
Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 4, 880-888

ISSN: 1927-5307

THE RELATIVE EFFICIENCY OF QUENCHING AND
REINTEGRATION FOR GLOBAL ERROR CONTROL IN

RUNGE-KUTTA METHODS

J.S.C. PRENTICE∗

Department of Applied Mathematics, University of Johannesburg, South Africa

Abstract. We compare the efficiency of two algorithms for controlling global error in Runge-Kutta

methods, i.e. reintegration and RKQ. We find that RKQ (which uses a quenching strategy) is, on

average, more efficient than reintegration, by at least 16% or 30%, depending on the form of RKQ. Some

numerical examples indicate that larger gains in efficiency are possible. The Runge-Kutta methods we

consider are explicit, implicit (Radau, Lobatto, Gauss), embedded and Nyström.

Keywords: RKQ, RKrvQz, Quenching, Reintegration, Efficiency, Global error, Error control, Runge-

Kutta.

2000 AMS Subject Classification: 65L05, 65L06, 65Y20

1. Introduction

We have recently reported on the quenching-based RKrvQz algorithm [1, 2, 3] for

controlling the global error in Runge-Kutta (RK) methods in a stepwise manner (i.e.

as the integration proceeds). The only other way of controlling the RK global error is

through the use of a reintegration algorithm, wherein the RK method has to be reapplied

with an appropriate stepsize, after the global error in its original application has been

∗Corresponding author

E-mail address: jprentice@uj.ac.za (J.S.C. Prentice)

Received March 4, 2012

880



THE EFFICIENCY OF QUENCHING AND REINTEGRATION IN RUNGE-KUTTA METHODS 881

estimated. We consider a stepwise control of global error to be a better approach and so,

in this paper, we compare RKQ and reintegration in terms of computational efficiency. If

both are effective, the more efficient algorithm might be regarded as the preferred choice.

2. Relevant Concepts

Here, we briefly describe local error control via local extrapolation, reintegration and

the RKQ algorithm. Our discussion will be brief; the reader is referred to the literature

for more detail. This paper is a much more detailed discussion of ideas first studied in [4].

2.1 Local error control

Local extrapolation is the process whereby solutions using two RK methods, RKr and

RKv, with r < v, are obtained at a node using the RKv solution at the previous node as

input for both methods. The local error in the RKr solution is then estimated by means of

the difference between these two solutions. If this estimate exceeds the desired tolerance,

a new, smaller stepsize is determined and the local extrapolation process is repeated using

this new stepsize [5]. If, however, the tolerance is satisfied, we simply move on to the next

node. We will refer to such local error control via local extrapolation as LE(r, v).

2.2 Reintegration

Reintegration involves estimating the global error in the RKr solution, after it has been

computed over the entire interval of integration. This is achieved using a method RKz of

much higher order (r < v � z) ; the difference between the two solutions gives the global

error. If this error exceeds the desired tolerance, a new, smaller stepsize is determined.

Usually, LE(r, v) has been implemented first, which results in a particular distribution of

nodes. It is desirable to preserve this distribution so that, if a new stepsize is needed, we

simply insert an integer number of nodes between the existing nodes. This yields a new

node distribution with maximum stepsize smaller than that of the original. A new solution

RKr is then obtained at these new nodes. This is the source of the term ‘reintegration’.

It is clear that is an a posteriori form of error control – the refinement occurs only after

LE(r, v) has been applied over the entire interval of integration.



882 J.S.C. PRENTICE∗

2.3 RKrvQz

In this algorithm, we apply either LE(r, v) or LE(r, z) to control local error. Knowledge

of the RKz solution enables us to determine the global error that is propagated from the

previous node and, hence, the total global error at the node of interest. If this global error

exceeds the desired tolerance, we quench the RKr and RKv solutions – this simply involves

replacing them with the RKz solution, which is assumed to be much more accurate. We

then proceed to the next node. This algorithm provides in situ control of the global error

– the global error is kept within the desired tolerance as the RK computation proceeds

[1, 2, 3]. We will refer to the usage of LE(r, z) as Mode I, and the usage of LE(r, v) as

Mode II. Using RKQ in Mode I provides a more accurate estimate of local error, whereas

Mode II is more efficient (Mode I is the version of RKQ considered in [4]).

It is important to note that, if RKz is not reliable as a global error estimator, then

neither reintegration nor RKQ will be successful as global error controllers. It is implicitly

assumed in this work that RKz is reliable.

3. Efficiency Analysis

We will study efficiency in terms of the number of RK stage evaluations that are carried

out. We assume that RKr requires sr stage evaluations, and similarly for RKv and RKz.

We assume that LE(r, v) or LE(r, z) results in a node distribution of N + 1 nodes, the

first of which is the initial node.

3.1 Reintegration

The total number of stage evaluations required by the reintegration algorithm is

(1) Treint = N ((p + 2) sr + sv + sz) .

Here, p is the number of nodes that are inserted between each pair of adjacent nodes, due

to a stepsize adjustment. The minimum value of p is one, so we can write

(2) Treint > N (3sr + sv + sz) .

This is the lower bound we will use in our analysis.



THE EFFICIENCY OF QUENCHING AND REINTEGRATION IN RUNGE-KUTTA METHODS 883

3.2 RKrvQz

The total number of stage evaluations required by the RKQ algorithm in Mode I is

(3) T I
RKQ = N (2sr + sv + sz) ,

and, in Mode II,

(4) T II
RKQ = N (sr + sv + sz) .

3.3 Comparison

It is immediately clear that we would expect reintegration to be less efficient than RKQ,

simply because of the extra stage evaluations that it needs. To obtain a quantitative

indication of the relative efficiency of the two methods, we will determine

(5) RI ≡
2sr + sv + sz
3sr + sv + sz

and

(6) RII ≡
sr + sv + sz
3sr + sv + sz

for a variety of RK methods.

4. Comparison of Methods

We consider explicit RK methods, explicit embedded RK methods, implicit RK meth-

ods (Radau, Lobatto, Gauss) and Nyström methods. Notation, order, number of stages

and type are indicated in Table 1. The reader is referred to [5], [6] and [7] for a description

of these (and other) RK methods.



884 J.S.C. PRENTICE∗

Method Type Order Stages

RK2 Explicit 2 2

RK4 Explicit 4 4

RK5 Explicit 5 6

RK8 Explicit 8 13

RK10 Explicit 10 17

RK(3, 4) Explicit, embedded 3 and 4 5

RK(4, 5) Explicit, embedded 4 and 5 6

RKN4 Nyström 4 3

RKN5 Nyström 5 4

RKN10 Nyström 10 17

Method Type Order Stages

RKL2 Implicit, Lobatto III 2 2

RKL4 Implicit, Lobatto IIIA 4 3

RKL8 Implicit, Lobatto IIIB 8 5

RKR3 Implicit, Radau IIA 3 2

RKR5 Implicit, Radau IA 5 3

RKG4 Implicit, Gauss 4 2

RKG6 Implicit, Gauss 6 3

RKG8 Implicit, Gauss 8 4

RKG10 Implicit, Gauss 10 5

Table 1. Methods used in the efficiency comparison.

4.1 Explicit RK methods

Here, we consider r = 3, 4 (sr = 3, 4) , v = 4, 5 (sv = 4, 6) and z = 8, 10 (sz = 13, 17) .

These correspond to the methods RK3, RK4, RK5, RK8 and RK10. Values of T I
RKQ, T

II
RKQ,

Treint, RI and RII are shown in Table 1, where Treint is the lower bound in (2). The val-

ue in parentheses in the Treint column is the value of Treint assuming no reintegration is

necessary (i.e. LE fortuitously resulted in an acceptably small global error). T I
RKQ, T

II
RKQ

and Treint are in units of N . These also hold for the other tables in the paper.



THE EFFICIENCY OF QUENCHING AND REINTEGRATION IN RUNGE-KUTTA METHODS 885

sr sv sz T I
RKQ T II

RKQ Treint RI RII

3 4 13 23 20 26 (20) 0.88 0.77

3 6 13 25 22 28 (22) 0.89 0.79

4 6 13 27 23 31 (23) 0.87 0.74

4 6 17 31 27 35 (27) 0.88 0.77

Table 2. T I
RKQ, T

II
RKQ, Treint, RI and RII for the indicated values of sr, sv and sz, for explicit

methods.

4.2 Explicit embedded RK methods

We consider r = 3, 4, v = 4, 5 (sr = 5, 6) and z = 8, 10 (sz = 13, 17) . It is understood

that the embedded pair consists of RKr and RKv. The methods used here are RK(3,4)

and RK(4,5). This simply means that the RKv solution requires no stage evaluations,

since it is computed from the same stages as the RKr solution - hence, the zeros in the

sv column of Table 3.

sr sv sz T I
RKQ T II

RKQ Treint RI RII

5 0 13 23 18 28 (18) 0.82 0.64

6 0 13 25 19 31 (19) 0.80 0.61

6 0 17 29 23 35 (23) 0.83 0.66

Table 3. T I
RKQ, T

II
RKQ, Treint, RI and RII for the indicated values of sr, sv and sz, for explicit

embedded methods.

4.3 Explicit Nyström methods

We consider r = 4 (sr = 3) , v = 5 (sv = 4) and z = 10 (sz = 17) . The corresponding

methods are RKN4, RKN5 and RKN10. The RK10 method used here is, in fact, the

10th-order component of a (10, 12) embedded pair [8].

sr sv sz T I
RKQ T II

RKQ Treint RI RII

3 4 17 27 24 30 (24) 0.90 0.80

Table 4. T I
RKQ, T

II
RKQ, Treint, RI and RII for the indicated values of sr, sv and sz, for explicit

Nyström methods.



886 J.S.C. PRENTICE∗

4.4 Implicit RK methods

Here, we consider r = 2, 3, 4 (sr = 2) , v = 4, 5, 6 (sv = 3) and z = 8, 10 (sz = 4, 5) . The

corresponding methods are RKL2, RKL4, RKL8, RKR3, RKR5, RKG4, RKG6, RKG8

and RKG10. Implicit methods do not involve explicit stage evaluations; rather, they

require the solution of a nonlinear system of a given number of stages. We will assume

here that the stage numbers sr, sv and sz give a suitable indication of the computational

effort required to solve these nonlinear stage equations, so that the ratios defined in (5)

and (6) are still valid indicators of relative efficiciency.

sr sv sz T I
RKQ T II

RKQ Treint RI RII

2 3 5 12 9 14 (10) 0.86 0.64

2 3 5 12 9 14 (10) 0.86 0.64

2 3 4 11 8 13 (9) 0.85 0.73

2 3 5 12 9 14 (10) 0.86 0.64

Table 5. T I
RKQ, T

II
RKQ, Treint, RI and RII for the indicated values of sr, sv and sz, for implicit

methods. First row: Radau (the method with 5 stages is a Lobatto method); second row:

Lobatto; third and fourth rows: Gauss.

4.5 Discussion

We see that, in all cases, RKQ is more efficient than reintegration requiring, on average,

only 86% (for Mode I) and 70% (for Mode II) of the computational effort needed by

reintegration. The exception is, of course, the case when reintegration is not actually

required (the values in parentheses), but it is reasonable to assume that this is a very rare

case (note that this case is obtained from (1) with p = −1).

The values of Treint in the tables were obtained from (1) assuming p = 1. It could, of

course, transpire that a larger value of p is required. This, in turn, will reduce the value

of RI and RII . For example, if we apply RK34Q8 to the initial-value problem

y′ =

(
ln 1000

100

)
y, y (0) = 1, x ∈ [1, 100] ,



THE EFFICIENCY OF QUENCHING AND REINTEGRATION IN RUNGE-KUTTA METHODS 887

using a tolerance of 10−4 on both local and global error, we find that reintegration requires

p = 5. This then gives

RI =
23

35
= 0.66 and RII =

20

35
= 0.57,

which is smaller than the 86% and 70% averages obtained above. Applying RK12Q8

(RK1 is Euler’s method) to the Lotka-Volterra system

u′ = u (v − 1) , v′ = v(2− u), x ∈ [1, 100]

with a tolerance of 10−2 results in p = 19 and, hence,

RI =
17

36
= 0.47 and RII =

16

36
= 0.44.

An even greater reduction occurs for the Hamiltonian example considered in [9] where,

with a tolerance of 10−6, we find p = 22, giving

RI =
23

86
= 0.27 and RII =

20

86
= 0.23,

so that, in this case, RKQ requires roughly only one quarter of the computational effort

needed by reintegration.

There is an additional contribution to the computational cost for both RKQ and rein-

tegration: that of step rejections incurred in the LE component. These occur when the

local error is deemed too large, and a new, smaller stepsize must be used. This leads to

an additional term Msr that must be added to the RHS of (1),(3) and (4), and where M

is the number of step rejections. However, since the LE used in both algorithms is the

same, we have assumed that Msr will be the same for each, and so may be effectively

ignored. Of course, if Msr is the dominant term in (1),(3) and (4), then RI and RII will

be close to unity. We should note that since reintegration uses LE(r, v) , RKQ in Mode I

might return a value of M different to that of reintegration. If this difference does exist,

however, we do not expect it to be significant.



888 J.S.C. PRENTICE∗

5. Conclusion

We have compared the efficiency of two algorithms for controlling global error in Runge-

Kutta solutions of initial-value problems. These algorithms are reintegration, based on

a reapplication of the Runge-Kutta method using a refined node distribution, and RKQ,

based on the concept of quenching. Reintegration is an a posteriori procedure, whereas

RKQ is in situ. We find that RKQ can generally be expected to be more efficient than

reintegration, by at least 16% or 30%, on average (depending on the mode of implemen-

tation of RKQ). Some numerical examples indicate that the gain in efficiency could be

much greater - in one case, RKQ was almost four times more efficient. It is our opinion

that in situ control of the global error is more desirable than a posteriori control and

so, since RKQ can also be expected to be more efficient, we believe that RKQ should be

regarded as the better of the two algorithms for global error control.

References

[1] J.S.C. Prentice, Stepwise global error control in an explicit Runge-Kutta method using local extrap-

olation with high-order selective quenching, Journal of Mathematics Research, 3, 2 (2011) 126-136.

[2] J.S.C. Prentice, Relative Global Error Control in the RKQ Algorithm for Systems of Ordinary Dif-

ferential Equations, Journal of Mathematics Research, 3, 4 (2011) 59-66.

[3] J.S.C. Prentice, Nyström Methods in the RKQ Algorithm for Initial-value Problems, arXiv.org (Cor-

nell University Library), 2011, 7p, [arXiv:1110.6749].

[4] J.S.C. Prentice, Efficiency of the RKQ Algorithm, Applied Mathematical Sciences, 6, 52 (2012) 2587-

2591.

[5] E. Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems,

Berlin: Springer, 2000.

[6] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic

Problems, Berlin: Springer, 2002.

[7] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Chichester: Wiley, 2003.

[8] J.R. Dormand, M.E.A. El-Mikkawy and J. Prince, High-Order Embedded Runge-Kutta-Nyström

Formulae, IMA Journal of Numerical Analysis, 7, (1987) 423-430.

[9] J.S.C. Prentice, Global Error Control in the Runge-Kutta Solution of a Hamiltonian System, arXiv.org

(Cornell University Library), 2011, 12p, [arXiv:1111.6996].


