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Abstract. We develop a two-step hybrid block method for the solution of stiff and oscillatory first-order Ordinary

Differential Equations (ODEs) using the Laguerre polynomial as our basis function via interpolation and colloca-

tion techniques. The paper further investigates the basic properties of the method and found it to be zero-stable,

consistent and convergent. The method was also tested on some sampled stiff and oscillatory problems and found

to perform better than some existing ones with which we compared our results.
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1. Introduction

This paper considers the numerical solution of stiff and oscillatory first-order initial value

problems of the form,
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(1) y′ = f (x,y), y(x0) = y0, x ∈ [a,b] ,

where f : ℜ×ℜ→ℜ, y,y0 ∈ℜ, f satisfies Lipchitz condition which guarantees the existence

and uniqueness of solution of (1).

The development of numerical integration formulas for stiff as well as oscillatory differen-

tial equations has attracted considerable attention in the past, Fatunla, [4]. This is because

mathematical models of physical situations in kinetic chemical reactions, process control and

electrical circuit theory often results to stiff ODEs. Also, differential equations whose solutions

are known to be periodic or oscillate with a known fequency can be found in the field of ecology,

medical sciences and oscillatory motion in a nonlinear force field, Sanugi and Evans [7].

Scholars have proposed different numerical schemes for the solution of (1) ranging from

predictor-corretor methods to hybrid methods. Despite the success recorded by the predictor-

corrector methods, its major setbacks are that the predictors are in reducing order of accuracy,

high cost of developing separate predictor for the corrector, high cost of human and computer

time involved in the execution, Sunday et al. [12].Block methods were later proposed to carter

for some of the setbacks of the predictor-corrector methods. It is important to state that Milne

in 1953 first developed block method to serve as a predictor to a predictor-corrector algorithm

before it was later adopted as a full method. Block method has the advantage of generating si-

multaneous numerical approximations at different grid points within the interval of integration,

Sunday [8]. Another advantage of the block method is the fact that it is less expensive in terms

of the number of function evaluations compared to the linear multistep and the Runge-Kutta

methods. Its major setback however is that the order of interpolation points must not exceed the

order of the differential equations, thus when equations of lower order are developed, the accu-

racy of the developed method is reduced. This led to the development of hybrid methods which

permit the incorporation of function evaluation at off-step points which affords the opportunity

of circumventing the ”Dahlquist Zero-Stabilty Barrier” and it is actually possible to obtain con-

vergent k−step methods with order 2k+1 up to k = 7, Awoyemi et al. [2].The method is also

useful in reducing the step number of a method and still remain zero-stable, Adesanya et al. [1].
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Definition 1.1 [5] Laguerre polynomial yn+1(x) is defined as,

(2) yn+1(x) = (−1)n+1ex dn+1

dxn+1 (e
−xxn+1)

In particular, y0(1) = 1,y1(x) = x− 1, y2(x) = x2− 4x+ 2, ...The Laguerre polynomial yn(x)

are orthogonal with respect to the weight function w(x) = e−x on [0,∞).

In developing methods for the solution of (1), scholars used different basis functions. For

instance, Sunday et al. [10], Sunday et al. [11] and Sunday et al. [12] used basis functions which

are the combination of power series and exponential functions to develop block integrators for

the solution of (1). Sunday et al. [9] and Sunday et al. [13] also used Chebyshev and Legendre

polynomials as basis functions respectively to develop hybrid methods for the solution of (1).

In this paper, we shall adopt the Laguerre polynomial as a basis function to derive a two-step

hybrid block method for the solution of (1).

2. Preliminaries

2.1. Derivation of the two-step hybrid block method

We consider the first six terms of the Laguerre polynomial as our basis function. This is given

by,

(3) y(x) =
4

∑
n=−1

(−1)n+1ex dn+1

dxn+1 (e
−xxn+1).

Interpolating (3) at point xn+s, s = 0 and collocating its first derivatives at points xn+r, r =

0(1
2)2, where s and r are the numbers of interpolation and collocation points respectively, leads

to the following system of equations,

(4) XA =U

where

A = [a0 a1 a2 a3 a4 a5]
T

U =
[
yn fn fn+ 1

2
fn+1 fn+ 3

2
fn+2

]T
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and

X =



96 −504xn 528x2
n −184x3

n 24x4
n −x5

n

0 −504 1056xn −552x2
n 96x3

n −5x4
n

0 −504 1056xn+ 1
2
−552x2

n+ 1
2

96x3
n+ 1

2
−5x4

n+ 1
2

0 −504 1056xn+1 −552x2
n+1 96x3

n+1 −5x4
n+1

0 −504 1056xn+ 3
2
−552x2

n+ 3
2

96x3
n+ 3

2
−5x4

n+ 3
2

0 −504 1056xn+2 −552x2
n+2 96x3

n+2 −5x4
n+2


Solving (4), for a′js, j = 0(1)5 and substituting back into (3) gives a continuous linear multistep

method of the form,

(5) y(x) = α0(x)yn +h
2

∑
j=0

β j(x) fn+ j, j = 0
(

1
2

)
2,

where

(6)



α0(t) = 1

β 0(t) =
1

180(24t5−150t4 +350t3−375t2 +180t)

β 1
2
(t) =− 1

45(24t5−135t4 +260t3−180t2)

β 1(t) =
1

15(12t5−60t4 +95t3−45t2)

β 3
2
(t) =− 1

45(24t5−105t4 +140t3−60t2)

β 2(t) =
1

180(24t5−90t4 +110t3−45t2)


and t = x−xn

h . Evaluating (5) at t = 1
2

(1
2

)
2 gives a discrete block scheme of the form,

(7) A(0)Ym = Eyn +hd f (yn)+hbF(Ym),

where

Ym =
[
yn+ 1

2
yn+1 yn+ 3

2
yn+2

]T
, yn =

[
yn− 3

2
yn−1 yn− 1

2
yn

]T

F(Ym) =
[

fn+ 1
2

fn+1 fn+ 3
2

fn+2

]T
, f (yn) =

[
fn− 3

2
fn−1 fn− 1

2
fn

]T

A(0) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , E =


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1
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d =


0 0 0 251

1440

0 0 0 29
180

0 0 0 27
160

0 0 0 7
45

 , b =


323
720

−11
60

53
720

−19
1440

31
45

2
15

1
45

−1
180

51
80

9
20

21
80

−3
160

32
45

4
15

32
45

7
45



2.2. Analysis of basic properties of the two-step hybrid block method

Order

We define the linear operator L{y(x);h} associated with the hybrid block method (7) as,

(8) L{y(x);h}= A(0)Ym−Eyn−h(d f (yn)+bF(Ym)).

Expanding (8) using Taylor series and comparing the coefficients of h gives,

(9) L{y(x);h}= c0y(x)+ c1hy′(x)+ c2h2y′′(x)+ ...+ cphpyp(x)+ cp+1hp+1yp+1(x)+ ...

Definition 2.1 (Fatunla [4]): The linear operator L and the associated continuous linear multi-

step method (5) are said to be of order p if c0 = c1 = c2 = ...= cp = 0 and cp+1 6= 0. cp+1 is

called the error constant and the local truncation error is given by,

(10) tn+k = cp+1h(p+1)y(p+1)(xn)+©(hp+2).

It is important to state that the order is also defined as the largest positive real number p that

quantifies the rate of convergence of a numerical approximation of a differential equation to

that of the exact solution while the error constant is the accumulated error when the order of a

method has been computed. For our hybrid block method,
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(11) L{y(x);h}=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




yn+ 1

2

yn+1

yn+ 3
2

yn+2

−


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1




yn− 3

2

yn−1

yn− 1
2

yn



−h


251
1440

323
720

−11
60

53
720

−19
1440

29
180

31
45

2
15

1
45

−1
180

27
160

51
80

9
20

21
80

−3
160

7
45

32
45

4
15

32
45

7
45





fn

fn+ 1
2

fn+1

fn+ 3
2

fn+2




Expanding (11) in Taylor series gives,

(12)



∑
∞
j−0

( 1
2 h) j

j! y j
n− yn− 251h

1440y′n−∑
∞
j=0

h j+1

j! y j+1
n

 323
720(

1
2)

j− 11
60(1)

j

+ 53
720(

3
2)

j− 19
1440(2)

j


∑

∞
j−0

(h) j

j! y j
n− yn− 29h

180y′n−∑
∞
j=0

h j+1

j! y j+1
n

 31
45(

1
2)

j + 2
15(1)

j

+ 1
45(

3
2)

j− 1
180(2)

j


∑

∞
j−0

( 3
2 h) j

j! y j
n− yn− 27h

160y′n−∑
∞
j=0

h j+1

j! y j+1
n

 51
80(

1
2)

j + 9
20(1)

j

+21
80(

3
2)

j− 3
160(2)

j


∑

∞
j−0

(2h) j

j! y j
n− yn− 7h

45y′n−∑
∞
j=0

h j+1

j! y j+1
n

 32
45(

1
2)

j + 4
15(1)

j

+32
45(

3
2)

j + 7
45(2)

j





=



0

0

0

0



Hence, c0 = c1 = c2 = c3 = c4 = c5 = 0,

c6 = [2.9297(−04) 1.7361(−04) 2.9297(−04) −6.6138(−05)]T . Therefore, the two-

step hybrid block method is of accurate order 5.

Zero stability

Definition 2.2 (Fatunla [4]): The block method (7) is said to be zero-stable, if the roots zs,s =

1,2, ...,k of the first characteristic polynomial ρ(z) defined by ρ(z) = det(zA(0)−E) satisfies
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|zs| ≤ 1 and every root satisfying |zs| = 1 have multiplicity not exceeding the order of the d-

ifferential equation. Moreover, as h→ 0,ρ(z) = zr−µ(z− 1)µ where µ is the order of the

differential equation, r is the order of the matrices A(0) and E (see Awoyemi et al. [2] for de-

tails). The main consequence of zero-stability is to control the propagation of the error as the

integration proceeds.

For our hybrid block method,

(13) ρ(z) =

∣∣∣∣∣∣∣∣∣∣∣∣
z


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣
= 0

ρ(z) = z3(z−1) = 0 =⇒ z1 = z2 = z3 = 0, z4 = 1. Hence, the hybrid block method is zero-

stable.

Consistency

The hybrid block method (7) is consistent since it has order p = 5≥ 1. It is important to note

that consistency controls the magnitude of the local truncation error committed at each stage of

the computation.

Convergence

Theorem 2.1. (Dahlquist [3]): The necessary and sufficient conditions that a continuous LMM

be convergent are that it be consistent and zero-stable.

Region of Absolute Stability

Definition 2.3 (Yan [15]]): Region of absolute stability is a region in the complex z plane, where

z = λh . It is defined as those values of z such that the numerical solutions of y′ =−λy satisfy

y j→ 0 as j→ ∞ for any initial condition.

In ploting the stability region shown in Figure 1 below, we shall adopt the boundary locus

method. This gives the stability polynomial below,

(14)

h(w)=−h4
(

1
80

w3− 1
80

w4
)
−h3

(
5

48
w4 +

5
48

w3
)
−h2

(
7
16

w3− 7
16

w4
)
−h
(
w4 +w3)+w4−w3
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Figure 1: Stability Rgion of the Two-Step Laguerre Hybrid Method

According to Fatunla [4], stiff algorithms have unbounded RAS. Also, Lambert [16] showed

that the stability region for L-stable schemes must encroach into the positive half of the complex

plane.

3. Main results

We shall evaluate the performance of the two-step hybrid block method developed on some

challeging stiff and oscillatory problems which have appeared in literatures and compare our

results with existing ones. The following notations shall be used in the tables below.

ERR- Exact Solution-Computed Solution

ERYS- Error in Yahaya and Sokoto [14]

ERSOAJ- Error in Sunday et al. [11].

Numerical experiments

Problem 3.1 : Consider the highly stiff ODE

(15) y′(t) =−9t, y(0) = e, 0≤ t ≤ 1,
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which has the exact solution

(16) y(t) = e1−9t

This problem was solved by Yahaya and Sokoto [14] where they applied a block hybrid

method with step number k = 4 of order 6.We applied our newly developed method on this

problem and obtained the results presented in Table 3.1 below.

Problem 3.2 : Consider the highly oscillatory ODE

(17) y′(t) =−sin t−200(y(t)− cos t), y(0) = 0

with the exact solution

(18) y(t) = cos t− e−200t

Sunday et al. [11] solved this problem using an extended block integrator of order 6. We

applied our newly developed method on this problem and obtained the results presented in

Table 3.2 below.

Table 3.1 : Showing the result for stiff problem 3.1

t Exact Solution Computed Solution ERR ERYS t/sec

0.1000 1.1051709180756477 1.1051709259345621 7.858914e−009 1.18e−03 0.0170

0.2000 0.4493289641172217 0.4493289705076141 6.390392e−009 1.62e−04 0.0368

0.3000 0.1826835240527347 0.1826835279499442 3.897209e−009 2.22e−04 0.0391

0.4000 0.0742735782143338 0.0742735803269834 2.112650e−009 1.37e−04 0.0430

0.5000 0.0301973834223185 0.0301973844959925 1.073674e−009 8.79e−05 0.0452

0.6000 0.0122773399030684 0.0122773404268964 5.238280e−010 5.23e−04 0.0473

0.7000 0.0049915939069102 0.0049915941553782 2.484680e−010 1.53e−05 0.0498

0.8000 0.0020294306362957 0.0020294307517466 1.154509e−010 1.64e−06 0.0519

0.9000 0.0008251049232659 0.0008251049760721 5.280619e−011 3.92e−06 0.0539

1.0000 0.0003354626279025 0.0003354626517574 2.385488e−011 1.35e−06 0.0562
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Table 3.2: Showing the result for oscillatory problem 3.2

t Exact Solution Computed Solution ERR ESOAJ t/sec

0.0010 0.1730404148066717 0.1730404236249725 8.818301e−009 1.827076e−07 0.0172

0.0020 0.3229412242524378 0.3229412421033776 1.785094e−008 1.408505e−07 0.0195

0.0030 0.4511838639093487 0.4511838908541543 2.694481e−008 5.560940e−07 0.0222

0.0040 0.5461474034777876 0.5461474394379181 3.596013e−008 3.927080e−07 0.0243

0.0050 0.5506630358934452 0.5506630718490411 3.595560e−008 2.258932e−07 0.0244

0.0060 0.6987877881417977 0.6987878421480225 5.400622e−008 1.856178e−07 0.0289

0.0070 0.7533785361584349 0.7533785992010643 6.304263e−008 1.519389e−07 0.0311

0.0080 0.7980714821760108 0.7980715542606559 7.208465e−008 1.260184e−07 0.0333

0.0090 0.8346606120517877 0.8346606931830203 8.113123e−008 1.159464e−07 0.1124

0.0100 0.8646147171800526 0.8646148073615927 9.018154e−008 1.661978e−07 0.1409

Discussion of results

We considered two numerical examples in this paper. The first being a stiff problem was

earlier solved by Yahaya and Sokoto [14] while the second being an oscillatory problem was

solved by Sunday et al. [11]. The two methods these authors employed are both of oders 6.

We applied the newly developed two-step method (which is of order 5) on the two problems

and from the results obtained, it is obvious that the method performs better than the existing

methods. It was also observed that the evaluation time per seconds of the results are very small,

implying that the method generates results very fast.

4. Conclusion

We have derived a two-step hybrid method for the solution of stiff and oscillatory problems of

the form (1) using Laguerre polynomial as our basis function. The method developed was found

to be L-stable and that explains why it performed well on this class of problems. The method

was also found to be zero-stable, consistent and convergent. The numerical results obtained

shows that the method developed perform better than the existing ones with which we compared

our results. One may simply conclude that the newly developed method is computationally

reliable.
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