Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 2, 265-273 ISSN: 1927-5307

I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

VAKEEL.A.KHAN^{1,*} AND KHALID EBADULLAH²

¹Department of Mathematics, Aligarh Muslim University, Aligarh - 202002, India

Abstract. In this article we introduce the sequence spaces $c_0^I(F, \Delta)$ and $l_{\infty}^I(F, \Delta)$ for the sequence of modulii $F = (f_k)$ and give some inclusion realations. The results here in proved are analogous to those by ASMA BEKTAS Cigdem (2003)[Soochow.J.Math.,(2003) 29(2) : 215-220].

Keywords: Ideal, filter, sequence of moduli, difference sequence space, I-convergent sequence spaces.

2000 AMS Subject Classification: 40C05; 46A45

1. Introduction

Let ω, l_{∞}, c and c_0 be the set of all sequences of complex numbers, the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

 $||x||_{\infty} = \sup_{k} |x_k|, \text{ where } k \in \mathbb{N} = \{1, 2, \cdots \}.$

^{*}Corresponding author

E-mail addresses: vakhan@math.com(V. A. Khan), khalidebadullah@gmail.com(K. Ebadullah) Received December 1, 2011

The idea of difference sequence spaces was introduced by Kizmaz [15]. In 1981, Kizmaz [15] defined the sequence spaces

$$l_{\infty}(\triangle) = \{x = (x_k) \in \omega : (\triangle x_k) \in l_{\infty}\},\$$
$$c(\triangle) = \{x = (x_k) \in \omega : (\triangle x_k) \in c\},\$$
$$c_0(\triangle) = \{x = (x_k) \in \omega : (\triangle x_k) \in c_0\},\$$

where,

$$\triangle x = (x_k - x_{k+1}) \text{ and } \triangle^0 x = (x_k).$$

These are Banach spaces with the norm

$$||x||_{\triangle} = |x_1| + ||\Delta x||_{\infty}.$$

Difference sequence spaces have been studied by Vakeel.A.Khan and S. Tabassum [13], Vakeel A.Khan and K. Ebadullah [14] and many others.

The idea of modulus was structured in 1953 by Nakano.(See[19]). A function $f : [0, \infty) \rightarrow [0, \infty)$ is called a modulus if

- (i)f(t) = 0 if and only if t = 0,
- (ii) $f(t+u) \leq f(t) + f(u)$ for all t,u ≥ 0 ,
- (iii) f is increasing, and
- (iv) f is continuous from the right at zero.

Let X be a sequence space. Ruckle [20,21,22] defined the sequence space X(f) as

$$X(f) = \{x = (x_k) : (f(|x_k|)) \in X\}$$

for a modulus f. Kolk [16,17]gave an extension of X(f) by considering a sequence of moduli $F = (f_k)$, that is

$$X(F) = \{ x = (x_k) : (f_k(|x_k|)) \in X \}.$$

266

$$l_{\infty}(F, \Delta) = \{x = (x_k) : \Delta x \in l_{\infty}(F)\}$$

$$c_0(F, \triangle) = \{ x = (x_k) : \triangle x \in c_0(F) \}$$

for a sequence of moduli $F = (f_k)$ and gave the necessary and sufficient conditions for the inclusion relations between $X(\triangle)$ and $Y(F, \triangle)$, where $X, Y = l_{\infty}$ or c_0 . Sequence of moduli have been studied by C.A.Bektas and R.Colak[1], Vakeel A.Khan [8,9,10], Vakeel A.Khan and Q.M.D.Lohani [11] and many others.

The notion of the statistical convergence was introduced by H.Fast[4].Later on it was studied by J.A.Fridy[5,6] from the sequence space point of view and linked it with the summability theory.

The notion of I-convergence is a generalization of the statistical convergence. The notion of I-convergence was studied at the initial stage by Kostyrko, Salat and Wilezynski [18]. Later on it was studied by Salat [23], Salat, Tripathy and Ziman [24], Demirci [3], Vakeel A.Khan and Khalid Ebadullah [12], Dems [2] and many others.

Let N be a non empty set. Then a family of sets $I \subseteq 2^N$ (power set of N) is said to be an ideal if I is additive i.e $A, B \in I \Rightarrow A \cup B \in I$ and hereditary i.e $A \in I, B \subseteq A \Rightarrow B \in I$. A non-empty family of sets $\pounds(I) \subseteq 2^N$ is said to be filter on N if and only if $\Phi \notin \pounds(I)$, for $A, B \in \pounds(I)$ we have $A \cap B \in \pounds(I)$ and for each $A \in \pounds(I)$ and $A \subseteq B$ implies $B \in \pounds(I)$.

An Ideal I $\subseteq 2^N$ is called non-trivial if $I \neq 2^N$. A non-trivial ideal I $\subseteq 2^N$ is called admissible if $\{\{x\} : x \in N\} \subseteq I$. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset. For each ideal I, there is a filter $\pounds(I)$ corresponding to I. i.e $\pounds(I) = \{K \subseteq N : K^c \in I\}$, where $K^c = N$ -K. **Definition 1.1.** A sequence $(x_k) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$. $\{k \in N : |x_k - L| \ge \epsilon\} \in I$. In this case we write I-lim $x_k = L$.

Definition 1.2. A sequence $(x_k) \in \omega$ is said to be I-null if L = 0. In this case we write I-lim $x_k = 0$.

Definition 1.3. A sequence $(x_k) \in \omega$ is said to be I-cauchy if for every $\epsilon > 0$ there exists a number $m = m(\epsilon)$ such that $\{k \in N : |x_k - x_m| \ge \epsilon\} \in I$.

Definition 1.4. A sequence $(x_k) \in \omega$ is said to be I-bounded if there exists M >0 such that $\{k \in N : |x_k| > M\}$

We need the following lemmas.

Lemma 1.5. The condition $\sup_{k} f_k(t) < \infty, t > 0$ holds if and only if there is a point $t_0 > 0$ such that $\sup_{k} f_k(t_0) < \infty$. (See[1,7]).

Lemma 1.6. The condition $\inf_k f_k(t) > 0$ holds if and only if there exists a point $t_0 > 0$ such that $\inf_k f_k(t_0) > 0.(\text{See}[1,7]).$

Lemma 1.7. Let $K \in \mathcal{L}(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I.(See[24])$.

Lemma 1.8. If $I \subset 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I.(See[18])$.

2. Main results

In this article we introduce the following classes of sequence spaces.

$$c_0^I(F, \Delta) = \{(x_k) \in \omega : I - \lim f_k(|\Delta x_k|) = 0\} \in I$$
$$l_\infty^I(F, \Delta) = \{(x_k) \in \omega : \sup_k f_k(|\Delta x_k|) < \infty\} \in I.$$

Theorem 2.1. For a sequence $F = (f_k)$ of moduli, the following statements are equivalent: (a) $l_{\infty}^{I}(\Delta) \subseteq l_{\infty}^{I}(F, \Delta)$

- (b) $c_0^I(\triangle) \subset l_\infty^I(F,\triangle)$
- (c) $\sup_{k} f_k(t) < \infty, (t > 0)$

Proof. (a)implies (b) is obvious.

(b) implies (c). Let $c_0^I(\triangle)\subset l_\infty^I(F,\triangle).$ Suppose that (c) is not true. Then by Lemma 1.5

$$\sup_{k} f_k(t) = \infty \text{ for all } t > 0,$$

and therefore there is a sequence (k_i) of positive integers such that

(1)
$$f_{k_i}(\frac{1}{i}) > i$$
, for, $i = 1, 2, 3$

Define $x = (x_k)$ as follows

$$x_{k} = \begin{cases} \frac{1}{i}, \text{ if } k = k_{i}, i = 1, 2, 3.....; \\ 0, \text{ otherwise.} \end{cases}$$

Then $x \in c_0^I(\triangle)$ but by (1), $x \notin l_\infty^I(F, \triangle)$ which contradicts (b). Hence (c)must hold.

(c)implies (a). Let (c) be satisfied and $x \in l_{\infty}^{I}(\Delta)$. If we suppose that $x \notin l_{\infty}^{I}(F, \Delta)$ then

$$\sup_{k} f_k(|\triangle x_k|) = \infty \text{ for } \triangle x \in l_{\infty}^I$$

If we take $t = |\Delta x|$ then $\sup_{k} f_k(t) = \infty$ which contradicts (c). Hence $l_{\infty}^{I}(\Delta) \subseteq l_{\infty}^{I}(F, \Delta)$.

Theorem 2.2. If $F = (f_k)$ is a sequence of moduli, then the following statements are equivalent:

- (a) $c_0^I(F, \Delta) \subseteq c_0^I(\Delta)$,
- (b) $c_0^I(F, \triangle) \subset l_\infty^I(\triangle),$
- (c) $\inf_{k} f_k(t) > 0, (t > 0).$

Proof.(a) implies (b) is obvious.

(b) implies (c). Let $c_0^I(F,\triangle)\subset l_\infty^I(\triangle).$ Suppose that (c) does not hold. Then, by lemma 1.6 ,

(2)
$$\inf_{k} f_k(t) = 0, \ (t > 0),$$

and therefore there is a sequence (k_i) of positive integers such that

$$f_{k_i}(i^2) < \frac{1}{i}$$
 for $i = 1, 2, \dots$

Define the sequence $x = (x_k)$ by

$$x_{k} = \begin{cases} i^{2}, \text{ if } k = k_{i}, \ i = 1, 2, 3.....; \\ 0, \text{ otherwise.} \end{cases}$$

By (2) $x \in c_0^I(F, \Delta)$ but $x \notin l_{\infty}^I(\Delta)$ which contradicts (b). Hence (c) must hold.

I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI271 (c)implies (a). Let (c) holds and $x \in c_0^I(F, \Delta)$ that is

$$I - \lim_{k} f_k(|\triangle x_k|) = 0$$

. Suppose that $x \notin c_0^I(\Delta)$. Then for some number $\epsilon_0 > 0$ and positive integer k_0 we have $|\Delta x_k| \leq \epsilon_0$ for $k > k_o$. Therefore $f_k(\epsilon_0) \geq f_k(|\Delta x_k|)$ for $k \geq k_o$ and hence $\lim_k f_k(\epsilon_0) > 0$ which contradicts our supposition that $x \notin c_0^I(\Delta)$. Thus $c_0^I(F, \Delta) \subseteq c_0^I(\Delta)$.

Theorem 2.3. The inclusion $l_{\infty}^{I}(F, \Delta) \subseteq c_{0}^{I}(\Delta)$ holds if and only if

(3)
$$\lim_{k} f_k(t) = \infty, \text{ for, } t > 0.$$

Proof. Let $l_{\infty}^{I}(F, \Delta) \subseteq c_{0}^{I}(\Delta)$ such that $\lim_{k} f_{k}(t) = \infty$ for t >0 does not hold. Then there is a number $t_{0} > 0$ and a sequence (k_{i}) of positive integers such that

(4)
$$f_{k_i}(t_0) \le M < \infty.$$

Define the sequence $x = (x_k)$ by

$$x_{k} = \begin{cases} t_{0}, \text{ if } k = k_{i}, i = 1, 2, 3.....; \\ 0, \text{ otherwise.} \end{cases}$$

Thus $x \in l_{\infty}^{I}(F, \Delta)$, by (4).But $x \notin c_{0}^{I}(\Delta)$, so that (3) must hold If $l_{\infty}^{I}(F, \Delta) \subseteq c_{0}^{I}(\Delta)$. Conversely, let (3) hold. If $x \in l_{\infty}^{I}(F, \Delta)$, then $f_{k}(|\Delta x_{k}|) \leq M < \infty$

for k = 1,2,3...Suppose that $x \notin c_0^I(\triangle)$. Then for some number $\epsilon_0 > 0$ and positive integer k_0 we have $|\triangle x_k| < \epsilon_0$ for $k \ge k_0$. Therefore $f_k(\epsilon_0) > f_k(|\triangle x_k|) \le M$ for $k \ge k_0$ which contradicts (3). Hence $x \in c_0^I(\triangle)$.

Theorem 2.4. The inclusion $l_{\infty}^{I}(\Delta) \subseteq c_{0}^{I}(F, \Delta)$ holds, if and only if

(5)
$$\lim_{k} f_k(t) = 0 \text{ for } t > 0.$$

Proof. Suppose that $l_{\infty}^{I}(\Delta) \subseteq c_{0}^{I}(F, \Delta)$ but (5) does not hold. Then

(6)
$$\lim_{k} f_k(t_0) = l \neq 0$$
, for some $t_0 > 0$.

Define the sequence $x = (x_k)$ by

$$x_k = t_0 \sum_{v=0}^{k-1} (-1) \begin{bmatrix} k-v \\ k-v \end{bmatrix}$$

for k = 1,2,3......Then $x \notin c_0^I(F, \Delta)$, by (6).Hence (5)must hold. Conversely, let $x \in l_{\infty}^I(\Delta)$ and suppose that (5) holds. Then $|\Delta x_k| \leq M < \infty$ for k = 1,2,3.... Therefore $f_k(|\Delta x_k|) \leq f_k(M)$ for k = 1,2,3.... and $\lim_k f_k(|\Delta x_k|) \leq \lim_k f_k(M) = 0$, by (5). Hence $x \in c_0^I(F, \Delta)$.

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- C.A.Bektas, R.Colak, Generalized difference sequence spaces defined by a sequence of moduli, Soochow.J.Math., 29(2)(2003), 215-220.
- [2] K.Demirci, I-limit superior and limit inferior, Math. Commun.6(2001) 165-172.
- [3] K.Dems, On I-Cauchy sequences, Real Analysis Exchange, 30(2005),123-128.
- [4] H.Fast, Sur la convergence statistique, Colloq.Math.2(1951),241-244.
- [5] J.A.Fridy, On statistical convergence, Analysis.5(1985).301-313.
- [6] J.A.Fridy, Statistical limit points, Proc.Amer.Math.Soc.11(1993),1187-1192.
- [7] A.K.Gaur and Mursaleen, Difference sequence spaces defined by a sequence of moduli, Demonstratio Mah., 31(1998), 275-278.

I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI273

- [8] V.A.Khan, On a sequence space defined by a modulus function, Southeast Asian Bulletin of Mathematics.29(2005),747-753.
- [9] V.A.Khan, Some inclusion relations between the sequence spaces defined by sequence of moduli, J.Indian.Math.Soc.73(2006),77-81.
- [10] V.A.Khan, Some new generalized difference sequence spaces defined by a sequence of moduli, Appl.Math.J.Chinese Univ.,26(1)(2011),104-108.
- [11] V.A.Khan and Q.M.D.Lohani, Difference sequence spaces defined by a sequence of moduli, Southeast Asian Bulletin of Mathematics.30(2006),1061-1067.
- [12] V.A.Khan and K.Ebadullah, On some I-Convergent sequence spaces defined by a modullus function, Theory and Applications of Mathematics and Computer Science, 1(2)(2012), 1-9.
- [13] V.A.Khan and K.Ebadullah, On a new difference sequence space of invariant means defined by Orlicz functions.Bulletin of Allahabad Mathematical society,26(2)(2011)(In Press).
- [14] V.A.Khan and S.Tabassum, Some Vector Valued Multiplier Difference Double Sequence Spaces in 2-normed Spaces Defined by Orlicz functions, J.Math.Comput.Sci.1(1)(2011), 126-139.
- [15] H.Kizmaz, On certain sequence spaces, Canadian Math.Bull., 24(1981), 169-176.
- [16] E.Kolk, On strong boundedness and summability with respect to a sequence of modulii, Acta Comment.Univ.Tartu,960(1993),41-50.
- [17] E.Kolk, Inclusion theorems for some sequence spaces defined by a sequence of modulii, Acta Comment. Univ. Tartu, 970(1994), 65-72.
- [18] P.Kostyrko, T.Salat and W.Wilczynski, I-convergence, Real Analysis Exchange, 26(2)(2000), 669-686.
- [19] H.Nakano, Concave modulars, J. Math Soc. Japan,5(1953)29-49.
- [20] W.H.Ruckle, On perfect Symmetric BK-spaces, Math.Ann., 175(1968)121-126.
- [21] W.H.Ruckle, Symmetric coordinate spaces and symmetric bases, Canad. J.Math. 19(1967)828-838.
- [22] W.H.Ruckle., FK-spaces in which the sequence of coordinate vectors is bounded.Canad.J.Math.25(5)(1973)973-975.
- [23] T.Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.
- [24] T.Salat,B.C.Tripathy and M.Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ.28(2004),279-286.