Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 2, 265-273

ISSN: 1927-5307

I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

VAKEEL.A.KHAN ${ }^{1, *}$ AND KHALID EBADULLAH ${ }^{2}$
${ }^{1}$ Department of Mathematics, Aligarh Muslim University, Aligarh - 202002, India

Abstract

In this article we introduce the sequence spaces $c_{0}^{I}(F, \Delta)$ and $l_{\infty}^{I}(F, \Delta)$ for the sequence of modulii $F=\left(f_{k}\right)$ and give some inclusion realations.The results here in proved are analogous to those by ASMA BEKTAS Cigdem (2003)[Soochow.J.Math.,(2003) 29(2) : 215-220].

Keywords: Ideal, filter,sequence of moduli,difference sequence space,I-convergent sequence spaces. 2000 AMS Subject Classification: 40C05; 46A45

1. Introduction

Let ω, l_{∞}, c and c_{0} be the set of all sequences of complex numbers, the linear spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ with complex terms, respectively,normed by

$$
\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|, \text { where } k \in \mathbb{N}=\{1,2, \cdots\} .
$$

[^0]The idea of difference sequence spaces was introduced by Kizmaz [15]. In 1981, Kizmaz [15] defined the sequence spaces

$$
\begin{aligned}
l_{\infty}(\triangle) & =\left\{x=\left(x_{k}\right) \in \omega:\left(\triangle x_{k}\right) \in l_{\infty}\right\} \\
c(\triangle) & =\left\{x=\left(x_{k}\right) \in \omega:\left(\triangle x_{k}\right) \in c\right\} \\
c_{0}(\triangle) & =\left\{x=\left(x_{k}\right) \in \omega:\left(\triangle x_{k}\right) \in c_{0}\right\}
\end{aligned}
$$

where,

$$
\triangle x=\left(x_{k}-x_{k+1}\right) \text { and } \triangle^{0} x=\left(x_{k}\right)
$$

These are Banach spaces with the norm

$$
\|x\|_{\triangle}=\left|x_{1}\right|+\|\triangle x\|_{\infty} .
$$

Difference sequence spaces have been studied by Vakeel.A.Khan and S. Tabassum [13], Vakeel A.Khan and K. Ebadullah [14] and many others.

The idea of modulus was structured in 1953 by Nakano.(See[19]).A function $f:[0, \infty) \rightarrow$ $[0, \infty)$ is called a modulus if
(i) $f(\mathrm{t})=0$ if and only if $t=0$,
(ii) $f(\mathrm{t}+\mathrm{u}) \leq f(\mathrm{t})+f(\mathrm{u})$ for all $\mathrm{t}, \mathrm{u} \geq 0$,
(iii) f is increasing, and
(iv) f is continuous from the right at zero.

Let X be a sequence space. Ruckle $[20,21,22]$ defined the sequence space $\mathrm{X}(f)$ as

$$
X(f)=\left\{x=\left(x_{k}\right):\left(f\left(\left|x_{k}\right|\right)\right) \in X\right\}
$$

for a modulus f. Kolk [16,17]gave an extension of $X(f)$ by considering a sequence of moduli $F=\left(f_{k}\right)$,that is

$$
X(F)=\left\{x=\left(x_{k}\right):\left(f_{k}\left(\left|x_{k}\right|\right)\right) \in X\right\} .
$$

After then Gaur and Mursaleen[7] defined the following sequence spaces

$$
\begin{aligned}
& l_{\infty}(F, \triangle)=\left\{x=\left(x_{k}\right): \triangle x \in l_{\infty}(F)\right\} \\
& c_{0}(F, \triangle)=\left\{x=\left(x_{k}\right): \triangle x \in c_{0}(F)\right\}
\end{aligned}
$$

for a sequence of moduli $F=\left(f_{k}\right)$ and gave the necessary and sufficient conditions for the inclusion relations between $X(\triangle)$ and $Y(F, \triangle)$, where $\mathrm{X}, \mathrm{Y}=l_{\infty}$ or c_{0}. Sequence of moduli have been studied by C.A.Bektas and R.Colak[1], Vakeel A.Khan [8,9,10], Vakeel A.Khan and Q.M.D.Lohani [11] and many others .

The notion of the statistical convergence was introduced by H.Fast[4]. Later on it was studied by J.A.Fridy[5,6] from the sequence space point of view and linked it with the summability theory.

The notion of I-convergence is a generalization of the statistical convergence. The notion of I-convergence was studied at the initial stage by Kostyrko, Salat and Wilezynski [18]. Later on it was studied by Salat [23], Salat,Tripathy and Ziman [24],Demirci [3], Vakeel A.Khan and Khalid Ebadullah [12], Dems [2]and many others.

Let N be a non empty set. Then a family of sets $\mathrm{I} \subseteq 2^{N}$ (power set of N) is said to be an ideal if I is additive i.e $A, B \in I \Rightarrow A \cup B \in I$ and hereditary i.e $A \in I, B \subseteq A \Rightarrow B \in I$. A non-empty family of sets $£(I) \subseteq 2^{N}$ is said to be filter on N if and only if $\Phi \notin £(\mathrm{I})$,for $\mathrm{A}, \mathrm{B} \in \mathscr{L}(\mathrm{I})$ we have $\mathrm{A} \cap \mathrm{B} \in £(\mathrm{I})$ and for each $\mathrm{A} \in £(\mathrm{I})$ and $\mathrm{A} \subseteq \mathrm{B}$ implies $\mathrm{B} \in £(\mathrm{I})$.

An Ideal $\mathrm{I} \subseteq 2^{N}$ is called non-trivial if $\mathrm{I} \neq 2^{N}$. A non-trivial ideal $\mathrm{I} \subseteq 2^{N}$ is called admissible if $\{\{x\}: x \in N\} \subseteq \mathrm{I}$. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $\mathrm{J} \neq \mathrm{I}$ containing I as a subset.For each ideal I, there is a filter $£(\mathrm{I})$ corresponding to I. i.e $£(\mathrm{I})=\left\{K \subseteq N: K^{c} \in I\right\}$, where $\mathrm{K}^{c}=\mathrm{N}-\mathrm{K}$.

Definition 1.1. A sequence $\left(x_{k}\right) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon>0 .\left\{k \in N:\left|x_{k}-L\right| \geq \epsilon\right\} \in$ I. In this case we write I-lim $x_{k}=L$.

Definition 1.2. A sequence $\left(x_{k}\right) \in \omega$ is said to be I-null if $\mathrm{L}=0$.In this case we write I-lim $x_{k}=0$.

Definition 1.3. A sequence $\left(x_{k}\right) \in \omega$ is said to be I-cauchy if for every $\epsilon>0$ there exists a number $\mathrm{m}=\mathrm{m}(\epsilon)$ such that $\left\{k \in N:\left|x_{k}-x_{m}\right| \geq \epsilon\right\} \in \mathrm{I}$.

Definition 1.4. A sequence $\left(x_{k}\right) \in \omega$ is said to be I-bounded if there exists $\mathrm{M}>0$ such that $\left\{k \in N:\left|x_{k}\right|>M\right\}$

We need the following lemmas.

Lemma 1.5. The condition $\sup _{k} f_{k}(t)<\infty, t>0$ holds if and only if there is a point $t_{0}>0$ such that $\sup _{k} f_{k}\left(t_{0}\right)<\infty$. (See[1,7]).

Lemma 1.6. The condition $\inf _{k} f_{k}(t)>0$ holds if and only if there exists a point $t_{0}>0$ such that $\inf _{k} f_{k}\left(t_{0}\right)>0$. $(\operatorname{See}[1,7])$.

Lemma 1.7. Let $\mathrm{K} \in £(\mathrm{I})$ and $\mathrm{M} \subseteq \mathrm{N}$. If $\mathrm{M} \notin \mathrm{I}$, then $\mathrm{M} \cap \mathrm{K} \notin \mathrm{I}$.(See[24]).

Lemma 1.8. If $I \subset 2^{N}$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.(See[18]).

2. Main results

In this article we introduce the following classes of sequence spaces.

$$
\begin{gathered}
c_{0}^{I}(F, \triangle)=\left\{\left(x_{k}\right) \in \omega: I-\lim f_{k}\left(\left|\triangle x_{k}\right|\right)=0\right\} \in I \\
l_{\infty}^{I}(F, \triangle)=\left\{\left(x_{k}\right) \in \omega: \sup _{k} f_{k}\left(\left|\triangle x_{k}\right|\right)<\infty\right\} \in I
\end{gathered}
$$

Theorem 2.1. For a sequence $F=\left(f_{k}\right)$ of moduli,the following statements are equivalent:
(a) $l_{\infty}^{I}(\triangle) \subseteq l_{\infty}^{I}(F, \triangle)$
(b) $c_{0}^{I}(\triangle) \subset l_{\infty}^{I}(F, \triangle)$
(c) $\sup _{k} f_{k}(t)<\infty,(t>0)$

Proof. (a)implies (b) is obvious.
(b)implies (c). Let $c_{0}^{I}(\triangle) \subset l_{\infty}^{I}(F, \triangle)$. Suppose that (c) is not true.

Then by Lemma 1.5

$$
\sup _{k} f_{k}(t)=\infty \text { for all } t>0
$$

and therefore there is a sequence $\left(k_{i}\right)$ of positive integers such that

$$
\begin{equation*}
f_{k_{i}}\left(\frac{1}{i}\right)>i, \text { for, } i=1,2,3 \ldots \ldots \tag{1}
\end{equation*}
$$

Define $x=\left(x_{k}\right)$ as follows

$$
x_{k}=\left\{\begin{array}{c}
\frac{1}{i}, \text { if } k=k_{i}, i=1,2,3 \ldots \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

Then $x \in c_{0}^{I}(\triangle)$ but by (1), $x \notin l_{\infty}^{I}(F, \triangle)$ which contradicts (b).Hence (c)must hold.
(c)implies (a). Let (c) be satisfied and $x \in l_{\infty}^{I}(\triangle)$. If we suppose that $x \notin l_{\infty}^{I}(F, \triangle)$ then

$$
\sup _{k} f_{k}\left(\left|\triangle x_{k}\right|\right)=\infty \text { for } \Delta x \in l_{\infty}^{I}
$$

If we take $\mathrm{t}=|\triangle x|$ then $\sup _{k} f_{k}(t)=\infty$ which contradicts (c).
Hence $l_{\infty}^{I}(\triangle) \subseteq l_{\infty}^{I}(F, \triangle)$.

Theorem 2.2. If $F=\left(f_{k}\right)$ is a sequence of moduli, then the following statements are equivalent:
(a) $c_{0}^{I}(F, \triangle) \subseteq c_{0}^{I}(\triangle)$,
(b) $c_{0}^{I}(F, \triangle) \subset l_{\infty}^{I}(\triangle)$,
(c) $\inf _{k} f_{k}(t)>0,(t>0)$.

Proof.(a) implies (b) is obvious.
(b)implies (c). Let $c_{0}^{I}(F, \triangle) \subset l_{\infty}^{I}(\triangle)$.Suppose that (c) does not hold.

Then, by lemma 1.6 ,

$$
\begin{equation*}
\inf _{k} f_{k}(t)=0,(t>0) \tag{2}
\end{equation*}
$$

and therefore there is a sequence $\left(k_{i}\right)$ of positive integers such that

$$
f_{k_{i}}\left(i^{2}\right)<\frac{1}{i} \text { for } i=1,2, \ldots \ldots \ldots
$$

Define the sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=\left\{\begin{array}{c}
i^{2}, \text { if } k=k_{i}, i=1,2,3 \ldots \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

By (2) $x \in c_{0}^{I}(F, \triangle)$ but $x \notin l_{\infty}^{I}(\triangle)$ which contradicts (b).Hence (c) must hold.

I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI271
(c)implies (a). Let (c) holds and $x \in c_{0}^{I}(F, \triangle)$ that is

$$
I-\lim _{k} f_{k}\left(\left|\triangle x_{k}\right|\right)=0
$$

. Suppose that $x \notin c_{0}^{I}(\triangle)$. Then for some number $\epsilon_{0}>0$ and positive integer k_{0} we have $\left|\triangle x_{k}\right| \leq \epsilon_{0}$ for $k>k_{o}$. Therefore $f_{k}\left(\epsilon_{0}\right) \geq f_{k}\left(\left|\triangle x_{k}\right|\right)$ for $k \geq k_{o}$ and hence $\lim _{k} f_{k}\left(\epsilon_{0}\right)>0$ which contradicts our supposition that $x \notin c_{0}^{I}(\triangle)$.

Thus $c_{0}^{I}(F, \triangle) \subseteq c_{0}^{I}(\triangle)$.

Theorem 2.3. The inclusion $l_{\infty}^{I}(F, \triangle) \subseteq c_{0}^{I}(\triangle)$ holds if and only if

$$
\begin{equation*}
\lim _{k} f_{k}(t)=\infty, \text { for, } t>0 \tag{3}
\end{equation*}
$$

Proof. Let $l_{\infty}^{I}(F, \triangle) \subseteq c_{0}^{I}(\triangle)$ such that $\lim _{k} f_{k}(t)=\infty$ for $\mathrm{t}>0$ does not hold. Then there is a number $t_{0}>0$ and a sequence $\left(k_{i}\right)$ of positive integers such that

$$
\begin{equation*}
f_{k_{i}}\left(t_{0}\right) \leq M<\infty \tag{4}
\end{equation*}
$$

Define the sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=\left\{\begin{array}{c}
t_{0}, \text { if } k=k_{i}, i=1,2,3 \ldots \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

Thus $x \in l_{\infty}^{I}(F, \triangle)$, by (4).But $x \notin c_{0}^{I}(\triangle)$, so that (3) must hold If $l_{\infty}^{I}(F, \triangle) \subseteq c_{0}^{I}(\triangle)$.
Conversely, let (3) hold. If $x \in l_{\infty}^{I}(F, \triangle)$, then $f_{k}\left(\left|\triangle x_{k}\right|\right) \leq M<\infty$
for $\mathrm{k}=1,2,3 \ldots \ldots$. Suppose that $x \notin c_{0}^{I}(\triangle)$. Then for some number $\epsilon_{0}>0$ and positive integer k_{0} we have $\left|\triangle x_{k}\right|<\epsilon_{0}$ for $k \geq k_{0}$. Therefore $f_{k}\left(\epsilon_{0}\right)>f_{k}\left(\left|\triangle x_{k}\right|\right) \leq M$ for $\mathrm{k} \geq k_{0}$ which contradicts (3).Hence $x \in c_{0}^{I}(\triangle)$.

Theorem 2.4. The inclusion $l_{\infty}^{I}(\triangle) \subseteq c_{0}^{I}(F, \triangle)$ holds, if and only if

$$
\begin{equation*}
\lim _{k} f_{k}(t)=0 \text { for } t>0 \tag{5}
\end{equation*}
$$

Proof. Suppose that $l_{\infty}^{I}(\triangle) \subseteq c_{0}^{I}(F, \triangle)$ but (5) does not hold.
Then

$$
\begin{equation*}
\lim _{k} f_{k}\left(t_{0}\right)=l \neq 0, \text { for some } t_{0}>0 \tag{6}
\end{equation*}
$$

Define the sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=t_{0} \sum_{v=0}^{k-1}(-1)\left[\begin{array}{l}
k-v \\
k-v
\end{array}\right]
$$

for $\mathrm{k}=1,2,3 \ldots \ldots \ldots$. Then $x \notin c_{0}^{I}(F, \triangle)$, by (6).Hence (5)must hold.
Conversly , let $x \in l_{\infty}^{I}(\triangle)$ and suppose that (5) holds.
Then $\left|\triangle x_{k}\right| \leq M<\infty$ for $\mathrm{k}=1,2,3 \ldots \ldots$
Therefore $f_{k}\left(\left|\triangle x_{k}\right|\right) \leq f_{k}(M)$ for $\mathrm{k}=1,2,3 \ldots$. and
$\lim _{k} f_{k}\left(\left|\triangle x_{k}\right|\right) \leq \lim _{k} f_{k}(M)=0$, by (5).
Hence $x \in c_{0}^{I}(F, \triangle)$.

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

[1] C.A.Bektas,R.Colak, Generalized difference sequence spaces defined by a sequence of moduli, Soochow.J.Math.,29(2)(2003),215-220.
[2] K.Demirci, I-limit superior and limit inferior, Math. Commun.6(2001) 165-172.
[3] K.Dems, On I-Cauchy sequences, Real Analysis Exchange, 30(2005),123-128.
[4] H.Fast, Sur la convergence statistique, Colloq.Math.2(1951),241-244.
[5] J.A.Fridy, On statistical convergence, Analysis.5(1985).301-313.
[6] J.A.Fridy, Statistical limit points, Proc.Amer.Math.Soc.11(1993),1187-1192.
[7] A.K.Gaur and Mursaleen, Difference sequence spaces defined by a sequence of moduli, Demonstratio Mah.,31(1998),275-278.
[8] V.A.Khan, On a sequence space defined by a modulus function, Southeast Asian Bulletin of Mathematics.29(2005),747-753.
[9] V.A.Khan, Some inclusion relations between the sequence spaces defined by sequence of moduli, J.Indian.Math.Soc.73(2006),77-81.
[10] V.A.Khan, Some new generalized difference sequence spaces defined by a sequence of moduli, Appl.Math.J.Chinese Univ.,26(1)(2011),104-108.
[11] V.A.Khan and Q.M.D.Lohani, Difference sequence spaces defined by a sequence of moduli, Southeast Asian Bulletin of Mathematics.30(2006),1061-1067.
[12] V.A.Khan and K.Ebadullah, On some I-Convergent sequence spaces defined by a modullus function, Theory and Applications of Mathematics and Computer Science,1(2)(2012),1-9.
[13] V.A.Khan and K.Ebadullah, On a new difference sequence space of invariant means defined by Orlicz functions.Bulletin of Allahabad Mathematical society,26(2)(2011)(In Press).
[14] V.A.Khan and S.Tabassum, Some Vector Valued Multiplier Difference Double Sequence Spaces in 2-normed Spaces Defined by Orlicz functions,J.Math.Comput.Sci.1(1)(2011),126-139.
[15] H.Kizmaz,On certain sequence spaces, Canadian Math.Bull., 24(1981),169-176.
[16] E.Kolk, On strong boundedness and summability with respect to a sequence of modulii, Acta Comment.Univ.Tartu,960(1993),41-50.
[17] E.Kolk, Inclusion theorems for some sequence spaces defined by a sequence of modulii,Acta Comment.Univ.Tartu,970(1994),65-72.
[18] P.Kostyrko,T.Salat and W.Wilczynski,I-convergence, Real Analysis Exchange,26(2)(2000),669-686.
[19] H.Nakano, Concave modulars, J. Math Soc. Japan,5(1953)29-49.
[20] W.H.Ruckle, On perfect Symmetric BK-spaces,Math.Ann.,175(1968)121-126.
[21] W.H.Ruckle, Symmetric coordinate spaces and symmetric bases,Canad.J.Math.19(1967)828-838.
[22] W.H.Ruckle., FK-spaces in which the sequence of coordinate vectors is bounded.Canad.J.Math.25(5)(1973)973-975.
[23] T.Salat, On statisticaly convergent sequences of real numbers,Math.Slovaca,30(1980),139-150.
[24] T.Salat,B.C.Tripathy and M.Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ.28(2004),279-286.

[^0]: *Corresponding author
 E-mail addresses: vakhan@math.com(V. A. Khan), khalidebadullah@gmail.com(K. Ebadullah)
 Received December 1, 2011

