >=< y1,y1 >6= 0 and T (Vy) = 2, there exists vector y1 ∈Vy which is y1 6= 0.

Since T (Vx) = T (Vy) = 2, we have < x1,x1 >=< y1,y1 >= k and k < 0.

We define e1 =
x1√
|k|

such that < e1,e1 >=−1. By [2, Lemma2, p.234], e1 can be extended to

a pseudo-orthonormal basis {e1,e2} of index 1 such that < e2,e2 >= 1. Similarly, for x1 6= y1,

we define f1 =
y1√
|k|

such that < f1, f1 >= −1. By [2, Lemma2, p.234], f1 can be extended to

a pseudo-orthonormal basis { f1, f2} of index 1 such that < f1, f1 >= 1.

Otherwise, there exist F ∈O(1,1) such that F (ei) = fi for i = 1,2. Hence, we have F (x1) =

F
(

e1(
√
|k|)
)
= (
√
|k|)F (e1) = y1. Since x1,y1 are non-zero vectors, the vectors can be written

xi = λix1 and yi = βiy1 for i > 1. From Proposition 2.7., we have λi = βi for i > 1. Hence, for

F ∈O(1,1), we have F(xi) = F(λix1) = λiF(x1) = λiy1 = yi for i > 1. This means that systems

Vx,Vy are O(1,1)− equivalent.

(b) We consider the case T (Vx) = T (Vy) = 3. Then the proof is similar to the case (a).

Theorem 2.3. Let Vx and Vy be two system of vectors in M. Assume that T (Vx) = T (Vy) = 4.

Then following two conditions are equivalent:

(i)

Vx
O(1,1)∼ Vy

(ii)

< x1,x1 >=< y1,y1 >

L2
x = L2

y

Proof. (i)→ (ii): Using Proposition 2.4. and Theorem 2.1., condition (i) implies (ii).

(ii)→ (i): Assume that condition (ii) is valid.

Since T (Vx) = T (Vy) = 4, we have rank (Vx) = rank (Vy) = 1. Then there exists vector x1 ∈Vx

which is x1 6= 0 and < x1,x1 >= 0. Since < x1,x1 >=< y1,y1 >= 0 and T (Vy) = 4, y1 is a null

vector in Vy.

Let x1 = (x11,x12), y1 = (y11,y12) ∈M. Since x1 is a null vector, we have x1 = (x11,x11) or

x1 = (x11,−x11). Assume that x̄1 = (1,1), y1 = (y11,y12) ∈M and x̄1 6= y1.
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Then there exist g1 ∈O(1,1) such that g1x̄1 = y1. Similarly, from Proposition 2.1., there exist

g2 ∈O(1,1) such that g2x1 = x̄1 for all x1 =(x11,x12)∈M. That is there exist g= g1g2 ∈O(1,1)

such that gx1 = y1. We prove that there exist F ∈ O(1,1) such that Fx1 = y1 for x1 = (x11,x11)

and y1 = (y11,y11).

Now we show that there exist g ∈ O(1,1) such that gx1 = y1 for x1 = (x11,x11) and y1 =

(y11,−y11). Let x1 = (1,1). From Proposition 2.1., there is no A ∈ O(1,1) such that Ax1 = y1.

But there exist B ∈O(1,1) such that Bx1 = x̃1 for x1 = (x11,x11) and x̃1 = (x11,−x11). So there

exist F ∈ O(1,1) such that Fx1 = y1 for x1 = (x11,x11) and y1 = (y11,y11).

Since x1 and y1 are non-zero vectors, we have xi = λix1 and yi = βiy1 for all i > 1. According

to condition (ii) of our theorem, since L2
x = L2

y , we have λi = βi for all i = 2,3, . . . ,m. Hence,

for F ∈ O(1,1), we have Fxi = λiFx1 = λiy1 = yi for all i > 1. This means that systems Vx and

Vy are O(1,1)-equivalent.

Theorem 2.4. Let Vx and Vy be two systems of vectors in M. Assume that T (Vx) = T (Vy) = 1.

Then following two conditions are equivalent:

(i)

Vx
SO(1,1)∼ Vy

(ii)

< xi,x j >=< yi,y j >

[x1x2] = [y1y2]

for all i = 1,2; j = 1,2, . . . ,m, i≤ j.

Proof. (i)→ (ii): Let Vx be a system of vectors in M and T (Vx) = 1. Since the function

f (xi,x j) =< xi,x j > and g(xk,xl) = [xkxl] for all 1≤ i≤ j ≤ m and 1≤ k < l ≤ m is SO(1,1)-

invariant, condition (i) implies (ii).

(ii)→ (i): Assume that condition (ii) is valid.

Let T (Vx) = T (Vy) = 1. Then there exist vectors x1,x2 ∈Vx which are linearly independent. This

equivalent to [x1x2] 6= 0. Condition (ii) imply [x1x2] = [y1y2] 6= 0. That is vectors y1,y2 ∈ Vy

are linearly independent. By Theorem 2.1., equalities < x j,xk >=< y j,yk > for all j = 1,2 and

k = 1,2, . . . ,m imply the existence g ∈ O(1,1) such that yi = gxi for all 1 ≤ i ≤ m. Using the

equalities [x1x2] = [y1y2] and yi = gxi for all 1≤ i≤ 2, we have [y1y2] = [gx1gx2] = detg[x1x2] =
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[x1x2]. Hence we obtain that detg = 1. That is g ∈ SO(1,1). This means that systems Vx and Vy

are SO(1,1)-equivalent.

Theorem 2.5. Let Vx and Vy be two systems of vectors in M. Assume that T (Vx) = T (Vy) = r

for r = 2,3. Then following two conditions are equivalent:

(i)

Vx
SO(1,1)∼ Vy

(ii)

< x1,x j >=< y1,y j >

for all j = 1,2, . . . ,m.

Proof. (i)→ (ii): Let Vx be a system of vectors in M and T (Vx) = r for all r = 2,3. Since the

function f (x j,xk) =< x j,xk > is SO(1,1)-invariant, condition (i) implies (ii).

(ii)→ (i): Assume that condition (ii) is valid.

(a) We consider the case T (Vx) = T (Vy) = 2. Since T (Vx) = T (Vy) = 2, we have rank (Vx) =

rank (Vy) = 1. Then there exists vector x1 ∈ Vx such that x1 is a timelike vector. Since <

x1,x1 >=< y1,y1 > and T (Vy) = 2, there exists vector y1 ∈Vy such that y1 is a timelike vector.

From Theorem 2.2. and equality < x1,x1 >=< y1,y1 >, there exist g ∈ O(1,1) such that

gx1 = y1. We prove that g ∈ SO(1,1). Assume that g ∈O(1,1) and detg =−1. Then we can be

written g = g1η such that g1 ∈ SO(1,1) and η ∈ O(1,1). Put x = (x1,x2) , x̄ = (x1,−x2) ∈M.

Since gx1 = y1 and g = g1η , we have gx1 = (g1η)x1 = g1(ηx1) = g1x̄1 = y1. So there exist

g1 ∈ SO(1,1) such that g1x̄1 = y1. Now we prove that the existence h ∈ SO(1,1) such that

hx1 = x̄1. Assume that h =

 a b

b a

. From equality hx1 = x̄1, there exist a,b ∈ R such that

a2−b2 = 1. That is h ∈ SO(1,1). Since hx1 = x̄1 and g1x̄1 = y1, we have (g1h) ∈ SO(1,1) such

that (g1h)x1 = y1. Let m > 1. From Proposition 2.7. and Theorem 2.2., we have (g1h)xi = yi

for all i > 1. This means that systems Vx and Vy are SO(1,1)-equivalent.

(b) We consider the case T (Vx) = T (Vy) = 3. Then the proof is similar to the case (a).
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Theorem 2.6. Let Vx and Vy be two systems of vectors in M. Assume that T (Vx) = T (Vy) = 4 .

Then

Vx
SO(1,1)∼ Vy⇔

〈x1,x1〉= 〈y1,y1〉

sgn(x11x12) = sgn(y11y12)

L2
x = L2

y

for x1 = (x11,x12) ,y1 = (y11,y12) ∈M

Proof. (i)→ (ii): Using Proposition 2.8. and Theorem 2.3., condition (i) imply < x1,x1 >=<

y1,y1 > and L2
x = L2

y . We prove that sgn(x11x12) = sgn(y11y12). Since Vx
SO(1,1)∼ Vy, there

exist g ∈ SO(1,1) such that gxi = yi for all 1 ≤ i ≤ m. Let x1 = (x11,x12),y1 = (y11,y12) ∈M.

Since x1 is a null vector, we have x1 = (x11,x11) or x1 = (x11,−x11). Since g ∈ SO(1,1), we

have g =

 a b

b a

 and a2 − b2 = 1. Assume that x1 = (x11,x11). Using equality gx1 =

y1, we have y1 = ((a+ b)x11,(a+ b)x11). Hence, we have sgn(x11x12) = sgn
(
x2

11
)
> 0 and

sgn(y11y12) = sgn
(
(a+b)2x2

11
)
> 0. That is sgn(x11x12) = sgn(y11y12). Similarly, assume

that x1 = (x11,−x11). Using equality gx1 = y1, we have y1 = ((a+b)x11,−(a+b)x11). Hence,

we have sgn(x11x12) = sgn
(
−x2

11
)
< 0 and sgn(y11y12) = sgn

(
−(a+b)2x2

11
)
< 0. That is

sgn(x11x12) = sgn(y11y12).

(ii)→ (i): Assume that condition (ii) is valid.

Since T (Vx) = T (Vy) = 4, we have rank (Vx) = rank (Vy) = 1. Then there exists vector x1 ∈Vx

which is x1 6= 0 and < x1,x1 >= 0. Since < x1,x1 >=< y1,y1 >= 0 and T (Vy) = 4, y1 is a null

vector in Vy.

Let x1 = (x11,x12), y1 = (y11,y12) ∈M. Since x1 is a null vector, we have x1 = (x11,x11) or

x1 = (x11,−x11). Similarly, since y1 is a null vector, we have y1 = (y11,y11) or y1 = (y11,−y11).

From equality sgn(x11x12) = sgn(y11y12), we have x1 = (x11,x11) and y1 = (y11,y11) or x1 =

(x11,−x11) and y1 = (y11,−y11). Then there exist g ∈ SO(1,1) such that gx1 = y1.

Since x1 and y1 are non-zero vectors, we have xi = λix1 and yi = βiy1 for all i > 1. According

to condition (ii) of our theorem, since L2
x = L2

y , we have λi = βi for all i = 2,3, . . . ,m. Hence,

for g ∈ SO(1,1), we have gxi = λigx1 = λiy1 = yi for all i > 1. This means that systems Vx and

Vy are SO(1,1)-equivalent.
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Theorem 2.7. Suppose that v = (v1,v2) ∈M is spacelike and w = (w1,w2) ∈M is either space-

like or null. Then,

(i) v1w1 > 0, in which case 〈v,w〉> 0

(ii) v1w1 < 0, in which case 〈v,w〉< 0

Proof. The proof is similar to the proof of theorem in [9, Theorem 1.3.1].

Theorem 2.8. Let A be an element of O(1,1). Then following two conditions are equivalent:

(i) A ∈ L(1,1)

(ii) A preserves the space orientation of all null vectors and spacelike vectors.

Proof. The proof is similar to the proof of theorem in [9, Theorem 1.3.3].

Theorem 2.9. Let Vx and Vy be two systems of vectors in M and T (Vx) = T (Vy) = 1. Then

(i) if x1 is one of linearly independent vectors in Vx which is a timelike(or null) vector, then

Vx
L(1,1)∼ Vy⇔

〈
xi,x j

〉
=
〈
yi,y j

〉
[x1x2] = [y1y2]

sgn(x12) = sgn(y12)

for all i = 1,2; j = 1,2, . . . ,m, i≤ j.

(ii) if x1 is one of linearly independent vectors in Vx which is a spacelike vector , then

Vx
L(1,1)∼ Vy⇔

< xi,x j >=< yi,y j >

[x1x2] = [y1y2]

sgn(x11) = sgn(y11)

for all i = 1,2; j = 1,2, . . . ,m, i≤ j.

Proof. It follow from [9, Theorem 1.3.1], [9, Theorem 1.3.3], Theorems 2.4., 2.7., 2.8.

Theorem 2.10. Let Vx and Vy be two systems of vectors in M. Assume that T (Vx) = T (Vy) = 2.

Then

Vx
L(1,1)∼ Vy⇔

< x1,x1 >=< y1,y1 >

sgn(x12) = sgn(y12)

Proof. It follow from Theorems 2.5., 2.8., [9, Theorem 1.3.1] and [9, Theorem 1.3.3].
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Theorem 2.11. Let Vx and Vy be two systems of vectors in M. Assume that T (Vx) = T (Vy) = 3.

Then

Vx
L(1,1)∼ Vy⇔

< x1,x1 >=< y1,y1 >

sgn(x11) = sgn(y11)

Proof. It follow from Theorems 2.5., 2.7. and 2.8.

Theorem 2.12. Let Vx and Vy be two systems of vectors in M. Assume that T (Vx) = T (Vy) = 4.

Then

Vx
L(1,1)∼ Vy⇔

< x1,x1 >=< y1,y1 >

sgn(x11x12) = sgn(y11y12)

sgn(x12) = sgn(y12)

L2
x = L2

y

Proof. It follow from Theorems 2.6., 2.7. and 2.8.

3. The equivalence of Bézier curves

Definition 3.1. Bézier curves α(t) and β (t) in M will be called G -equivalent and written α
G∼ β

if there exists F ∈ G such that β (t) = Fα(t) for all t ∈ [0,1].

Remark 3.1. In this definition, Bézier curves are considered as paths (see [13, p. 796]; [19,

Definition 3].

Definition 3.2. A G-invariant function f (x0,x1, . . . ,xm) of control points x0,x1, . . . ,xm of a

Bézier curve α(t) = ∑
m
j=0 x jB j,m(t) will be called a control G-invariant of α(t), where B j,m (t)

are Bernstein basis polynomials.

Example 3.1. Let α(t) and β (t) be Bézier curves of degrees of m and k, respectively. Assume

that α
O(1,1)∼ β . Then m = k that is the degree of a Bézier curve α(t) is O(1,1)-invariant.

Theorem 3.1. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Then following four conditions are equivalent:

(i) α
M(1,1)∼ β

(ii) {x0,x1, . . . ,xm}
M(1,1)∼ {y0,y1, . . . ,ym}
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(iii) {x1− x0,x2− x0, . . . ,xm− x0}
O(1,1)∼ {y1− y0,y2− y0, . . . ,ym− y0}

Proof. (i)↔ (ii): According to the property of the affine invariance ([4, p. 137]),

(11) F

(
m

∑
j=0

x jB j,m(t)

)
=

m

∑
j=0

F(x j)B j,m(t)

for every F ∈M(1,1). Assume that α
M(1,1)∼ β . Then β (t) =Fα(t) for some F ∈M(1,1). Using

(11), we obtain y j = Fx j for all j = 0,1, . . . ,m that is {x0,x1, . . . ,xm}
M(1,1)∼ {y0,y1, . . . ,ym}.

Conversely, suppose that {x0,x1, . . . ,xm}
M(1,1)∼ {y0,y1, . . . ,ym}. Then there exists F ∈M(1,1)

such that y j = Fx j for all j = 0,1, . . . ,m. Using (11), we obtain β (t) = Fα(t) that is α
M(1,1)∼ β .

(ii)↔ (iii): Assume that {x0,x1, . . . ,xm}
M(1,1)∼ {y0,y1, . . . ,ym}. Then there exists F ∈M(1,1),

where F has the form Fz = gz+ p, g∈O(1,1), p∈M for all z∈M such that y j = Fx j = gx j+ p

for all j = 0,1, . . . ,m. These equalities imply y j− y0 = g(x j− x0) for all j = 1,2, . . . ,m. This

means that {xi− x0,1≤ i≤ m} O(1,1)∼ {yi− y0,1≤ i≤ m}. Conversely, assume that

{xi− x0,1≤ i≤ m} O(1,1)∼ {yi− y0,1≤ i≤ m}. Then there exists g∈O(1,1) such that y j−y0 =

g(x j− x0) for all j = 1,2, . . . ,m. Put p = y0− gx0. Then y j = gx j + p for all j = 0,1, . . . ,m.

This means that {x0,x1, . . . ,xm}
M(1,1)∼ {y0,y1, . . . ,ym}.

Corollary 3.1. Let {x0,x1, . . . ,xm} be a system of vectors in M. Then the type T (x1− x0, . . . ,xm− x0)

is O(1,1)-invariant.

Definition 3.3. Let α(t) = ∑
m
j=0 x jB j,m(t) be Bézier curves in M of degree m. The type T (x1−

x0,x2− x0 . . . ,xm− x0) of the system

{x1− x0,x2− x0 . . . ,xm− x0} will be called the control points type of the Bézier curve α and

will be denoted by T (α).

Since the control points type of a Bézier curve is O(1,1)-invariant, in the case T (α) 6= T (β ),

Bézier curves α and β are not 0(1,1)-equivalent. Therefore, for an investigation of 0(1,1)-

equivalence of Bézier curves α and β , we assume that T (α) = T (β ).

Theorem 3.2. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = 1. Then

α
M(1,1)∼ β ⇔< xi− x0,x j− x0 >=< yi− y0,y j− y0 >
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for all i = 1,2, j = 1,2, . . . ,m; i≤ j

Proof. It follows from Theorem 2.1. and Theorem 3.1.

Theorem 3.3. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = r for r = 2,3. Then

α
M(1,1)∼ β ⇔< x1− x0,x j− x0 >=< y1− y0,y j− y0 >

for all j = 1,2, . . . ,m.

Proof. It follows from Theorem 2.2. and Theorem 3.1.

Theorem 3.4. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = 4. Then

α
M(1,1)∼ β ⇔

〈x1− x0,x1− x0〉= 〈y1− y0,y1− y0〉

L2
x−x0

= L2
y−y0

Proof. It follows from Theorem 2.3. and Theorem 3.1.

Theorem 3.5. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Then following three conditions are equivalent:

(i) α
SM(1,1)∼ β

(ii) {x0,x1, . . . ,xm}
SM(1,1)∼ {y0,y1, . . . ,ym}

(iii) {x1− x0,x2− x0, . . . ,xm− x0}
SO(1,1)∼ {y1− y0,y2− y0, . . . ,ym− y0}

Proof. It is similar to the proof of Theorem 3.1.

Theorem 3.6. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = 1. Then

α
SM(1,1)∼ β ⇔

〈
xi− x0,x j− x0

〉
=
〈
yi− y0,y j− y0

〉
[(x1− x0)(x2− x0)] = [(y1− y0)(y2− y0)]

for all i = 1,2, j = 1,2, . . . ,m; i≤ j

Proof. It follows from Theorem 2.4. and Theorem 3.5.
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Theorem 3.7. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = r for r = 2,3. Then

α
SM(1,1)∼ β ⇔

〈
x1− x0,x j− x0

〉
=
〈
y1− y0,y j− y0

〉
for all j = 1,2, . . . ,m.

Proof. It follows from Theorem 2.5. and Theorem 3.5.

Theorem 3.8. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = 4. Then

α
SM(1,1)∼ β ⇔

〈x1− x0,x1− x0〉= 〈y1− y0,y1− y0〉

sgn((x11− x01)(x12− x02)) = sgn((y11− y01)(y12− y02))

L2
x−x0

= L2
y−y0

Proof. It follows from Theorem 2.6. and Theorem 3.5.

Theorem 3.9. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Then following three conditions are equivalent:

(i) α
SL(1,1)∼ β

(ii) {x0,x1, . . . ,xm}
SL(1,1)∼ {y0,y1, . . . ,ym}

(iii) {x1− x0,x2− x0, . . . ,xm− x0}
SL(1,1)∼ {y1− y0,y2− y0, . . . ,ym− y0}

Proof. It is similar to the proof of Theorem 3.5.

Theorem 3.10. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume thatT (α) = T (β ) = 1.

(i) if x1 is one of control points in α(t) which is a timelike(or null) vector, then

α
SL∼ β ⇔

〈
xi− x0,x j− x0

〉
=
〈
yi− y0,y j− y0

〉
[(x1− x0)(x2− x0)] = [(y1− y0)(y2− y0)]

sgn(x12− x02) = sgn(y12− y02)

for all i = 1,2, j = 1,2, . . . ,m; i≤ j
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(ii) if x1 is one of control points in α(t) which is a spacelike vector, then

α
SL(1,1)∼ β ⇔

〈
xi− x0,x j− x0

〉
=
〈
yi− y0,y j− y0

〉
[(x1− x0)(x2− x0)] = [(y1− y0)(y2− y0)]

sgn(x11− x01) = sgn(y11− y01)

for all i = 1,2, j = 1,2, . . . ,m; i≤ j

Proof. It follows from Theorem 2.9. and Theorem 3.9.

Theorem 3.11. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = 2. Then

α
SL(1,1)∼ β ⇔

〈x1− x0,x1− x0〉= 〈y1− y0,y1− y0〉

sgn(x12− x02) = sgn(y12− y02)

Proof. It follows from Theorem 2.10 and Theorem 3.9.

Theorem 3.12. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = 3. Then

α
SL(1,1)∼ β ⇔

〈
x1− x0,x j− x0

〉
=
〈
y1− y0,y j− y0

〉
sgn(x11− x01) = sgn(y11− y01)

Proof. It follows from Theorem 2.11 and Theorem 3.9.

Theorem 3.13. Let α(t) = ∑
m
j=0 x jB j,m(t) and β (t) = ∑

m
j=0 y jB j,m(t) be Bézier curves in M of

degree m. Assume that T (α) = T (β ) = 4. Then

α
SL(1,1)∼ β ⇔

〈x1− x0,x1− x0〉= 〈y1− y0,y1− y0〉

sgn((x11− x01)(x12− x02)) = sgn((y11− y01)(y12− y02))

sgn(x12− x02) = sgn(y12− y02)

L2
x−x0

= L2
y−y0

Proof. It follows from Theorem 2.12 and Theorem 3.9.
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