THE EQUIVALENCE PROBLEM FOR VECTORS IN THE TWO-DIMENSIONAL MINKOWSKI SPACETIME AND ITS APPLICATION TO BÉZIER CURVES

IDRIS ÖREN
Department of Mathematics, Karadeniz Technical University, Trabzon 61080, Turkey
Copyright © 2016 İdris Ören. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $M(1,1)$ be the group of all transformations of the 2-dimensional Minkowski spacetime M generated by all pseudo-orthogonal transformations and parallel translations of M. Let $S M(1,1)$ is the proper subgroup of $M(1,1)$ and $S L(1,1)$ is the ortochoronous proper subgroup of $M(1,1)$. In this paper, conditions for the equivalence of two systems of vectors $\left\{x_{1}, x_{2}, \ldots x_{m}\right\}$ and $\left\{y_{1}, y_{2}, \ldots y_{m}\right\}$ are obtained for groups $G=M(1,1), S M(1,1), S L(1,1)$. Finally, we present a necessary and sufficient conditions for judging whether Bézier curves in M of degree m are G-equivalent.

Keywords: Invariant; Minkowski spacetime; Equivalence.
2010 AMS Subject Classification: 51B20, 13A50, 53B30.

1. Introduction

One of important problems in theory of invariants is finding necessary and sufficient conditions equivalence of systems of vectors $\left\{x_{1}, x_{2}, \ldots x_{m}\right\}$ and $\left\{y_{1}, y_{2}, \ldots y_{m}\right\}$ under the action of pseudo-orthogonal group(general Lorentz group) $O(1,1)$, special pseudo-orthogonal group(proper Lorentz group) $S O(1,1)$ and ortochoronous special pseudo-orthogonal group (Lorentz group) $L(1,1)$.
*Corresponding author
Received March 26, 2015

Recently, all m-points invariants for different geometries is determined by a characterization of orbits of m-tuples of vectors in paper [21]. All scalar concomitants of vectors and all biscalars of a system of $s \leq n$ linearly independent contravariant vectors in n-dimensional Lorentz space is determined in papers [1,5]. A solution of the problem of equivalence of a system of linearly independent vectors for pseudo-orthogonal group $O(n, 1)$ in terms of Gram matrices of vectors $x_{1}, x_{2}, \ldots x_{m}$ in the n-dimensional pseudo-Euclidean space of index 1 is given in [5]. But for a system of linearly dependent vectors for groups $G=O(1,1), S O(1,1), L(1,1)$, therefore mentioned papers do not contain a solution. For example, consider the following two systems: $V_{x}=\left\{x_{1}=(1,1), x_{2}=(2,2)\right\}, V_{y}=\left\{y_{1}=(1,1), y_{2}=(3,3)\right\}$. Clearly, vectors in V_{x}, V_{y} are linearly dependent and mentioned invariants are equal. But the systems are not $O(1,1)$-equivalent.

The paper presents a solution of the problem of G-equivalence of a system of vectors for groups $G=O(1,1), S O(1,1), L(1,1)$ in terms of invariants of vectors $x_{1}, x_{2}, \ldots x_{m}$ in the two dimensional Minkowski spacetime geometry. Applications of the invariant theory and invariants in computer vision and pattern recognition are discussed in $[3,6,14,15,16]$. Transformations and invariants of curves, surfaces and graphical objects appear in computer aided geometric design and graphical applications in [7, 17]. The invariance of curves and surfaces relative to the Euclidean group, the affine group and other groups is investigated in $[4,12,13,14$, 18]. Conditions for the coincidence of two Bézier curves of degree 3 and 4 in the Euclidean geometry are discussed in papers [11, 22, 23]. Differential invariants(the curvature, the torsion) of spacelike Bézier curves in the three dimensional Minkowski spacetime is given in paper [8]. In [19], the conditions of the global G - equivalence of curves are given in terms of the pseudo-Euclidean type and the system of polynomial differential G- invariant functions. In [20], the conditions of the global G - equivalence of null curves are given in terms of the pseudoEuclidean type and the system of polynomial differential G-invariant functions. The solution of the equivalence problem, without using the methods in the aforementioned articles, is devoted to an application of control invariants of Bézier curves in M of degree m.

The paper is organized as follows. In Section 2, the definition of the system V_{x} type and the ratios of linearly dependence of vectors x_{1}, x_{2} is given. The type and the ratios are $O(1,1)$ -$\operatorname{invariant}(M(1,1)$-invariant, respectively $)$. The conditions of $G=O(1,1), S O(1,1), L(1,1)$ - equivalence of vectors are given in terms of the type and polynomial invariants of vectors x_{1}, x_{2}, $\ldots x_{m}$ functions. In Section 3, the definitions of a G-equivalence of Bézier curves, a control G-invariant of a Bézier curve are introduced. The conditions of $G=M(1,1), S M(1,1), S L(1,1)$ equivalence of Bézier curves in M of degree m is given.

2. The conditions of G-equivalence of vectors

Let R be the field of real numbers. The 2-dimensional pseudo-Euclidean space of index 1 will be denoted by $M . M$ is 2-dimensional the Minkowski spacetime. $\langle u, v\rangle$ is a referred to as a Lorentz inner product on M such that there exists an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ for M with the property that if $u=u_{1} e_{1}+u_{2} e_{2}$ and $v=v_{1} e_{1}+v_{2} e_{2}$, then $\langle u, v\rangle=u_{1} v_{1}-u_{2} v_{2}$ for all $u, v \in M$ and denoted by $\langle u, v\rangle$.

We define the matrix $A=\left(a_{i j}\right)_{i, j=1,2}$ associated with the pseudo-orthogonal transformations and the pseudo-orthogonal basis $\left\{e_{i}\right\}$ by $A=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ for all $a_{i j} \in R$. That is, $O(1,1)=\left\{A \in G(2, \mathfrak{R}): A^{T} \eta A=\eta, \eta=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$.

Then the group $M(1,1)$ of all pseudo-Euclidean motions of an 2-dimensional pseudo-Euclidean space has the form
$M(1,1)=\{F: M \rightarrow M: F x=g x+b, g \in O(1,1), b \in M\}$, where $g x$ is the multiplication of a matrix g and a column vector $x \in M$.

The following proposition is known in [18].
Proposition 2.1. Let $O(1,1)$ be the pseudo-orthogonal group of index 1. Then, all elements of $O(1,1)$ as follows:

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \text { or } B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \text { for all } a, b \in R
$$

The group of all proper pseudo-orthogonal transformations of M is denoted by $S O(1,1)$. It is a subgroup of $O(1,1)$.
That is, $S O(1,1)=\left\{A=\left(\begin{array}{cc}a & b \\ b & a\end{array}\right) \in O(1,1): \operatorname{det} A=1\right\}$.
Put $S M(1,1)=\{F \in M(1,1): F x=g x+b, g \in S O(1,1), b \in M\}$.
$S M(1,1)$ is a subgroup of $M(1,1)$.
The group of all ortochoronous proper pseudo-orthogonal transformations of M is denoted by $L(1,1)$.

We shall refer to $L(1,1)$ simply as the Lorentz group(see [9, p. 15-16]). That is, we denote $L(1,1)=\left\{A=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \in O(1,1): \operatorname{det} A=1, a \geq 1\right\}$.

Put $S L(1,1)=\{F \in S M(1,1): F x=g x+b, g \in L(1,1), b \in M\}$.
$S L(1,1)$ is a subgroup of $M(1,1)$.
In [9, p.14-16], the groups $O(1,1), S O(1,1)$ and $L(1,1)$ are named general Lorentz group, proper Lorentz group and orthocronous proper Lorentz group, respectively.

The following definition is known (see [9, p.10,12]).

Definition 2.1.

(i) A vector x in M will be called timelike vector if $\langle x, x\rangle<0$.
(ii) A vector x in M will be called spacelike vector if $\langle x, x\rangle>0$.
(iii) A non-zero vector x in M will be called null (or lightlike) vector if $\langle x, x\rangle=0$.

Let $V_{x}=\left\{x_{1}, x_{2}, \ldots x_{m}\right\}$ and $V_{y}=\left\{y_{1}, y_{2}, \ldots y_{m}\right\}$ be two systems of vectors in M. Let G be a subgroup of $\mathrm{M}(1,1)$.

Definition 2.2. V_{x} and V_{y} are called G-equivalent if there exists $F \in G$ such that $y_{i}=F x_{i}$, $1 \leq i \leq m$. This being the case, we write $x_{i} \stackrel{G}{\sim} y_{i}$. (shortly, $V_{x} \stackrel{G}{\sim} V_{y}$).

Definition 2.3. A function $f\left(x_{0}, x_{1}, \ldots, x_{m}\right)$ of vectors $x_{0}, x_{1}, \ldots, x_{m}$ in M will be called G invariant if $f\left(F x_{0}, F x_{1}, \ldots, F x_{m}\right)=f\left(x_{0}, x_{1}, \ldots, x_{m}\right)$ for all $F \in G$.

Example 2.1. Since $<g(u), g(v)>=<u, v>$ for all $g \in O(1,1)$, we obtain that the scalar product $<u, v>$ of vectors $u, v \in M$ is $O(1,1)$-invariant. Similarly, the function $f(u, v, w)=<$ $u-w, v-w>$ is $M(1,1)$-invariant.

Example 2.2. Let u_{1}, u_{2} be vectors in M. Denote by $\left[u_{1} u_{2}\right]$ determinant of the matrix $\left\|u_{1} u_{2}\right\|$ of column-vectors u_{1}, u_{2}. Then $\left[u_{1} u_{2}\right]$ is $S O(1,1)$-invariant. Infact, $\left[g u_{1} g u_{2}\right]=\operatorname{det} g\left[u_{1} u_{2}\right]=\left[u_{1} u_{2}\right]$ for all $g \in S O(1,1)$.

Proposition 2.2. Let $V_{x} \stackrel{O(1,1)}{\sim} V_{y}$. Then $\operatorname{rank}\left(V_{x}\right)=\operatorname{rank}\left(V_{y}\right)$.
Proof. It is obvious from Definition 2.2.
Corollary 2.1. According to $O(1,1)$-equivalence, $\operatorname{rank}\left(V_{x}\right)$ is an invariant.
Example 2.3. The rank of a system V_{x} is $O(1,1)$-invariant, but it is not $M(1,1)$-invariant.
The number $T\left(V_{x}\right)$ will be called the type of the system V_{x} such that the type is determined the rank of the system V_{x} and the type of linearly independent vector(s) in V_{x} from Definition 2.2.

Definition 2.3.

(i) The system V_{x} will be called first type if $\operatorname{rank}\left(V_{x}\right)=2$ and the linearly independent vectors in V_{x} are spacelike, timelike or null. This being case, denoted by $T\left(V_{x}\right)=1$.
(ii) The system V_{x} will be called second type if $\operatorname{rank}\left(V_{x}\right)=1$ and all vectors in V_{x} are timelike. This being case, denoted by $T\left(V_{x}\right)=2$.
(iii) The system V_{x} will be called third type if $\operatorname{rank}\left(V_{x}\right)=1$ and all vectors in V_{x} are spacelike. This being case, denoted by $T\left(V_{x}\right)=3$.
(iv) The system V_{x} will be called fourth type if $\operatorname{rank}\left(V_{x}\right)=1$ and all vectors in V_{x} are null. This being case, denoted by $T\left(V_{x}\right)=4$.
Proposition 2.3. Let $V_{x} \stackrel{(1,1)}{\sim} V_{y}$. Then $T\left(V_{x}\right)=T\left(V_{y}\right)$.
Proof. It is obvious from Definition 2.2.
Corollary 2.2. According to $O(1,1)$ - equivalence, the type is an invariant.
Let V_{x} be a system of vectors in M. We consider the case $T\left(V_{x}\right)=1$. Since $T\left(V_{x}\right)=1$, for simplicity, we assume that there exist two linearly independent vectors x_{1}, x_{2} in V_{x} such that
$x_{i}=\lambda_{i 1} x_{1}+\lambda_{i 2} x_{2}$ for all $i \geq 3$ and $\lambda_{i 1}, \lambda_{i 2} \in R$. Here, the ordered pair $\left(\lambda_{i 1}, \lambda_{i 2}\right)$ will be called the ratios of linearly dependence of vectors $x_{i}, 2<i \leq m$ and denoted by L_{x}^{1}. Similarly, we consider the case $T\left(V_{x}\right)=r$ for all $r=2,3,4$. Since $T\left(V_{x}\right)=r$ for all $r=2,3,4$, for simplicity, we assume that there exists linearly independent vector x_{1} in V_{x} such that $x_{i}=\lambda_{i 1} x_{1}$ for all $i \geq 2$ and $\lambda_{i 1} \in R$. Here, the number $\lambda_{i 1}$ will be called the ratio of linearly dependence of $x_{i}, 1<i \leq m$ and denoted by L_{x}^{2}.
Proposition 2.4. Let V_{x} and V_{y} be two systems of vectors in M and $V_{x} \stackrel{(1,1)}{\sim} V_{y}$. Then $L_{x}^{k}=L_{y}^{k}$ for $k=1,2$.

Proof. The proof follows easy from Definition 2.2 and Proposition 2.3.
Corollary 2.3. According to $O(1,1)$-equivalence, L_{x}^{k} is an invariant.
Let $x_{1}, x_{2}, \ldots x_{m} \in M$. Denote the matrix $\left\|<x_{i}, x_{j}>\right\|_{i, j=1,2, \ldots, m}$ by $\operatorname{Gr}\left(x_{1}, x_{2}, \ldots x_{m}\right)$ and its determinant by $\operatorname{det} \operatorname{Gr}\left(x_{1}, x_{2}, \ldots x_{m}\right)$.

Proposition 2.5. Vectors $x_{1}, x_{2}, \ldots x_{m} \in M$ are linearly depended if and only if $\operatorname{det} G r\left(x_{1}, x_{2}, \ldots x_{m}\right)=$ 0.

Proof. A proof is given [10, p.75].
Proposition 2.6. Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=1$. Then element $\left(\lambda_{i 1}, \lambda_{i 2}\right)$ of L_{x}^{1} as follows:

$$
\lambda_{i 1}=\frac{\left[\begin{array}{cc}
<x_{1}, x_{i}> & <x_{1}, x_{2}> \\
<x_{2}, x_{i}> & <x_{2}, x_{2}>
\end{array}\right]}{\operatorname{det} \operatorname{Gr}\left(x_{1}, x_{2}\right)}, \lambda_{i 2}=\frac{\left[\begin{array}{cc}
<x_{1}, x_{1}> & <x_{1}, x_{i}> \\
<x_{2}, x_{1}> & <x_{2}, x_{i}>
\end{array}\right]}{\operatorname{detGr(x,x_{1},x_{2})}}
$$

for all $3 \leq i \leq m$.
Proof. Since $T\left(V_{x}\right)=1$, we have $\operatorname{rank}\left(V_{x}\right)=2$. Then there exist linearly independent vectors x_{1}, x_{2} in V_{x} such that $x_{i}=\lambda_{i 1} x_{1}+\lambda_{i 2} x_{2}$ for all $3 \leq i \leq m$ and $\lambda_{i 1}, \lambda_{i 2} \in R$.

Hence, we have

$$
\begin{align*}
& <x_{i}, x_{1}>=\lambda_{i 1}<x_{1}, x_{1}>+\lambda_{i 2}<x_{2}, x_{1}> \tag{1}\\
& <x_{i}, x_{2}>=\lambda_{i 1}<x_{1}, x_{2}>+\lambda_{i 2}<x_{2}, x_{2}> \tag{2}
\end{align*}
$$

for all $3 \leq i \leq m$.
For linearly independent vectors x_{1}, x_{2} in V_{x}, we have
$\operatorname{det} \operatorname{Gr}\left(x_{1}, x_{2}\right) \neq 0$. Then there exists an unique solution of equalities (1) and (2). This solution is given in proposition.

Proposition 2.7. Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=r$ for all $r=2,3$. Then element $\lambda_{i 1}$ of L_{x}^{1} as follows:

$$
\lambda_{i 1}=\frac{\left\langle x_{1}, x_{i}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle} \text { for all } 2 \leq i \leq m
$$

Proof. It follows from Proposition 2.6.
Corollary 2.4. Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=r$ for all $r=1,2,3$. According to Propositions 2.6. and 2.7., components of elements of L_{x}^{1}, L_{x}^{2} are given in terms of scalar products of vectors $x_{1}, x_{2}, \ldots x_{m}$.

Let $x_{i}=\left(x_{i 1}, x_{i 2}\right) \in M$ for all $1 \leq i \leq m$.
Proposition 2.8. Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=4$. Then element $\lambda_{i 1}$ of L_{x}^{2} as follows: $\lambda_{i 1}=\frac{x_{i 2}}{x_{12}}$ for $2 \leq i \leq m$.

Proof. It follows from Propositions 2.6. and 2.7.
Corollary 2.5. Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=4$. According to Proposition 2.8., components of elements of L_{x}^{2} are not given in terms of scalar products of vectors $x_{1}, x_{2}, \ldots, x_{m}$.

Theorem 2.1.labelthe 2.2 Let V_{x} and V_{y} be two system of vectors in M. Assume that $T\left(V_{x}\right)=$ $T\left(V_{y}\right)=1$. Then following two conditions are equivalent:
(i)

$$
V_{x} \stackrel{O(1,1)}{\sim} V_{y}
$$

(ii)

$$
<x_{i}, x_{j}>=<y_{i}, y_{j}>
$$

$$
\text { for all } i=1,2 ; j=1,2, \ldots, m \text { and } i \leq j
$$

Proof.

$(i) \rightarrow(i i):$ Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=1$. Since the function $f\left(x_{j}, x_{k}\right)=<$ $x_{j}, x_{k}>$ is $O(1,1)$-invariant, condition (i) implies $(i i)$.
$(i i) \rightarrow(i):$ Assume that condition $(i i)$ is valid.
We have the case $T\left(V_{x}\right)=T\left(V_{y}\right)=1$. Then there exist vectors $x_{1}, x_{2} \in V_{x}$ which are linearly independent. We prove that vectors $y_{1}, y_{2} \in V_{y}$ are linearly independent. Let $X=\left\|x_{1} x_{2}\right\|$ and $Y=$ $\left\|y_{1} y_{2}\right\|$ be two matrix of column-vectors x_{1}, x_{2} and y_{1}, y_{2}, respectively. Linearly independence of x_{1}, x_{2} implies $\operatorname{det} X \neq 0$. Let X^{\top} be the transpose matrix of X and $\operatorname{Gr}\left(x_{1}, x_{2}\right)$ is the Gram matrix of vectors x_{1}, x_{2}. Then it is easy to see that

$$
\begin{equation*}
X^{\top} \eta X=G r\left(x_{1}, x_{2}\right) \tag{3}
\end{equation*}
$$

Since $<x_{i}, x_{j}>=<y_{i}, y_{j}>$ for all $i=1,2 ; j=1,2$ and $i \leq j$, we have

$$
\begin{equation*}
\operatorname{Gr}\left(x_{1}, x_{2}\right)=\operatorname{Gr}\left(y_{1}, y_{2}\right) \tag{4}
\end{equation*}
$$

Equalities (3) and (4) imply

$$
\begin{equation*}
X^{\top} \eta X=Y^{\top} \eta Y \tag{5}
\end{equation*}
$$

whence

$$
\begin{equation*}
(\operatorname{det} X)^{2}=(\operatorname{det} Y)^{2} \tag{6}
\end{equation*}
$$

Since $\operatorname{det} X \neq 0$, equality (6) implies $\operatorname{det} Y \neq 0$. That is, vectors y_{1}, y_{2} are linearly independent.
Then there exists the 2×2-matrix g such that $\operatorname{det} g \neq 0$ and

$$
\begin{equation*}
Y=g X \tag{7}
\end{equation*}
$$

Equalities (4) and (7) imply

$$
\begin{equation*}
X^{\top} \eta X=Y^{\top} g^{\top} \eta g Y \tag{8}
\end{equation*}
$$

Since $\operatorname{det} X \neq 0$, equality (8) implies $g^{\top} \eta g=\eta$. This means that $g \in O(1,1)$. Equalities (7) and (8) imply $y_{j}=g x_{j}$ for all $j=1,2$.

Let $j>2$. Condition (ii) of our theorem and equalities

$$
X^{\top} \eta x_{j}=\binom{<x_{1}, x_{j}>}{<x_{2}, x_{j}>}, Y^{\top} \eta y_{j}=\binom{<y_{1}, y_{j}>}{<y_{2}, y_{j}>}
$$

imply

$$
\begin{equation*}
X^{\top} \eta x_{j}=Y^{\top} \eta y_{j} \tag{9}
\end{equation*}
$$

Using equalities (7) and (9), we obtain

$$
\begin{equation*}
X^{\top} \eta x_{j}=X^{\top} g^{\top} \eta y_{j} \tag{10}
\end{equation*}
$$

Since $g \in O(1,1)$, we have $g \eta g^{\top}=\eta$. Hence equality (10) implies $y_{j}=g x_{j}$ for all $j>2$.
Our theorem is proved in the case $T\left(V_{x}\right)=1$.
Theorem 2.2. Let V_{x} and V_{y} be two system of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=r$ for all $r=2,3$. Then following two conditions are equivalent:
(i)

$$
V_{x} \stackrel{O(1,1)}{\sim} V_{y}
$$

(ii)

$$
<x_{1}, x_{j}>=<y_{1}, y_{j}>
$$

for all $j=1,2, \ldots, m$.

Proof.

$(i) \rightarrow(i i):$ Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=r$ for all $r=2,3$. Since the function $f\left(x_{j}, x_{k}\right)=<x_{j}, x_{k}>$ is $O(1,1)$-invariant, condition (i) implies (ii).
$(i i) \rightarrow(i)$: Assume that condition (ii) is valid.
(a) We consider the case $T\left(V_{x}\right)=T\left(V_{y}\right)=2$. Since $T\left(V_{x}\right)=T\left(V_{y}\right)=2$, we have $\operatorname{rank}\left(V_{x}\right)=$ $\operatorname{rank}\left(V_{y}\right)=1$. Then there exists vector $x_{1} \in V_{x}$ which is $x_{1} \neq 0$ and $<x_{1}, x_{1}>\neq 0$. Since $<x_{1}, x_{1}>=<y_{1}, y_{1}>\neq 0$ and $T\left(V_{y}\right)=2$, there exists vector $y_{1} \in V_{y}$ which is $y_{1} \neq 0$.

Since $T\left(V_{x}\right)=T\left(V_{y}\right)=2$, we have $<x_{1}, x_{1}>=<y_{1}, y_{1}>=k$ and $k<0$.
We define $e_{1}=\frac{x_{1}}{\sqrt{|k|}}$ such that $\left.<e_{1}, e_{1}\right\rangle=-1$. By [2, Lemma2, p.234], e_{1} can be extended to a pseudo-orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of index 1 such that $<e_{2}, e_{2}>=1$. Similarly, for $x_{1} \neq y_{1}$, we define $f_{1}=\frac{y_{1}}{\sqrt{|k|}}$ such that $<f_{1}, f_{1}>=-1$. By [2, Lemma2, p.234], f_{1} can be extended to a pseudo-orthonormal basis $\left\{f_{1}, f_{2}\right\}$ of index 1 such that $\left.<f_{1}, f_{1}\right\rangle=1$.

Otherwise, there exist $F \in O(1,1)$ such that $F\left(e_{i}\right)=f_{i}$ for $i=1,2$. Hence, we have $F\left(x_{1}\right)=$ $F\left(e_{1}(\sqrt{|k|})\right)=(\sqrt{|k|}) F\left(e_{1}\right)=y_{1}$. Since x_{1}, y_{1} are non-zero vectors, the vectors can be written $x_{i}=\lambda_{i} x_{1}$ and $y_{i}=\beta_{i} y_{1}$ for $i>1$. From Proposition 2.7., we have $\lambda_{i}=\beta_{i}$ for $i>1$. Hence, for $F \in O(1,1)$, we have $F\left(x_{i}\right)=F\left(\lambda_{i} x_{1}\right)=\lambda_{i} F\left(x_{1}\right)=\lambda_{i} y_{1}=y_{i}$ for $i>1$. This means that systems V_{x}, V_{y} are $O(1,1)$ - equivalent.
(b) We consider the case $T\left(V_{x}\right)=T\left(V_{y}\right)=3$. Then the proof is similar to the case (a).

Theorem 2.3. Let V_{x} and V_{y} be two system of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=4$. Then following two conditions are equivalent:
(i)

$$
V_{x} \stackrel{O(1,1)}{\sim} V_{y}
$$

(ii)

$$
\begin{aligned}
<x_{1}, x_{1}> & =<y_{1}, y_{1}> \\
L_{x}^{2} & =L_{y}^{2}
\end{aligned}
$$

Proof. $(i) \rightarrow(i i)$: Using Proposition 2.4. and Theorem 2.1., condition (i) implies (ii).
$(i i) \rightarrow(i)$: Assume that condition $(i i)$ is valid.
Since $T\left(V_{x}\right)=T\left(V_{y}\right)=4$, we have $\operatorname{rank}\left(V_{x}\right)=\operatorname{rank}\left(V_{y}\right)=1$. Then there exists vector $x_{1} \in V_{x}$ which is $x_{1} \neq 0$ and $<x_{1}, x_{1}>=0$. Since $<x_{1}, x_{1}>=<y_{1}, y_{1}>=0$ and $T\left(V_{y}\right)=4, y_{1}$ is a null vector in V_{y}.

Let $x_{1}=\left(x_{11}, x_{12}\right), y_{1}=\left(y_{11}, y_{12}\right) \in M$. Since x_{1} is a null vector, we have $x_{1}=\left(x_{11}, x_{11}\right)$ or $x_{1}=\left(x_{11},-x_{11}\right)$. Assume that $\overline{x_{1}}=(1,1), y_{1}=\left(y_{11}, y_{12}\right) \in M$ and $\overline{x_{1}} \neq y_{1}$.

Then there exist $g_{1} \in O(1,1)$ such that $g_{1} \overline{x_{1}}=y_{1}$. Similarly, from Proposition 2.1., there exist $g_{2} \in O(1,1)$ such that $g_{2} x_{1}=\overline{x_{1}}$ for all $x_{1}=\left(x_{11}, x_{12}\right) \in M$. That is there exist $g=g_{1} g_{2} \in O(1,1)$ such that $g x_{1}=y_{1}$. We prove that there exist $F \in O(1,1)$ such that $F x_{1}=y_{1}$ for $x_{1}=\left(x_{11}, x_{11}\right)$ and $y_{1}=\left(y_{11}, y_{11}\right)$.

Now we show that there exist $g \in O(1,1)$ such that $g x_{1}=y_{1}$ for $x_{1}=\left(x_{11}, x_{11}\right)$ and $y_{1}=$ $\left(y_{11},-y_{11}\right)$. Let $x_{1}=(1,1)$. From Proposition 2.1., there is no $A \in O(1,1)$ such that $A x_{1}=y_{1}$. But there exist $B \in O(1,1)$ such that $B x_{1}=\tilde{x_{1}}$ for $x_{1}=\left(x_{11}, x_{11}\right)$ and $\tilde{x_{1}}=\left(x_{11},-x_{11}\right)$. So there exist $F \in O(1,1)$ such that $F x_{1}=y_{1}$ for $x_{1}=\left(x_{11}, x_{11}\right)$ and $y_{1}=\left(y_{11}, y_{11}\right)$.

Since x_{1} and y_{1} are non-zero vectors, we have $x_{i}=\lambda_{i} x_{1}$ and $y_{i}=\beta_{i} y_{1}$ for all $i>1$. According to condition (ii) of our theorem, since $L_{x}^{2}=L_{y}^{2}$, we have $\lambda_{i}=\beta_{i}$ for all $i=2,3, \ldots, m$. Hence, for $F \in O(1,1)$, we have $F x_{i}=\lambda_{i} F x_{1}=\lambda_{i} y_{1}=y_{i}$ for all $i>1$. This means that systems V_{x} and V_{y} are $O(1,1)$-equivalent.

Theorem 2.4. Let V_{x} and V_{y} be two systems of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=1$. Then following two conditions are equivalent:
(i)

$$
V_{x} \stackrel{S O(1,1)}{\sim} V_{y}
$$

(ii)

$$
\begin{aligned}
<x_{i}, x_{j}> & =<y_{i}, y_{j}> \\
{\left[x_{1} x_{2}\right] } & =\left[y_{1} y_{2}\right]
\end{aligned}
$$

for all $i=1,2 ; j=1,2, \ldots, m, i \leq j$.
Proof. $(i) \rightarrow(i i)$: Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=1$. Since the function $f\left(x_{i}, x_{j}\right)=<x_{i}, x_{j}>$ and $g\left(x_{k}, x_{l}\right)=\left[x_{k} x_{l}\right]$ for all $1 \leq i \leq j \leq m$ and $1 \leq k<l \leq m$ is $S O(1,1)$ invariant, condition (i) implies (ii).
$(i i) \rightarrow(i)$: Assume that condition $(i i)$ is valid.
Let $T\left(V_{x}\right)=T\left(V_{y}\right)=1$. Then there exist vectors $x_{1}, x_{2} \in V_{x}$ which are linearly independent. This equivalent to $\left[x_{1} x_{2}\right] \neq 0$. Condition (ii) imply $\left[x_{1} x_{2}\right]=\left[y_{1} y_{2}\right] \neq 0$. That is vectors $y_{1}, y_{2} \in V_{y}$ are linearly independent. By Theorem 2.1., equalities $\left.\left\langle x_{j}, x_{k}\right\rangle=<y_{j}, y_{k}\right\rangle$ for all $j=1,2$ and $k=1,2, \ldots, m$ imply the existence $g \in O(1,1)$ such that $y_{i}=g x_{i}$ for all $1 \leq i \leq m$. Using the equalities $\left[x_{1} x_{2}\right]=\left[y_{1} y_{2}\right]$ and $y_{i}=g x_{i}$ for all $1 \leq i \leq 2$, we have $\left[y_{1} y_{2}\right]=\left[g x_{1} g x_{2}\right]=\operatorname{detg}\left[x_{1} x_{2}\right]=$
$\left[x_{1} x_{2}\right]$. Hence we obtain that $\operatorname{det} g=1$. That is $g \in S O(1,1)$. This means that systems V_{x} and V_{y} are $S O(1,1)$-equivalent.

Theorem 2.5. Let V_{x} and V_{y} be two systems of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=r$ for $r=2,3$. Then following two conditions are equivalent:
(i)

$$
V_{x} \stackrel{S O(1,1)}{\sim} V_{y}
$$

(ii)

$$
<x_{1}, x_{j}>=<y_{1}, y_{j}>
$$

$$
\text { for all } j=1,2, \ldots, m
$$

Proof. $(i) \rightarrow(i i)$: Let V_{x} be a system of vectors in M and $T\left(V_{x}\right)=r$ for all $r=2,3$. Since the function $f\left(x_{j}, x_{k}\right)=<x_{j}, x_{k}>$ is $S O(1,1)$-invariant, condition (i) implies (ii).
$(i i) \rightarrow(i)$: Assume that condition (ii) is valid.
(a) We consider the case $T\left(V_{x}\right)=T\left(V_{y}\right)=2$. Since $T\left(V_{x}\right)=T\left(V_{y}\right)=2$, we have $\operatorname{rank}\left(V_{x}\right)=$ $\operatorname{rank}\left(V_{y}\right)=1$. Then there exists vector $x_{1} \in V_{x}$ such that x_{1} is a timelike vector. Since $<$ $x_{1}, x_{1}>=<y_{1}, y_{1}>$ and $T\left(V_{y}\right)=2$, there exists vector $y_{1} \in V_{y}$ such that y_{1} is a timelike vector.

From Theorem 2.2. and equality $\left\langle x_{1}, x_{1}>=<y_{1}, y_{1}>\right.$, there exist $g \in O(1,1)$ such that $g x_{1}=y_{1}$. We prove that $g \in S O(1,1)$. Assume that $g \in O(1,1)$ and $\operatorname{det} g=-1$. Then we can be written $g=g_{1} \eta$ such that $g_{1} \in S O(1,1)$ and $\eta \in O(1,1)$. Put $x=\left(x_{1}, x_{2}\right), \bar{x}=\left(x_{1},-x_{2}\right) \in M$. Since $g x_{1}=y_{1}$ and $g=g_{1} \eta$, we have $g x_{1}=\left(g_{1} \eta\right) x_{1}=g_{1}\left(\eta x_{1}\right)=g_{1} \overline{x_{1}}=y_{1}$. So there exist $g_{1} \in S O(1,1)$ such that $g_{1} \overline{x_{1}}=y_{1}$. Now we prove that the existence $h \in S O(1,1)$ such that $h x_{1}=\overline{x_{1}}$. Assume that $h=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$. From equality $h x_{1}=\overline{x_{1}}$, there exist $a, b \in R$ such that $a^{2}-b^{2}=1$. That is $h \in S O(1,1)$. Since $h x_{1}=\overline{x_{1}}$ and $g_{1} \overline{x_{1}}=y_{1}$, we have $\left(g_{1} h\right) \in S O(1,1)$ such that $\left(g_{1} h\right) x_{1}=y_{1}$. Let $m>1$. From Proposition 2.7. and Theorem 2.2., we have $\left(g_{1} h\right) x_{i}=y_{i}$ for all $i>1$. This means that systems V_{x} and V_{y} are $S O(1,1)$-equivalent.
(b) We consider the case $T\left(V_{x}\right)=T\left(V_{y}\right)=3$. Then the proof is similar to the case (a).

Theorem 2.6. Let V_{x} and V_{y} be two systems of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=4$. Then

$$
\begin{aligned}
\left\langle x_{1}, x_{1}\right\rangle & =\left\langle y_{1}, y_{1}\right\rangle \\
V_{x} \stackrel{S O(1,1)}{\sim} V_{y} \Leftrightarrow \operatorname{sgn}\left(x_{11} x_{12}\right) & =\operatorname{sgn}\left(y_{11} y_{12}\right) \\
L_{x}^{2} & =L_{y}^{2}
\end{aligned}
$$

for $x_{1}=\left(x_{11}, x_{12}\right), y_{1}=\left(y_{11}, y_{12}\right) \in M$
Proof. $(i) \rightarrow$ (ii): Using Proposition 2.8. and Theorem 2.3., condition (i) imply $<x_{1}, x_{1}>=<$ $y_{1}, y_{1}>$ and $L_{x}^{2}=L_{y}^{2}$. We prove that $\operatorname{sgn}\left(x_{11} x_{12}\right)=\operatorname{sgn}\left(y_{11} y_{12}\right)$. Since $V_{x} \stackrel{S O(1,1)}{\sim} V_{y}$, there exist $g \in S O(1,1)$ such that $g x_{i}=y_{i}$ for all $1 \leq i \leq m$. Let $x_{1}=\left(x_{11}, x_{12}\right), y_{1}=\left(y_{11}, y_{12}\right) \in M$. Since x_{1} is a null vector, we have $x_{1}=\left(x_{11}, x_{11}\right)$ or $x_{1}=\left(x_{11},-x_{11}\right)$. Since $g \in S O(1,1)$, we have $g=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$ and $a^{2}-b^{2}=1$. Assume that $x_{1}=\left(x_{11}, x_{11}\right)$. Using equality $g x_{1}=$ y_{1}, we have $y_{1}=\left((a+b) x_{11},(a+b) x_{11}\right)$. Hence, we have $\operatorname{sgn}\left(x_{11} x_{12}\right)=\operatorname{sgn}\left(x_{11}^{2}\right)>0$ and $\operatorname{sgn}\left(y_{11} y_{12}\right)=\operatorname{sgn}\left((a+b)^{2} x_{11}^{2}\right)>0$. That is $\operatorname{sgn}\left(x_{11} x_{12}\right)=\operatorname{sgn}\left(y_{11} y_{12}\right)$. Similarly, assume that $x_{1}=\left(x_{11},-x_{11}\right)$. Using equality $g x_{1}=y_{1}$, we have $y_{1}=\left((a+b) x_{11},-(a+b) x_{11}\right)$. Hence, we have $\operatorname{sgn}\left(x_{11} x_{12}\right)=\operatorname{sgn}\left(-x_{11}^{2}\right)<0$ and $\operatorname{sgn}\left(y_{11} y_{12}\right)=\operatorname{sgn}\left(-(a+b)^{2} x_{11}^{2}\right)<0$. That is $\operatorname{sgn}\left(x_{11} x_{12}\right)=\operatorname{sgn}\left(y_{11} y_{12}\right)$.
$(i i) \rightarrow(i)$: Assume that condition (ii) is valid.
Since $T\left(V_{x}\right)=T\left(V_{y}\right)=4$, we have $\operatorname{rank}\left(V_{x}\right)=\operatorname{rank}\left(V_{y}\right)=1$. Then there exists vector $x_{1} \in V_{x}$ which is $x_{1} \neq 0$ and $<x_{1}, x_{1}>=0$. Since $<x_{1}, x_{1}>=<y_{1}, y_{1}>=0$ and $T\left(V_{y}\right)=4, y_{1}$ is a null vector in V_{y}.

Let $x_{1}=\left(x_{11}, x_{12}\right), y_{1}=\left(y_{11}, y_{12}\right) \in M$. Since x_{1} is a null vector, we have $x_{1}=\left(x_{11}, x_{11}\right)$ or $x_{1}=\left(x_{11},-x_{11}\right)$. Similarly, since y_{1} is a null vector, we have $y_{1}=\left(y_{11}, y_{11}\right)$ or $y_{1}=\left(y_{11},-y_{11}\right)$. From equality $\operatorname{sgn}\left(x_{11} x_{12}\right)=\operatorname{sgn}\left(y_{11} y_{12}\right)$, we have $x_{1}=\left(x_{11}, x_{11}\right)$ and $y_{1}=\left(y_{11}, y_{11}\right)$ or $x_{1}=$ $\left(x_{11},-x_{11}\right)$ and $y_{1}=\left(y_{11},-y_{11}\right)$. Then there exist $g \in S O(1,1)$ such that $g x_{1}=y_{1}$.

Since x_{1} and y_{1} are non-zero vectors, we have $x_{i}=\lambda_{i} x_{1}$ and $y_{i}=\beta_{i} y_{1}$ for all $i>1$. According to condition (ii) of our theorem, since $L_{x}^{2}=L_{y}^{2}$, we have $\lambda_{i}=\beta_{i}$ for all $i=2,3, \ldots, m$. Hence, for $g \in S O(1,1)$, we have $g x_{i}=\lambda_{i} g x_{1}=\lambda_{i} y_{1}=y_{i}$ for all $i>1$. This means that systems V_{x} and V_{y} are $S O(1,1)$-equivalent.

Theorem 2.7. Suppose that $v=\left(v_{1}, v_{2}\right) \in M$ is spacelike and $w=\left(w_{1}, w_{2}\right) \in M$ is either spacelike or null. Then,
(i) $v_{1} w_{1}>0$, in which case $\langle v, w\rangle>0$
(ii) $v_{1} w_{1}<0$, in which case $\langle v, w\rangle<0$

Proof. The proof is similar to the proof of theorem in [9, Theorem 1.3.1].
Theorem 2.8. Let A be an element of $O(1,1)$. Then following two conditions are equivalent:
(i) $A \in L(1,1)$
(ii) A preserves the space orientation of all null vectors and spacelike vectors.

Proof. The proof is similar to the proof of theorem in [9, Theorem 1.3.3].
Theorem 2.9. Let V_{x} and V_{y} be two systems of vectors in M and $T\left(V_{x}\right)=T\left(V_{y}\right)=1$. Then
(i) if x_{1} is one of linearly independent vectors in V_{x} which is a timelike(or null) vector, then

$$
\begin{aligned}
\left\langle x_{i}, x_{j}\right\rangle & =\left\langle y_{i}, y_{j}\right\rangle \\
V_{x} \stackrel{L(1,1)}{\sim} V_{y} \Leftrightarrow \quad\left[x_{1} x_{2}\right] & =\left[y_{1} y_{2}\right] \\
\operatorname{sgn}\left(x_{12}\right) & =\operatorname{sgn}\left(y_{12}\right)
\end{aligned}
$$

for all $i=1,2 ; j=1,2, \ldots, m, i \leq j$.
(ii) if x_{1} is one of linearly independent vectors in V_{x} which is a spacelike vector, then

$$
V_{x} \stackrel{L(1,1)}{\sim} V_{y} \Leftrightarrow \quad \begin{aligned}
\left\langle x_{i}, x_{j}\right\rangle & =\left\langle y_{i}, y_{j}\right\rangle \\
{\left[x_{1} x_{2}\right] } & =\left[y_{1} y_{2}\right] \\
\operatorname{sgn}\left(x_{11}\right) & =\operatorname{sgn}\left(y_{11}\right)
\end{aligned}
$$

for all $i=1,2 ; j=1,2, \ldots, m, i \leq j$.
Proof. It follow from [9, Theorem 1.3.1], [9, Theorem 1.3.3], Theorems 2.4., 2.7., 2.8.
Theorem 2.10. Let V_{x} and V_{y} be two systems of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=2$. Then

$$
V_{x} \stackrel{L(1,1)}{\sim} V_{y} \Leftrightarrow \begin{aligned}
& <x_{1}, x_{1}>=<y_{1}, y_{1}> \\
& \operatorname{sgn}\left(x_{12}\right)=\operatorname{sgn}\left(y_{12}\right)
\end{aligned}
$$

Proof. It follow from Theorems 2.5., 2.8., [9, Theorem 1.3.1] and [9, Theorem 1.3.3].

Theorem 2.11. Let V_{x} and V_{y} be two systems of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=3$. Then

$$
V_{x} \stackrel{L(1,1)}{\sim} V_{y} \Leftrightarrow \begin{aligned}
& <x_{1}, x_{1}>=<y_{1}, y_{1}> \\
& \operatorname{sgn}\left(x_{11}\right)=\operatorname{sgn}\left(y_{11}\right)
\end{aligned}
$$

Proof. It follow from Theorems 2.5., 2.7. and 2.8.
Theorem 2.12. Let V_{x} and V_{y} be two systems of vectors in M. Assume that $T\left(V_{x}\right)=T\left(V_{y}\right)=4$. Then

$$
\begin{aligned}
<x_{1}, x_{1}> & =<y_{1}, y_{1}> \\
V_{x} \stackrel{L(1,1)}{\sim} V_{y} \Leftrightarrow \quad \operatorname{sgn}\left(x_{11} x_{12}\right) & =\operatorname{sgn}\left(y_{11} y_{12}\right) \\
\operatorname{sgn}\left(x_{12}\right) & =\operatorname{sgn}\left(y_{12}\right) \\
L_{x}^{2} & =L_{y}^{2}
\end{aligned}
$$

Proof. It follow from Theorems 2.6., 2.7. and 2.8.

3. The equivalence of Bézier curves

Definition 3.1. Bézier curves $\alpha(t)$ and $\beta(t)$ in M will be called G-equivalent and written $\alpha \stackrel{G}{\sim} \beta$ if there exists $F \in G$ such that $\beta(t)=F \alpha(t)$ for all $t \in[0,1]$.

Remark 3.1. In this definition, Bézier curves are considered as paths (see [13, p. 796]; [19, Definition 3].

Definition 3.2. A G-invariant function $f\left(x_{0}, x_{1}, \ldots, x_{m}\right)$ of control points $x_{0}, x_{1}, \ldots, x_{m}$ of a Bézier curve $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ will be called a control G-invariant of $\alpha(t)$, where $B_{j, m}(t)$ are Bernstein basis polynomials.

Example 3.1. Let $\alpha(t)$ and $\beta(t)$ be Bézier curves of degrees of m and k, respectively. Assume that $\alpha \stackrel{O(1,1)}{\sim} \beta$. Then $m=k$ that is the degree of a Bézier curve $\alpha(t)$ is $O(1,1)$-invariant.
Theorem 3.1. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Then following four conditions are equivalent:
(i) $\alpha \stackrel{M(1,1)}{\sim} \beta$
(ii) $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \stackrel{M(1,1)}{\sim}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$
(iii) $\left\{x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{m}-x_{0}\right\} \stackrel{o(1,1)}{\sim}\left\{y_{1}-y_{0}, y_{2}-y_{0}, \ldots, y_{m}-y_{0}\right\}$

Proof. $(i) \leftrightarrow(i i)$: According to the property of the affine invariance ([4, p. 137]),

$$
\begin{equation*}
F\left(\sum_{j=0}^{m} x_{j} B_{j, m}(t)\right)=\sum_{j=0}^{m} F\left(x_{j}\right) B_{j, m}(t) \tag{11}
\end{equation*}
$$

for every $F \in M(1,1)$. Assume that $\alpha \stackrel{M(1,1)}{\sim} \beta$. Then $\beta(t)=F \alpha(t)$ for some $F \in M(1,1)$. Using (11), we obtain $y_{j}=F x_{j}$ for all $j=0,1, \ldots, m$ that is $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \stackrel{M(1,1)}{\sim}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$. Conversely, suppose that $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \stackrel{M(1,1)}{\sim}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$. Then there exists $F \in M(1,1)$ such that $y_{j}=F x_{j}$ for all $j=0,1, \ldots, m$. Using (11), we obtain $\beta(t)=F \alpha(t)$ that is $\alpha \stackrel{M(1,1)}{\sim} \beta$.
(ii) $\leftrightarrow(i i i)$: Assume that $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \stackrel{M(1,1)}{\sim}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$. Then there exists $F \in M(1,1)$, where F has the form $F z=g z+p, g \in O(1,1), p \in M$ for all $z \in M$ such that $y_{j}=F x_{j}=g x_{j}+p$ for all $j=0,1, \ldots, m$. These equalities imply $y_{j}-y_{0}=g\left(x_{j}-x_{0}\right)$ for all $j=1,2, \ldots, m$. This means that $\left\{x_{i}-x_{0}, 1 \leq i \leq m\right\} \stackrel{O(1,1)}{\sim}\left\{y_{i}-y_{0}, 1 \leq i \leq m\right\}$. Conversely, assume that $\left\{x_{i}-x_{0}, 1 \leq i \leq m\right\} \stackrel{O(1,1)}{\sim}\left\{y_{i}-y_{0}, 1 \leq i \leq m\right\}$. Then there exists $g \in O(1,1)$ such that $y_{j}-y_{0}=$ $g\left(x_{j}-x_{0}\right)$ for all $j=1,2, \ldots, m$. Put $p=y_{0}-g x_{0}$. Then $y_{j}=g x_{j}+p$ for all $j=0,1, \ldots, m$. This means that $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \stackrel{M(1,1)}{\sim}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$.

Corollary 3.1. Let $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ be a system of vectors in M. Then the type $T\left(x_{1}-x_{0}, \ldots, x_{m}-x_{0}\right)$ is $O(1,1)$-invariant.

Definition 3.3. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. The type $T\left(x_{1}-\right.$ $\left.x_{0}, x_{2}-x_{0} \ldots, x_{m}-x_{0}\right)$ of the system
$\left\{x_{1}-x_{0}, x_{2}-x_{0} \ldots, x_{m}-x_{0}\right\}$ will be called the control points type of the Bézier curve α and will be denoted by $T(\alpha)$.

Since the control points type of a Bézier curve is $O(1,1)$-invariant, in the case $T(\alpha) \neq T(\beta)$, Bézier curves α and β are not $0(1,1)$-equivalent. Therefore, for an investigation of $0(1,1)$ equivalence of Bézier curves α and β, we assume that $T(\alpha)=T(\beta)$.
Theorem 3.2. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=1$. Then

$$
\alpha \stackrel{M(1,1)}{\sim} \beta \Leftrightarrow<x_{i}-x_{0}, x_{j}-x_{0}>=<y_{i}-y_{0}, y_{j}-y_{0}>
$$

for all $i=1,2, j=1,2, \ldots, m ; i \leq j$
Proof. It follows from Theorem 2.1. and Theorem 3.1.
Theorem 3.3. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=r$ for $r=2,3$. Then

$$
\alpha \stackrel{M(1,1)}{\sim} \beta \Leftrightarrow<x_{1}-x_{0}, x_{j}-x_{0}>=<y_{1}-y_{0}, y_{j}-y_{0}>
$$

for all $j=1,2, \ldots, m$.
Proof. It follows from Theorem 2.2. and Theorem 3.1.
Theorem 3.4. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=4$. Then

$$
\alpha \stackrel{M(1,1)}{\sim} \beta \Leftrightarrow \begin{aligned}
\left\langle x_{1}-x_{0}, x_{1}-x_{0}\right\rangle & =\left\langle y_{1}-y_{0}, y_{1}-y_{0}\right\rangle \\
L_{x-x_{0}}^{2} & =L_{y-y_{0}}^{2}
\end{aligned}
$$

Proof. It follows from Theorem 2.3. and Theorem 3.1.
Theorem 3.5. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Then following three conditions are equivalent:
(i) $\alpha \stackrel{S M(1,1)}{\sim} \beta$
(ii) $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \stackrel{S M(1,1)}{\sim}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$
(iii) $\left\{x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{m}-x_{0}\right\} \stackrel{S O(1,1)}{\sim}\left\{y_{1}-y_{0}, y_{2}-y_{0}, \ldots, y_{m}-y_{0}\right\}$

Proof. It is similar to the proof of Theorem 3.1.
Theorem 3.6. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=1$. Then

$$
\alpha \stackrel{S M(1,1)}{\sim} \beta \Leftrightarrow \begin{aligned}
\left\langle x_{i}-x_{0}, x_{j}-x_{0}\right\rangle & =\left\langle y_{i}-y_{0}, y_{j}-y_{0}\right\rangle \\
{\left[\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)\right] } & =\left[\left(y_{1}-y_{0}\right)\left(y_{2}-y_{0}\right)\right]
\end{aligned}
$$

for all $i=1,2, j=1,2, \ldots, m ; i \leq j$
Proof. It follows from Theorem 2.4. and Theorem 3.5.

Theorem 3.7. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=r$ for $r=2,3$. Then

$$
\alpha \stackrel{S M(1,1)}{\sim} \beta \Leftrightarrow\left\langle x_{1}-x_{0}, x_{j}-x_{0}\right\rangle=\left\langle y_{1}-y_{0}, y_{j}-y_{0}\right\rangle
$$

for all $j=1,2, \ldots, m$.
Proof. It follows from Theorem 2.5. and Theorem 3.5.
Theorem 3.8. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=4$. Then

$$
\begin{aligned}
\left\langle x_{1}-x_{0}, x_{1}-x_{0}\right\rangle & =\left\langle y_{1}-y_{0}, y_{1}-y_{0}\right\rangle \\
\alpha \stackrel{S M(1,1)}{\sim} \beta \Leftrightarrow \operatorname{sgn}\left(\left(x_{11}-x_{01}\right)\left(x_{12}-x_{02}\right)\right) & =\operatorname{sgn}\left(\left(y_{11}-y_{01}\right)\left(y_{12}-y_{02}\right)\right) \\
L_{x-x_{0}}^{2} & =L_{y-y_{0}}^{2}
\end{aligned}
$$

Proof. It follows from Theorem 2.6. and Theorem 3.5.
Theorem 3.9. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Then following three conditions are equivalent:
(i) $\alpha \stackrel{S L(1,1)}{\sim} \beta$
(ii) $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \stackrel{S L(1,1)}{\sim}\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$
(iii) $\left\{x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{m}-x_{0}\right\} \stackrel{S L(1,1)}{\sim}\left\{y_{1}-y_{0}, y_{2}-y_{0}, \ldots, y_{m}-y_{0}\right\}$

Proof. It is similar to the proof of Theorem 3.5.
Theorem 3.10. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=1$.
(i) if x_{1} is one of control points in $\alpha(t)$ which is a timelike(or null) vector, then

$$
\begin{aligned}
\left\langle x_{i}-x_{0}, x_{j}-x_{0}\right\rangle & =\left\langle y_{i}-y_{0}, y_{j}-y_{0}\right\rangle \\
\alpha \stackrel{S L}{\sim} \beta \Leftrightarrow\left[\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)\right] & =\left[\left(y_{1}-y_{0}\right)\left(y_{2}-y_{0}\right)\right] \\
\operatorname{sgn}\left(x_{12}-x_{02}\right) & =\operatorname{sgn}\left(y_{12}-y_{02}\right)
\end{aligned}
$$

for all $i=1,2, j=1,2, \ldots, m ; i \leq j$
(ii) if x_{1} is one of control points in $\alpha(t)$ which is a spacelike vector, then

$$
\begin{aligned}
\left\langle x_{i}-x_{0}, x_{j}-x_{0}\right\rangle & =\left\langle y_{i}-y_{0}, y_{j}-y_{0}\right\rangle \\
\alpha \stackrel{S L(1,1)}{\sim} \beta \Leftrightarrow\left[\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)\right] & =\left[\left(y_{1}-y_{0}\right)\left(y_{2}-y_{0}\right)\right] \\
\operatorname{sgn}\left(x_{11}-x_{01}\right) & =\operatorname{sgn}\left(y_{11}-y_{01}\right)
\end{aligned}
$$

$$
\text { for all } i=1,2, j=1,2, \ldots, m ; i \leq j
$$

Proof. It follows from Theorem 2.9. and Theorem 3.9.
Theorem 3.11. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=2$. Then

$$
\alpha \stackrel{S L(1,1)}{\sim} \beta \Leftrightarrow \begin{gathered}
\left\langle x_{1}-x_{0}, x_{1}-x_{0}\right\rangle=\left\langle y_{1}-y_{0}, y_{1}-y_{0}\right\rangle \\
\operatorname{sgn}\left(x_{12}-x_{02}\right)=\operatorname{sgn}\left(y_{12}-y_{02}\right)
\end{gathered}
$$

Proof. It follows from Theorem 2.10 and Theorem 3.9.
Theorem 3.12. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=3$. Then

$$
\alpha \stackrel{S L(1,1)}{\sim} \beta \Leftrightarrow \begin{aligned}
\left\langle x_{1}-x_{0}, x_{j}-x_{0}\right\rangle & =\left\langle y_{1}-y_{0}, y_{j}-y_{0}\right\rangle \\
\operatorname{sgn}\left(x_{11}-x_{01}\right) & =\operatorname{sgn}\left(y_{11}-y_{01}\right)
\end{aligned}
$$

Proof. It follows from Theorem 2.11 and Theorem 3.9.
Theorem 3.13. Let $\alpha(t)=\sum_{j=0}^{m} x_{j} B_{j, m}(t)$ and $\beta(t)=\sum_{j=0}^{m} y_{j} B_{j, m}(t)$ be Bézier curves in M of degree m. Assume that $T(\alpha)=T(\beta)=4$. Then

$$
\alpha \stackrel{\left\langle x_{1}-x_{0}, x_{1}-x_{0}\right\rangle}{ }=\left\langle y_{1}-y_{0}, y_{1}-y_{0}\right\rangle, \begin{aligned}
\operatorname{SL(1,1)} \beta \Leftrightarrow \operatorname{sgn}\left(\left(x_{11}-x_{01}\right)\left(x_{12}-x_{02}\right)\right) & =\operatorname{sgn}\left(\left(y_{11}-y_{01}\right)\left(y_{12}-y_{02}\right)\right) \\
\operatorname{sgn}\left(x_{12}-x_{02}\right) & =\operatorname{sgn}\left(y_{12}-y_{02}\right) \\
L_{x-x_{0}}^{2} & =L_{y-y_{0}}^{2}
\end{aligned}
$$

Proof. It follows from Theorem 2.12 and Theorem 3.9.

Conflict of Interests

The author declares that there is no conflict of interests.

REFERENCES

[1] A. Misiak, E. Stasiak, Equivariant maps between certain G-spaces with $\mathrm{G}=\mathrm{O}(\mathrm{n}$? 1, 1), Math. Bohem. 126(2001), no. 3, 555-560.
[2] B. O'Neill, Semi-Riemannian Geometry:With applications to relativity,Academic Press, New York, 1983.
[3] D. Forsyth, J. L. Mundy, A. Zisserman, C. Coelho, A. Heller and C. Rothwell, Invariant descriptors for 3D object recognition and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence. 13(1991), 971-991.
[4] D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer-Verlag, London, 1999.
[5] E. Stasiak, Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1, Publ. Math. Debrecen. 57(2000), no. 1-2, 55-69.
[6] E. Bayro-Corrochano, V. Banarer, A geometric approach for the theory and applications of 3D projective invariants, J. Math. Imaging Vision. 16(2002), no. 2, 131-154.
[7] G. Farin, Curves and Surfaces for Computer-aided Geometric Design, Academic Press, San Diego, CA, 1997.
[8] G. H. Georgiev, Space-like Bézier curves in the three-dimensional Minkowski space, AIP Conf. Proc. 1067(2008).
[9] G. L. Naber, The Geometry of Minkowski Spacetime: An introduction to the mathematics of the special theory of relativity, Springer-Verlag, New York, 1992.
[10] H. Weyl, The Classical Groups. Their invariants and representations, Princeton University Press, Princeton, NJ, 1997.
[11] H. E. Bez, Generalized invariant-geometry conditions for the rational Bézier paths, Int. J. Comput. Math. 87(2010), no. 12, 2722-2732.
[12] H. E. Bez, An analysis of invariant curves, Comput. Aided Geom. Design. 6(1989), no. 3, 265-277.
[13] H. E. Bez, On the relationship between parametrization and invariance for curve functions, Comput. Aided Geom. Design. 17(2000), no. 9, 793-811.
[14] H. Civi, C. Christopher and A. Ercil, The classical theory of invariants and object recognition using algebraic curve and surfaces, J. Math. Imaging Vision. 19(2003), no. 3, 237-253.
[15] I. Weiss, Geometric invariants and object recognition, J Math Imaging Vision. 10(1993), 201-231.
[16] J. Peter, U. Reif, The 42 equivalence classes of quadratic surfaces in affine n-space, Comput. Aided Geom. Design. 15(1998), no. 5, 459-473.
[17] J. Gomes, L. Darsa, B. Costa and L. Velho, Warping and Morphing of Graphical Objects, Morgan Kaufmann Publ Inc, San Francisco, 1999.
[18] J. J. Callahan, The Geometry of Spacetime. An introduction to special and general relativity, Springer-Verlag, New York, 2000.
[19] Ő. Peksen, D. Khadjiev and İ. Őren, Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry, Turk J. Math. 36(2012), no. 1, 147-160.
[20] Ő. Peksen, D. Khadjiev, On invariants of null curves in the pseudo-Euclidean geometry, Differential Geom. Appl. 29(2011), no. 1, 183-187.
[21] R. Hőfer, m-point invariants of real geometries, Beitr?ge Algebra Geom. 40(1999), no. 1, 261-266.
[22] W. Wang, H. Zhang, X. Liu and J.C. Paul, Conditions for coincidence of two cubic Bézier curves, J. Comput. Appl. Math. 235(2011), no. 17, 5198-5202.
[23] X. Chen, W. Ma and C. Deng, Conditions for the coincidence of two quartic Bézier curves, Appl. Math. Comput. 225(2013), 731-736.

